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Abstract

Traditionally, multiple access schemes in multi-user communications systems have been designed
either connection-oriented or traffic-oriented. In the first ones, the goal was to provide as many
orthogonal channels as possible, each one serving a different connection. That is the motivation
of the so-called FDMA, TDMA and CDMA solutions. On the other hand, random access tech-
niques, which started with the so-called ALOHA protocol, aim to statistically multiplex a shared
communication medium by means of exploiting the random and bursty nature of transmission
needs in data networks. Most of the multiple access solutions can be interpreted according
to that classification or as a combination of those approaches. Notwithstanding, modern sys-
tems, such as the digital satellite communications standard DVB-RCS or the broadband wireless
access WiMAX, have implemented a multiple access technique where users request for transmis-
sion opportunities and receive grants from the network, therefore requiring dynamic bandwidth
allocation techniques.

The concept of dynamic bandwidth allocation is wide and involves a number of physical and
link layer variables, configurations and protocols. In this Ph.D. dissertation we first explore the
mathematical foundation that is required to coordinate the distinct layers of the OSI protocol
stack and the distinct nodes within the network. We talk about decomposition techniques focused
on the resolution of convex programs, which have elegantly solved many problems in the signal
processing and communications fields during the last years. Known schemes are reviewed and
a novel decomposition methodology is proposed. Thereafter, we compare the four resulting
strategies, each one having its own particular signalling needs, which results in distinct cross-layer
interactions or signalling protocols at implementation level. The results in terms of iterations
required to converge are favourable to the proposed method, thus opening a new line of research.

Finally, we contribute with two practical application examples in the DVB-RCS and WiMAX
systems. First, we formulate the dynamic bandwidth allocation problem that is derived from the
multiple access schemes of both systems. Thereafter, the resulting Network Utility Maximization
(NUM) based problem is solved by means of the previous decomposition mechanisms. The goal is
to guarantee fairness among the users at the same time that Quality of Service (QoS) is preserved.
In order to achieve that, we choose adequate utility functions that allow to balance the allocation
towards the most priority traffic flows under a common fairness framework. We show that in
the scenarios considered, the novel proposed coupled-decomposition method reports significant
gains since it reduces significantly the iterations required (less iterations implies less signalling)
or it reduces the time needed to obtain the optimal allocation when it is centrally computed
(more users can be managed). We further show the advantages of cross-layer interactions with
the physical and upper layers, which allow to benefit from more favourable adjustments of the
transmission parameters and to consider the QoS requirements at upper layers.



vi

In general, an efficient implementation of dynamic bandwidth allocation techniques in De-
mand Assignment Multiple Access (DAMA) schemes may report significant performance gains
but it requires proper coordination among system layers and network nodes, which is attained
thanks to decomposition techniques. Each new scenario and system adds another optimization
challenge and, as far as we are able to coordinate all the variables in the system towards that
optimal point, the highest will be the revenue.



Resumen

Tradicionalmente, las técnicas de acceso miiltiple en sistemas comunicaciones multi-usuario han
sido desarrolladas o bien orientadas a conexién o bien orientadas al trafico. En el primer caso,
el objetivo es establecer tantos canales ortogonales como sea posible con el fin de asignarlos
a los usuarios. Esta idea motivé el disefio de las estrategias mas conocidas, como son FDMA,
TDMA y CDMA. Por otro lado, los métodos de acceso aleatorio que tuvieron sus inicios en
el famoso ALOHA pretenden compartir estadisticamente un mismo medio de comunicacién
sacando provecho de la necesidad de transmitir la informacién en réfagas, caso habitual en
las redes de datos. De este modo, muchos de los sistemas actuales se pueden enmarcar dentro
de dicha clasificacién si ademds tenemos en cuenta posibles soluciones hibridas. No obstante,
sistemas modernos como el DVB-RCS en el entorno de las comunicaciones digitales por satélite
o WIiMAX en el acceso terrestre de banda ancha han implementado mecanismos de peticiéon y
asignacion de recursos, los cuales requieren de una gestién dindmica de éstos en el sistema (a lo
que llamamos distribucién dindmica del ancho de banda en sentido amplio).

El concepto anterior incluye multiples variables, configuraciones y protocolos tanto de capa
fisica como de capa de enlace. En esta tesis se exploran en primer lugar las bases matemaéticas
que permiten coordinar las distintas capas de la division OSI de los sistemas y los diferentes
nodos dentro de la red. Nos referimos a las técnicas de descomposicién centradas en problemas
de descomposicion convexos, los cuales han aportado, durante los 1ltimos anos, soluciones ele-
gantes a muchos problemas dentro de los campos del procesado de la senal y las comunicaciones.
Revisamos los esquemas conocidos y proponemos una nueva metodologia. Acto seguido, se com-
paran las distintas posibilidades de descomposicién, cada una de las cuales implica distintas
formas de establecer la senalizacién. En la practica, son dichas descomposiciones las que dan
lugar a las diferentes interacciones entre capas o los protocolos de control entre los elementos
de red. Los resultados en cuanto a ntmero de iteraciones necesarias para llegar a la solucién
optima son favorables al método propuesto, el cual abre nuevas lineas de investigacion.

Finalmente, se contribuye también con ejemplos de aplicacién, en DVB-RCS y en WiMAX.
Planteamos el problema de gestiéon de recursos resultante del acceso multiple dispuesto en cada
uno de los sistemas como un problema de maximizacién de utilidad de red (conocido como
NUM en la bibliografia) y los solucionamos aplicando las técnicas anteriores. El objetivo sera
garantizar la equidad entre los usuarios y preservar, al mismo tiempo, su calidad de servicio.
Para conseguirlo se deben seleccionar funciones de utilidad adecuadas que permitan balancear
la asignacién de recursos hacia los servicios mas prioritarios. Mostraremos como en los escenar-
ios considerados, el uso del método propuesto conlleva ganancias significativas en términos de
iteraciones necesarias en el proceso (y por lo tanto, menos sefializacién) o bien menos tiempo
de calculo en un enfoque centralizado (que se traduce en la posibilidad de incluir mas usuarios).
También se muestran las ventajas de considerar interacciones entre capas, ya que se pueden
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ajustar los parametros de capa fisica con el objetivo de favorecer los traficos méas prioritarios o
bien extraer los requerimentos de servicio de valores tipicamente disponibles en capas superiores.

En general, la implementacion eficiente de técnicas de gestién dindmica de recursos en el
acceso multiple de los sistemas puede aportar ganancias importantes pero necesita de una buena
coordinacién entre capas y elementos de red. La herramienta matemaética que lo hace posible estéd
en las técnicas de descomposicién. Cada nuevo escenario y sistema introduce un nuevo reto de
optimizacién y la capacidad de guiar las variables del sistema hacia el punto éptimo de trabajo
es lo que determinara su rendimiento global.



Resum

Tradicionalment, les tecniques d’accés miiltiple en sistemes de comunicacions multi-usuari han
estat desenvolupades o bé orientades a la connexié o bé orientades al trafic. En el primer cas,
I’objectiu és establir tants canals ortogonals com sigui possible per tal d’assignar-los als usuaris.
Aquesta idea va motivar el disseny de les estrategies més conegudes, com sén FDMA, TDMA
i CDMA. Per altra banda, pero, els metodes d’accés aleatori que s’iniciaren amb el conegut
ALOHA pretenen compartir estadisticament un mateix medi de comunicacié aprofitant la neces-
sitat de transmetre la informaci6 a rafegues que s’origina en les xarxes de dades. Aixi, molts dels
actuals sistemes es poden encabir dins d’aquest esquema si a més a més, tenim en compte combi-
nacions d’aquestes. No obstant, sistemes moderns com el DVB-RCS en I’entorn de comunicacions
digitals per satel-lit o el WIMAX en P'accés terrestre de banda ampla implementen mecanismes
de peticié i assignacié de recursos, els quals requereixen una gestié dinamica d’aquests en el
sistema (és el que s’anomena distribucié dinamica de ’amplada de banda en un sentit ampli).

L’anterior concepte inclou multiples variables, configuracions i protocols tant de capa fisica
com de capa d’enllag. En aquesta tesi s’exploren en primer lloc les bases matematiques que
permeten coordinar les diferents capes de la divisié OSI dels sistemes i els distints nodes dins
la xarxa. Ens referim a les tecniques de descomposicié focalitzades en problemes d’optimitzacio
convexa, els quals han aportat, durant els 1ltims anys, solucions elegants a molts problemes dins
dels camps del processament del senyal i les comunicacions. Revisarem els esquemes coneguts
i proposarem una nova metodologia. Acte seguit, es comparen les diferents possibilitats de de-
scomposicié, cadascuna de les quals implica diferents maneres d’establir la senyalitzacio. A la
practica, sén aquestes diverses opcions de descomposicié les que infereixen les diferents interac-
cions entre capes o els protocols de control entre elements de la xarxa. Els resultats en quant a
nombre d’iteracions requerides per a convergir a la solucié optima sén favorables al nou metode
proposat, la qual cosa obra noves linies d’investigacié.

Finalment, es contribueix també amb dos exemples d’aplicacié, en DVB-RCS i en WiMAX.
Formulem el problema de gestié de recursos resultant de ’accés multiple dissenyat per cadas-
cun dels sistemes com un problema de maximitzacié d’utilitat de xarxa (conegut com a NUM
en la bibliografia) i el solucionarem aplicant les técniques anteriors. L’objectiu sera garantir
I’equitativitat entre els usuaris i preservar, al mateix temps, la seva qualitat de servei. Per
aconseguir-ho, cal seleccionar funcions d’utilitat adequades que permetin balancejar I'assignacio
de recursos cap als serveis més prioritaris. Mostrarem que en els escenaris considerats, 1'is del
metode proposat comporta guanys significatius ja que requereix menys iteracions en el procés
(i per tant, menys senyalitzacié) o bé menys temps de calcul en un enfoc centralitzat (que es
tradueix en la possibilitat d’incloure més usuaris). També es mostren els avantatges de con-
siderar interaccions entre capes, ja que es poden ajustar els parametres de capa fisica per tal
d’afavorir els trafics més prioritaris o bé extreure els requeriments de servei de valors tipicament
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disponibles en capes superiors.

En general, la implementacié eficient de técniques de gestié dinamica de recursos trebal-
lant en 'accés multiple dels sistemes pot aportar guanys significatius pero implica establir una
bona coordinacid entre capes i elements de xarxa. L’eina matematica que ho possibilita sén les
tecniques de descomposicid. Cada nou escenari i sistema introdueix un nou repte d’optimitzacié
i la capacitat que tinguem de coordinar totes les variables del sistema cap al punt optim en
determinara el rendiment global.
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Notation

Boldface upper-case letters denote matrices, boldface lower-case letters denote column vectors,
upper-case italics denote sets, and lower-case italics denote scalars.

N,R,C The set of natural, real and complex numbers, respectively.
R+ The set of real and strictly positive numbers.

R4 The set of real and positive numbers.

dom f The domain of function f.

log x The natural logarithm of z.

AT The transpose of matrix A.

r =<y Component-wise inequality between vectors & and y.
Ty Component-wise inequality between vectors x and y.
<y Component-wise strict inequality between vectors & and y.
-y Component-wise strict inequality between vectors & and y.
bd Y The boundary of the subset ).

int Y The interior of the subset V.

inf Y The infimum of the subset ).

sup Y The supremum of the subset ).

card {M} The cardinality of the subset M.

rank(A) Rank of matrix A.

diag(A) Main diagonal of matrix A.

length(b) Number of elements in vector b.

0 A vector with null elements.

1 A vector with unit elements.
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NOTATION

Majorization of vector y with respect to vector .
The nearest integer higher than or equal to a.
The nearest integer lower or equal to b.
Square-norm of vector a.

The scalar product of vectors a and b.

Distributed as. Used to make equivalences between random variables and the
pdf’s that generate them.
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Chapter 1

Introduction

1.1 Motivation

Since the irruption of modern wireless communications with the first generation of mobile tele-
phony, one of the major issues to be solved in the design of these systems was the management
of multiple users accessing to the system at the same time. At the very beginning, the design
was strongly influenced by the connection-oriented philosophy that prevailed in the switched
core networks. Note that at the time, all the effort was devoted to the provision of voice services
and thus, the idea of establishing a dedicated and permanent end-to-end connection was mean-
ingful, since the connection would be, in principle, used during the most of the call duration. In
that sense, the goal was to define multiple ‘virtual channels’ within the air interface so that the
access network could work similarly to the core network. Depending on the available research
and technology at each time, that virtual channelization has been achieved in basically three
different ways (from oldest to newest): i) assign part of the radio-frequency spectrum to each
user, ii) allocate a different portion of the time to each user and iii) transmit all the time using
all the available spectrum but differentiating users thanks to orthogonal modulations. A brief

review on those topics is provided in Chapter 2.

However, the introduction of a novel network philosophy, i.e. packet-oriented, changed things
completely. Assuming services with large inactivity periods (as for example web browsing or e-
mail), it made no sense to create permanent and dedicated connections. The new approach was
to organize the information in packets of bits and to share the links in the network in order
to transport packets from different users. Each packet must contain the destination address so
that it can be correctly routed through the nodes in the network. Nowadays, the widely spread
Transfer Control Protocol (TCP) in combination with the Internet Protocol (IP) and multiple
works that discuss about the convergence of systems at an IP-like level is a contrasting proof
about the interest on packet networks. This new philosophy also influenced the access networks

and some multiple-access protocols performed a contention-based statistical multiplexing of the
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wireless link in order to adapt the access technique to the packetized and bursty nature of the
traffic. A pioneering example of traffic-based multiple access protocols is the well-known ALOHA

network developed in the Hawaiian islands in 1970.

Notwithstanding, both multiple access techniques have its pros and cons. In one hand, in
connection-oriented solutions, one can dimension the ‘virtual channels’ within the system in
order to provide the desired level of Quality of Service (QoS) to the end-users. However, in case
that a single connection is intended to support multiple services with different QoS requirements,
there may be over-provisioning of resources as far as the design must necessarily accommodate
the most demanding services (note that other services do not take advantage of the extra resource
allocation). Moreover, a dedicated connection strategy is also inefficient when it manages traffic
types that have long non-activity periods, which leads to a waste of resources, too. Furthermore,
it is unfair since some users may be blocked whereas others do not take full advantage of their
own connections. On the other hand, in contention-based solutions, users try to access the
channel at the time that they have information to be sent and hence, they are statistically
multiplexed. However, it is known that such mechanisms lead to a poor utilization of the multi-
user channel and do not asses well the issues of fairness among users and QoS management.
Dynamic Bandwidth Allocation (DBA) techniques can interpreted as hybrid solutions between
connection-based and contention-based strategies and they are good candidates to exploit the

bandwidth of the system, supporting QoS requirements and guaranteeing fairness among users.

In the last years, many problems within the communications and signal processing fields
have been expressed as convex programs and elegantly solved thanks to the well-established
convex optimization theory. Motivated by the advantages that convex optimization provides,
this work explores the implementation of DBA strategies in the framework of convex program-
ming. Furthermore, since the performance metrics under study depend, in the most general case,
on parameters that are either spread over the network elements or over distinct variables within
the same element (that may belong to different layers in the protocol stack), the development
of distributed optimization techniques plays a very important role. In the first case, for exam-
ple when we try to find the optimal rates of service flows within a given network, distributed
techniques avoid gathering information at a central node (which implies excessive network sig-
nalling). In the second case, when we further try to jointly adjust the capacity of each link (that
depends on parameters in the physical layer), distributed techniques guide us in the process of
establishing the required messaging between layers on the protocol stack. Therefore, exploring
the universe of decomposition possibilities within the convex programming framework has also

been part of the motivation of the following work.
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1.2 Outline of the Dissertation

In this Ph.D. dissertation we study Dynamic Bandwidth Allocation as a technique that allows
us to dynamically allocate radio resources in response to the current transmission needs of users
accessing a given system. The concept of bandwidth is interpreted in a wide sense throughout
this work (analogue to radio resource) and it does not necessarily mean a portion of the radio-
frequency spectrum. For example, from a network perspective, it just means a portion of the
total rate capacity of a given link (assumed fixed) and it does not take into account any dynamic
adjustment of the transmission parameters. In a wider view that includes communication issues,
DBA also tunes the parameters at the physical layer in order to attain a more favourable
allocation. Throughout this text, DBA is framed as a convex optimization problem and, as
motivated in the previous section, we are interested in solutions that are distributed and, if

possible, efficient in terms of computational time. The text is organized as follows.

In Chapter 2 we review multiple access techniques and we introduce all the theoretical issues
that will be considered later on in the specific DBA schemes. Those issues are cross-layer design,
fairness formulation and the Network Utility Maximization (NUM) framework. Thereafter, we
detail a literature review on the DBA-related works in two systems aiming to support mul-
timedia applications: the Digital Video Broadcasting (DVB)-Return Channel Satellite (RCS)
as a multimedia satellite platform and the Worldwide Interoperability for Microwave Access

(WiMAX) as the terrestrial wireless solution for the broadband access in the mid-range.

Chapter 3 includes theoretical work about convex decomposition techniques to solve the
NUM problem, which allow us to attain distributed algorithms in practice. We begin the chap-
ter by reviewing some basics in convex optimization and thereafter, we present known decom-
position techniques. The first ones, primal and dual decomposition, have been widely used in
many research papers. On the contrary, the third one, which is the Mean Value Cross (MVC)
decompositions method, has been recently introduced in the wireless community and proposes
a combination of primal and dual decompositions in a single approach. Finally, we introduce
our proposed method, the coupled-decompositions method. It also combines primal and dual
decompositions as the MVC decomposition method but using a radically different structure. We
compare our scheme with the previous strategies and it shows significant advantage in terms of

iterations required to reach the solution.

In Chapter 4 we analyze how the multiple access is defined in DVB-RCS and we propose
an specialized framework to organize the standardized Multi Frequency (MF)-Time Division
Multiple Access (TDMA) frame. Thanks to the application of the previous decomposition results
we derive a computationally efficient solution. Even given that the DVB-RCS scenario allows
us to perform a centralized optimization, the proposed method is still superior when compared

to known efficient techniques such as the bisection method. We further show that our solution
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allows a proper bandwidth utilization when we take into account cross-layer information from
the physical layer in the resource allocation process. Finally, we exemplify that the resulting
solution responds to a fairness criteria and that it provides mechanisms to balance resources

towards the most priority services.

Chapter 5 contains another application of the results in Chapter 3 to the computation of
a DBA multiple access in the uplink of a WiMAX system. Within the general DBA model
described in Section 2.4.2, we focus on the flow control part, thus assuming fixed link capacities
in the network. Resources are distributed, as in the previous case, according to requests and
to services priorities. The main difference is in the network topology considered. Whereas in
the DVB-RCS case we assumed a Point-to-MultiPoint (PMP) network, in this case we consider
a tree-deployed structure, which is a particular case of a WiMAX mesh network. Using the
coupled-decomposition method, it is possible to globally solve the flow allocation problem using
reduced inter-node signalling. Indeed, it is only required inside the sub-pieces in which we divide
the whole network. Furthermore, the resulting strategy is in accordance with the definition of

centralized scheduling in the standard document.

Finally, Chapter 6 ends this Ph.D. dissertation with a summary of the work and some

conclusions. We also outline some open issues to be dealt with in future research.

1.3 Research Contributions

This thesis collects all the work that has been carried during the last three years. Most of the
results have been published in one book chapter, one international journal and some international

conference papers. In the following we list the contributions at each chapter.

Chapter 3

Part of the results within the chapter have been published in the following international confer-

ence papers:

e A. Morell, G. Seco-Granados, M.A. Véazquez-Castro, “Computationally Efficient Cross-
Layer Algorithm for Fair Dynamic Bandwidth Allocation”, in Proceedings of the 16th
International Conference on Computer Communications and Networks 2007, ICCCN’07,
pp-13-18, August 2007.

e A. Morell and G. Seco-Granados, “Distributed Algorithm for Uplink Scheduling in WiMAX
Networks”, to appear in Proceedings of IEEE Broadnets 2008.

e G. Seco-Granados, M.A. Vézquez-Castro, A. Morell and F. Vieira, “Algorithm for Fair
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Bandwidth Allocation with QoS Constraints in DVB-S2/RCS”, in Proceedings of the IEEE
Global Telecommunications Conference 2006, GLOBECOM’06, pp.1-5, November 2006.

Chapter 4

The results within the chapter have been published in the following book chapter, international

journal and international conference papers:

T. Pecorella, G. Mennuti (chapter editors), N. Celandroni, F. Davoli, E. Ferro, A. Gotta,
S. Karapantazis, A. Morell, G. Seco-Granados, P. Todorova and M.A. Vizquez-Castro
(authors in alphabetical order), “Dynamic Bandwidth Allocation”, chapter in Resource
Management in Satellite Networks: Optimization and Cross-Layer Design, edited by G.
Giambene, ISBN 0-387-36897-3, Springer Science+Bussiness Media, 2007.

A. Morell, G. Seco-Granados and M.A. Vazquez-Castro, “Cross-Layer Design of Dynamic
Bandwidth Allocation in DVB-RCS”, IEEE Systems Journal, Volume 2, Number 1, pp.
62-73.

A. Morell, G. Seco-Granados and M.A. Vazquez-Castro, “Enhanced Dynamic Resource Al-
location for DVB-RCS: a Cross-Layer Operational Framework”, in Proceedings of Military
Communications Conference 2007, MILCOM’07, Orlando, October 2007.

M. Luglio, F. Zampognaro, A. Morell and F. Vieira, “Joint DAMA-TCP protocol opti-
mization through multiple cross layer interactions in DVB RCS scenario”, in Proceedings
of the International Workshop on Satellite and Space Communications, IWSSC’07, pp.
13-14, September 2007.

A. Morell, G. Seco-Granados, M.A. Vazquez-Castro, “Joint Time Slot Optimization and
Fair Bandwidth Allocation for DVB-RCS Systems”, IEEE Global Telecommunications
Conference 2006, GLOBECOM’06, pp.1-5, November 2006.

A. Omari, G. Seco-Granados, M.A. Vézquez-Castro, A. Morell, A. Lyhyaoui and N. Rais-
souni, “Analysis of the Efficiency and Delay of Bandwidth Request Algorithms in DVB-
RCS”, in Proceedings International Workshop on Satellite and Space Communications,
IWSSC’06, pp. 165-169, September 2006.

Chapter 5

The results within the chapter have been published in the following international conference

paper. Furthermore, an international journal paper has been submitted.
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e A. Morell, G. Seco-Granados and J.L. Vicario, “Fair Adaptive Bandwidth and Subchannel
Allocation in the WiMAX Uplink”, submitted to the special issue on “Fairness in Ra-
dio Resource Management for Wireless Networks” of the EURASIP Journal on Wireless

Communications and Networking.

e A. Morell and G. Seco-Granados, “Distributed Algorithm for Uplink Scheduling in WiMAX
Networks”, to appear in Proceedings of IEEE Broadnets 2008.

Other Research Contributions

The author of this Ph.D. dissertation has contributed as the main author in other research

contributions whose content is not included in the present document. These contributions are:

e A. Morell, A. Pascual-Iserte and Ana I. Pérez-Neira, “Fuzzy Inference Based Robust Beam-
forming”, Elsevier Signal Processing, Volume 85, pp. 2014-2029, October 2005.

e A. Morell, A. Pascual-Iserte, A.I. Pérez-Neira and M.A. Lagunas, “Robust Scheduling in
MIMO-OFDM Multi-User Systems Based on Convex Optimization”, in Proceedings of the
1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive
Processing (CAMSAP), pp. 13-15, December 2005.

e A. Morell, A.l. Pérez-Neira and N. Martin, “Fuzzy-Inference-Based Robust Beamform-
ing”, in Proceedings of the Information Processing and Management of Uncertainty in
Knowledge-Based Systems 2004, IPMU’04, pp. 1627-1634, Perugia (Italy), July 2004.

Finally, other research works where the author has contributed are:

e Al Pérez-Neira, M.A. Lagunas, A. Morell and J. Bas, “Neuro-Fuzzy Logic in Signal
Processing for Communications: from Bits to Protocols”, chapter in Lecture Notes in
Computer Science, ISBN 3-540-31257-9, pp. 10-36, ed. Springer Verlag Berlin Heidelberg,
2005.

e J.L. Vicario, A. Morell, A. Bel and G. Seco-Granados, “Optimal Power Allocation in
Opportunistic Relaying with Outdated CSI”, in Proceedings of IEEE Sensor Array and
Multichannel Signal Processing Workshop (SAM), 2008.

e J. Albiol, J.M. Alins, J.M. Cebrian, J. Mata, A. Morell, C. Morlet, G. Seco-Granados, M.A.
Vazquez-Castro and F. Vieira, “IP-Friendly Cross-Layer Optimization of DVB-S2/RCS”,
in Proceedings of the ESA Workshop on Signal Processing for Space Communications,
2006.



Chapter 2

Dynamic Bandwidth Allocation

Dynamic Bandwidth Allocation (DBA), as considered in this work, is a relatively recent concept
closely connected to the development of new communication services and systems. It is the
natural evolution of the old Dynamic Channel Assignment (DCA) schemes that date from the
early 70s, where the goal was to dynamically allocate system channels to the base stations so as
to adapt to varying channel, interference and traffic conditions [And73]. By those days (and more
or less until the early 90s), the list of accessible telecommunication services (excluding broadcast
radio and television) by most of the population in developed countries was monopolized by the
phone voice service. It was in that time when the wireless segment began to complement the wired
telephone network and when the Internet started to be used. Those were two great technical
steps forward at the end of the past century, with great social and economical repercussion. As
mobile phones became more and more popular, one of the main concerns of system designers was
to enable the coexistence of as many radio signals as possible in the wireless channel. Therefore,
the distinct strategies should provide some type of orthogonality between signals so as to be able
to distinguish them. In market terms, this increased revenue for the companies that operated the
service because more users (clients) would use the network and pay for that. However, there was
very little concern on the service itself because the interest was only in a single one: the voice.
So much so that when FEurope designed the second generation of mobile telephony, the Global
System for Mobile Communications (GSM), still in use, the Short Message Service (SMS) was
added without expecting the popularity it finally reached.

In parallel, Internet arrived to the home user and the broadband access was enabled thanks
to the family of Digital Subscriber Line (DSL) or cable technologies. Much attention has been
paid to DSL (using OFDM modulation) since it allows us to take advantage of the available
bandwidth in the old copper pairs without substituting them whereas the cable solution has
an important deployment cost. Moreover, the third generation of mobile telephony, known as
Universal Mobile Telecommunications Systems (UMTS), provides potential broadband access

to IP services such as Voice over IP (VoIP), videoconference or simple web browsing. Therefore,
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Figure 2.1: Classification of multiple access strategies.
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voice is no longer the only service of interest and a new challenge appears: how to effectively
manage the set of present and future services that may have different network requirements.
Note, for example, that a latency of about a second does not bother the potential user that
is surfing the Internet but will definitely exasperate an individual talking over VoIP. Roughly
speaking, we identify two big problems in the new scenario, namely: i) the classical one, which
is to boost the capacity of the network and ii) the efficient management of services with distinct

requirements from the network.

Let us now review the mechanisms that communication systems use to enable the coexistence
of the users in the network, i.e. the so-called multiple access techniques. We classify them into
connection-oriented and contention-oriented multiple access techniques. In connection-oriented
mechanisms, the concern is about how to coordinate the transmission of the multiple users
without taking into account the nature of the transported traffic and the services within. It is
for example the case in most still in use wireless telephony systems, such as GSM in Europe or
cdmaOne in the United States, where the goal is to enable as many simultaneous connections
(calls) as possible. On the other hand, contention-oriented techniques are designed responding
to the nature of the traffic in datagram packet networks [Cer78], e.g. Internet Protocol (IP). See

the classification in Figure 2.1.

Among the connection-oriented techniques, we distinguish:

e Frequency Division Multiple Access (FDMA): In this case, orthogonality among signals
is granted by transmitting them in distinct frequency bands, the subchannels. In general,
each user accessing the network is assigned a subchannel where it transmits. Due to tech-
nological impairments in the transceiver equipment, e.g. subchannel selection filters, it is
necessary to keep some guard interval between adjacent subchannels, which introduces
inefficiency in bandwidth utilization. It is possible to counteract such inefficiency using
the Orthogonal Frequency Division Multiplexing (OFDM) modulation principles in the
so-called Orthogonal Frequency Division Multiple Access (OFDMA) technique [Kof02].
The idea is to allow adjacent subchannels to overlap but keeping the orthogonality of the
transmitted signals. The implementation of OFDM and OFDMA has not been possible
until the digital age.

e Time Division Multiple Access (TDMA): In TDMA, all users transmit using the whole
available bandwidth in the system. In order to keep orthogonality among signals, only one
user accesses the channel at a given time. Time is divided in TDMA in frames and the
time within each frame into slots. In general, one users employs one time slot per frame to
complete its transmission, so that it uses a portion of the total. As in FDMA, it is necessary

to fix a time guard interval between adjacent time slots in order to avoid collisions.

e Code Division Multiple Access (CDMA): In CDMA all users benefit from the whole system
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Figure 2.2: Connection-oriented multiple access. Top left: FDMA and TDMA. Top right: CDMA. Bot-
tom: SDMA.

bandwidth and transmit during all the time [Pic82]. Orthogonality is attained thanks to
the code signals that modulate the user waveform. Each user has its own code and it is
orthogonal to the codes employed by the other users. This option is more efficient than the
previous ones but its implementation in real systems is also more difficult since it requires

in general finer synchronization and good power control mechanisms.

e Spatial Division Multiple Access (SDMA): The development of multiple antennas tech-
niques [Pau97] introduced an extra dimension also in the multiple access problem since
mobile users in a wireless network can be separated depending on their spatial position.
In this way, simultaneous transmission in the same bandwidth, time and code is possible
if the users are spatially spread out. Therefore, SDMA has to be applied in combination
with the other techniques (hybrid strategies are also possible) rather than as a stand-alone

solution.

Figure 2.2 summarizes the connection-oriented multiple access techniques. Note that the goal in
all the previous approaches is to organize the transmitting resources in order to provide as many
connections as possible. In general, the larger the resource subspace is, the better the system
performance may be. Therefore, adding the code and space dimensions to the classic time and

frequency resources provides better usage of the radio-frequency spectrum.
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However, connection-oriented access techniques do not match well to the bursty nature of
the packets in data networks. Note that it makes no sense to reserve resources and to establish a
connection that is going to be used only during some intervals of time. The previous approaches
may be dramatically inefficient and contention-oriented techniques (also refereed to as random
access solutions) are designed to better accommodate such type of packetized traffic [Gol05, Sec.
14.3].

Random access techniques began with the pioneering work of Norman Abramson at the
University of Hawaii in 1970. A novel packet radio network was deployed to communicate the
university campuses using the ALOHA protocol. The idea was pretty simple and intuitive:
any transmitter in the network was allowed to transmit a radio packet as soon as it became
available. When the traffic load in the system is low, this simple strategy performs well because
the wireless channel is used by a single transmission with high probability. As the load increases,
the probability that two packets from different transmitters collide increases. In that case, the
collided transmitter waits for a random time to retransmit the packet. Note that when the
traffic load is significantly high, this mechanism will cause system starvation. It is known that
the maximum achievable throughput in a network using ALOHA is only 18%. In other words,
the data rate in the network is the 18% of the data rate that a single user would achieve on
the system [Gol05, Sec. 14.3]. The ALOHA protocol was upgraded with its slotted version or S-
ALOHA. Time is divided into slots and a transmitter is allowed to transmit only at the beginning
of each slot. In this way, the throughput of the system is doubled since the probability of having

a collision is reduced. However, it is still less than 40%.

Another performance upgrade in the ALOHA protocol was achieved by the so-called Carrier
Sense Multiple Access (CSMA) solution, which is nowadays widely used. Within this approach,
terminals sense the channel to identify when it is busy. If the result is affirmative (busy), all
the terminals wait a random backoff period before retrying transmission. This random waiting
time is crucial to avoid all terminals to transmit after the current packet in the channel is
completely sent. CSMA is used as the access protocol in wired LANs. It is also used in wireless
LANs with some modifications that adapt to the particularities of the wireless channel. It is the
CSMA /Collision Avoidance (CSMA/CA) technique [Gol05, Sec. 14.3].

However, the actual convergence trends of the different traffic types into a single IP-based
network requires modifications of the multiple access techniques in order to give an adequate
solution to the new situation. Note that CSMA has acceptable performance in traditional LAN
services such as web browsing, File Transfer Protocol (FTP) or Simple Mail Transfer Protocol
(SMTP) applications but it may not capture the more stringent Quality of Service (QoS) require-
ments of services like Voice over IP (VoIP) or video streaming, which demand for more regular
transmission opportunities. As an example, assume a congested LAN where one terminal wishes

to establish a VoIP conference. In principle, there is no mechanism that guarantees the regular
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transmission of the VoIP packets since the multiple access is contention-based and the other
players have the same chances to access the channel. The Demand Assignment Multiple Access
(DAMA) constitutes a recent methodology that takes into account this new paradigm. As de-
picted in Figure refDBAfigOverview, it can be regarded as an evolution of both contention-based
and connection-based mechanisms. The interested reader can find in [Zan97, Sai97] two general
scope communications that discuss the need of good Radio Resource Management (RRM) tech-

niques in modern wireless networks to provide a certain degree of QoS.

DAMA may be interpreted from a functional perspective as an intermediate point between
the two previous basic strategies as well. The idea is that terminals request resources to the net-
work depending on the traffic in their MAC queues. Thereafter, the network allocates resources
using a certain distribution criterion. Potentially, it is possible to set up a ‘virtual’ connection
when the traffic type requires it, as it is the case of VoIP or videoconference or, on the contrary,
it is also possible to perform statistical multiplexing of data packets as in random access solu-
tions. Maybe the first occurrences of DAMA techniques in the literature can be associated to
the DCA implementations [Rap79] that date from the 70s. A wider and modern vision of the
concept is described in [Hac00], where several DAMA protocols are analyzed in the context of
ATM wireless networks. In this thesis, we focus on DAMA strategies that are implemented by
means of Dynamic Bandwidth Allocation (DBA) techniques and we do it from a mathematical

optimization perspective.

2.1 Cross-Layer and Dynamic Bandwidth Allocation

As stated before, a DAMA strategy is adequate to preserve the QoS requirements of the service
flows within the system. In many cases, these QoS definitions are not explicitly available at the
MAC layers of the network elements, where DBA techniques usually run. For example, when we
have IP implementing DiffServ (Differentiated Services), the requirements about QoS are found
in the different classes in which the traffic is divided at the third Open Systems Interconnection
(OSI) layer [Zim80]. Hence, potential interactions between the MAC and the higher layers in
the system in order to obtain this information are of interest. An specific example about DAMA
with DiffServ, from the satellite field, is found in [Ada02]. Other interactions may be useful, too,
as it is the case of information exchange from PHY to MAC layer and viceversa in systems that
use adaptive PHY layers. Without considering such interaction, dynamic bandwidth allocation
manages the fixed link rate capacities seen from the MAC layers of the terminals in order to
optimize a certain network performance metric. But if it is possible to adjust also the PHY
layers of the terminals, then the network may attain some extra performance because PHY and
MAC layers are jointly optimized according to the traffic conditions in the network. See those

relations in Figure 2.3.
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Figure 2.3: Potential cross-layer interactions in DBA.

All these interactions among OSI layers having the objective of optimizing a given system
performance metric appear in the literature under the so-called nomenclature of cross-layer
interactions and cross-layer optimization [Ber04, Sha03]. The need of breaking the traditional
layering of systems, which so good results had shown, emerged with the new era of mobile wireless
communications. As discussed in [Sha03], communications links in old wired networks were seen
as bit pipes that provided a constant data rate with some seldom random errors. Therefore, the
mission of communication engineers was to provide the best possible data pipes, ideally getting
close to the Shannon limit [Sha48]. The job was in part attained with the discover of turbo
decoding by Berrou et al. in 1993 [Ber93]. On the other hand, network engineers handled the
allocation of packets into the bit pipes or, in other words, packet scheduling. Relevant issues were,
among others, traffic balancing or QoS provision. The situation changed with the introduction of

mobility in the networks, mainly due to two big differences between fixed and wireless channels:

e The short-term channel variation: because of the multi-path component in most wire-
less scenarios, communication links are not well modelled with the pipe-like vision. The
channel induces fast variations over time, frequency and location. To exemplify it with
numbers, coherence times [Gol05, Sec. 3.3.3] in wireless channels can be in the order of

few milliseconds.

e The large-scale channel variation: when the channel is measured in mean value, it may
happen that some users are favoured (from the point of view of channel gain) in front of
the others if they are in better locations or if they are not in hostile interference scenarios,
for example. A global view of any communication system that aims to provide certain QoS
to its users should take this fact into account and respond with an adequate balancing of

network resources.
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In the following, we exemplify the utility of cross-layer solutions with two illustrative works
in the literature. In the first one, the performance of the Transmission Control Protocol (TCP)
applied over wireless links is studied [Sha03]. The problem is focused on the congestion control
mechanism of TCP, which is based on a measure of the packet losses in order to estimate
the congestion status of the routers through the network. Whereas TCP works well for wired
networks, where losses are mainly due to congestion, it fails in the wireless environment since
the nature of the channel also causes packet losses. The result is a significant reduction in system
throughput [Xyl99]. A possible solution is to apply good channel encoders in combination with
an Automatic Repeat reQuest (ARQ) [Lin84] strategy with the objective of smoothing the
variations of the channel. However, further improvement is achieved by distinguishing the nature
of packet losses, i.e. wether they are due to congestion in the internet or they respond to a bad
channel status. The authors in [Kun03| asses the performance of the previous approach using
Explicit Congestion Notification (ECN) in TCP. Finally, a review on cross-layer approaches that

interact with layers below TCP for wireless scenarios can be found in [Tia05, Gia06].

A second example is a pioneering cross-layer work from Knopp and Humblet, which is de-
scribed in [Kno95]. The scenario is the uplink of a single cell multi-user communications system.
The authors obtain the optimal power control of the users in the cell under a total power con-
straint. The goal is to maximize the sum-rate capacity and as a result, it is found that only
the user with the best channel condition should transmit using the whole available bandwidth.
Therefore, the multiple access of the system is implicitly derived from a PHY layer design and a
practical implementation requires the knowledge of the channel condition of all users at the MAC
layer. However, the previous solution has an important fairness drawback. Because of the large-
scale channel variation, it is reasonable to consider the situation where a user is permanently
in bad channel condition during a long period of time. The solution is terribly unfair respect
to the other users, although a global system view in terms of sum-rate capacity is maximized.
In order to avoid that situation, some definitions of fairness have been adopted by the scientific
community. In the next section, we review them motivated by the fact that part of the work
in this thesis is aimed to provide fair dynamic bandwidth allocation (alternatively scheduling)

mechanisms.

2.2 Fairness and Dynamic Bandwidth Allocation

In general, formal fairness definitions are necessary to explicitly say how competing users are
assumed to share the resources available in a given system, as it is the case in scheduling or DBA.
The results we present in this section have an important contribution from the work of Kelly, who
introduced the concept of proportional fairness [Kel98] and also discussed about the differences

with max-min fairness [Kel97], which was the most common criterion at the time. Both works
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Figure 2.4: Network example.

are devoted to the optimization of the end-to-end rates in a fixed wired network achieving
fairness among users. Later on, the concept was generalized in [Mo00] with the definition of

(p, a)-proportional fairness.

Let us consider the problem of end-to-end rate control of IV users over the internet. As

proposed in [La02], the problem can be formulated as

max S Ui(ri)

s.t. Ar<c =~ (2.1)
T Z 0
where r = [r1,...,rn]T is the vector that contains the rates of all users. The functions U;(r;)

aim to measure the utility perceived by the i*” user when it is allocated a rate r;. Finally, the
bottlenecks in the network are explicitly considered in the matrix A, whose entries are either 0 or
1. Each row in the matrix reveals which user flows share the available capacity in the bottleneck.
The vector ¢ groups those available network capacities. A simple example from [La02] is depicted
in Figure 2.4 with 3 users and 2 bottlenecks. Note that users 1 and 3 share the link capacity ¢y
whereas users 2 and 3 share the link capacity cs, so that

™
1 01 c1
<
ro el o)
T3

A rate allocation r” is said to be max-min fair [Ber87, Sec. 6.5] if it is feasible, i.e. it attains
the constraints imposed by the network (r; > 0 and Ar < ¢ in the previous formulation), and if
it is not possible to increase any of the rates within 7>, say 7‘;?, without decreasing another rate
rpb < rjb. The max-min fairness approach tends to allocate more resources to flows with smaller
rates. Note that any increase in one of the rates within ™, even a large one, will not be attained
under a max-min fair criterion if it implies a reduction of another rate, even if the reduction is
small. In the network of Figure 2.4, if the capacity vector is fixed to ¢ = [c1, co]? = [1,1]7, then
11 l]T
212032
situation, a relaxation of the max-min criterion, i.e. if we allow a certain reduction in r3, involves

the max-min solution is r = | = and the total throughput in the network is % In that
an increase in network throughput because the reduction in r3 implies the same increase in both
r1 and 75. Note that the maximum network performance is achieved with r3 = 0 and a total

throughput of 2, but then the solution is totally unfair.
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Motivated by this trade-off between fairness and throughput, Kelly introduced in [Kel97] the
proportional fairness criterion in order to attain the desired compromise. A vector =1 is said to
be proportionally fair if it is feasible and if for any other feasible rate allocation 7¥, the sum
of relative changes is not positive. In other words, r' (feasible) is proportionally fair when it
attains

.
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<0, Vrist.ri>0Art<c (2.3)
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If we use this new fairness vision with the previous example, we realize that the optimal flow allo-
2 2 1T
37373

solution between max-min fairness and maximum sum-rate is achieved.

cation is now r = | = and that the network throughput is % Therefore, an intermediate

From a practical point of view, in connection with the formulation in (2.1), it is desirable to
find explicit expressions of the utility functions that allow us to find the optimal fair allocation
of resources within the network by means of solving the mathematical programming problem.

Kelly proved in [Kel97] that using the following utility functions in (2.1),
UZ(T‘Z) = log(ri), (2.4)

the proportionally fair solution is attained. Note that with this utility functions, the objective
of the optimization problem considered is the aggregation of the logarithms of the rates. An

equivalent problem is found by replacing that with the product of the rates as

max [N, 7
{ri}
st. Ar<c> (2:5)
r;, >0
since the transformation of the objective function in (2.5) with a monotone increasing one does
not change the point r where the optimum value is attained [Boy03, Sec. 4.1.3]. In this case,
transforming Hf\il r; with the logarithm function gives (2.1) in combination with (2.4) as a
result (since the feasible rates are positive, the value within the logarithm is always positive
and the transformation is well-defined). Furthermore, it is known from game theory [Mut99]
results that the maximization of the product of competing resources attains the so-called Nash
Bargaining Solution (NBS) [Maz91, Yai00] and hence, it verifies the axioms of linearity, irrelevant
alternatives and symmetry of the solution. Therefore, we can conclude that NBS is equivalent

to the proportional fair approach.

Finally, the authors in [Mo00] generalize the proportional fairness criterion to (p,«)-
proportional fairness. They also contribute with analytical expressions of the corresponding
utility functions to attain it. A feasible rate vector = is said to be (p, a)-proportionally fair
(where p = [p1,...,pn]T and « are positive real numbers) if, given any other feasible rate vector

r¥, it holds that
N 1 T
L <0, vrt s.t. 7‘% >0,Art < ec. (2.6)
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Figure 2.5: Different degrees of fairness in the definition of utility functions.

Note that for p = [1,...,1]7 and a = 1, the criterion reduces to proportional fairness. The

utility functions in this case are defined as

p; log (i), a=1
Ui(rs; pis ) = T(lf(w) ) : (2.7)
Pit—yy a#1

When p = [1,...,1]7 and @ — oo, it is shown in [Mo00] and [Kel97] that the resulting
optimal rate allocation after solving (2.1) tends to the max-min fair rate vector. On the other
hand, when o« — 0, problem (2.1) formulates a maximum sum-rate approach. Therefore, it
is the convexity of the utility functions what fixes the degree of fairness of the solution. See
in Figure 2.5 three different plots of U;(r;pi, ) for a = 0.1, @« = 1 and a = 3 (always with
p; = 1). Note in the figure that as « increases, the utility attained at low rates diminishes
more severely and therefore, much attention is required to avoid that low-rate situations. It is
thus in accordance with the max-min fairness criterion. On the other hand, the concavity of the
functions reveals that at the high-rate regime, lower utility gains are achieved for a fixed increase
in rate, so that the maximization of the aggregate of utilities in (2.1) forces the distribution of
resources, as it is expected in a fair approach. This is true in general except for low a values,
where the utility function tends to be linear in the rate. The criterion is then to allocate as
much rate as possible to the flows regardless any fairness consideration in order to operate at

the maximum network throughput point.
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In summary, there is no unique criterion to define fairness, but a series of them are explicitly
characterized with the utility functions in (2.7). Furthermore, some flows can be prioritized in
front of the others within a specific fairness framework (fixed by «) by particular adjustment
of the scale thanks to the parameters {p;}. In general, proportional fairness (o« = 1) provides a

nice trade-off between fairness and resource utilization (network throughput).

2.3 DBA in Relation with Network Utility Maximization and
Distributed Computation

Our work about DBA throughout this thesis is mathematically modelled using the Network
Utility Maximization (NUM) framework. It is a nomenclature recently adopted to refer to the
type of problems that arise, in general, in network resource allocation. A basic NUM formulation
has been introduced in (2.1) and the philosophy is to maximize the aggregated utility of the users
(that measure their satisfaction) given the physical limitations imposed by the current system
(constraints in the optimization problem). Traditionally, the interest was to provide distributed
solutions that allow to compute the optimal resource allocation without the need of gathering
all the information in a central node in the network. The motivation is to reduce signalling
requirements and to provide scalable approaches that may operate also with large networks.
The reader can fin examples of that in [Low99, Mo00, La02, Low03].

Most of the works in the extensive NUM literature achieve distributed solutions by means
of managing the dual version of the problem, or in other words, making a dual decomposition,
which we review in Section 3.2.2. The motivation is that it attains a fully decoupled approach in
the sense that each node in the network is configured with only local information. An example
of that can be found in [Low99], where the authors demonstrate the viability of that type of
approach in static and slow time-varying network conditions. Dual-based techniques are often
indistinctly called price-based strategies because dual variables can be interpreted as prices
under a resource-price framework, whereas resources are identified with primal variables. We
also discuss this issue in the next chapter. Another interesting example is found in [Low03],
where it is shown that the TCP protocol that controls the end-to-end rates in the network can

be viewed as a pure dual decomposition of a NUM problem.

The works of Palomar and Chiang in [Pal06, Pal07] review and expand the number of avail-
able decomposition possibilities, always from a convex decomposition perspective. They show
that primal decomposition, reviewed in Section 3.2.1, has to be considered in addition to dual
decomposition. Moreover, hybrid approaches that combine both techniques in a multi-level de-
composition strategy are also feasible. For example, one can split the main NUM problem into
several subproblems with a dual decomposition and then use a second problem splitting (for

instance primal decomposition) in order to solve each of the subproblems at the highest level. In
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Figure 2.6: Vertical and horizontal decompositions.

[Pal07] they also contribute with application examples of more sophisticated NUM formulations,
all of them solved with the multi-decompositions perspective. In those formulations, they include
issues such as power control, multipath routing or QoS. Specifically, the first one assumes that
the network is power-limited and that the capacities of the links depend on the power allocated
to them. Therefore, optimization takes into account two groups of variables: rates and powers.
It is a good example of a joint optimization of parameters that belong to distinct OSI layers in

order to attain a common goal, which is the system performance measured as aggregated utility.

There are a number of works that extend the NUM formulation to obtain a joint optimiza-
tion of several system parameters in a cross-layer design [Xia04, Zha06, Joh06]. A recent paper
by Chiang et al. [Chi07] takes into account both cross-layer system design and distributed opti-
mization among the elements in the network in a quite ambitious approach. The basic idea is to
generalize the NUM formulation including the relevant parameters in all layers as variables hav-
ing a common performance objective. Thanks to decomposition techniques, the global problem
is distributed among layers (vertical decomposition) and among network elements (horizontal
decomposition), as Figure 2.6 depicts, with several subproblems. The signalling required to coor-
dinate such decompositions will show the adequate interfaces among layers and among network
elements. It is thus a reverse engineering view of the traditional layering of systems. The paper

contains a good summary of existing examples, key methodologies and future challenges.

In this thesis, we review the known decomposition methods: primal and dual decompositions
(and hybrid techniques) [Pal06] and also a combined primal-dual approach known as Mean Value
Cross (MVC) decomposition (introduced in the NUM context in [Joh06]). We also develop a

novel solution to decompose the NUM problem in a mixed primal-dual scheme, which is different
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to the MVC decomposition and provides significant gains in terms of computational efficiency.
Note that each strategy induces different control protocols and different signalling requirements
from the reverse engineering point of view in [Chi07] and therefore, our contribution provides

an additional exploration path in the design.

Up to this point we have motivated the use of dynamic bandwidth allocation in combination
with a DAMA technique to provide an adequate response to modern traffic characteristics and
QoS requirements. Furthermore, we have reviewed the pieces that have a significative role in
our work, namely: distributed NUM, fairness definitions and cross-layer solutions. Since we will
propose DBA solutions in the context of Digital Video Broadcasting (DVB)-Return Channel
Satellite (RCS) and Worldwide Interoperability for Microwave Access (WiMAX) standards in
Chapters 4 and 5, respectively, next we make a literature review of existing DBA solutions

therein.

2.4 Applications of Dynamic Bandwidth Allocation
2.4.1 DBA in Digital Video Broadcasting-Return Channel Satellite

Dynamic Bandwidth Allocation has been considered in the satellite return channel of the DVB
standard [ETS05a, ETS03c] as a potential measure to efficiently distribute the valuable spec-
trum and to provide adequate QoS according to traffic requirements. The authors in [Ibn04] re-
view available technologies and open issues in the design of high-speed mobile communications.
Among others, they identify the interest in good dynamic bandwidth allocation techniques as
part of the resource management. Two particularities appear in the design of DBA strategies for
DVB-RCS in contraposition to other existing systems. First, the satellite channel varies in time
even in fixed scenarios, which is basically due to the phenomena that take place at the Earth’s
troposphere (rain, snow, ...). Although it is not as aggressive as in most wireless terrestrial
systems that operate in rich scattering environments, it is important to take it into account
since it directly reports on the effective transmission rates of the ground station to satellite
links. DVB-RCS uses adaptive coding to counteract the channel variability and therefore, each
coding rate fixes a different bit rate. We will assume that once the coding rate is correctly set-up,
the channel can be considered quasi-error-free. Second, there is a large propagation delay when
transmitting to a Geostationary Earth Orbit (GEO) satellite, which implies about half a second
of Round Trip Time (RTT). It is quite large if we compare it with terrestrial systems and, as

we discuss later, it also influences the DBA design.

Regarding satellite bandwidth allocation in general, two main philosophies are distinguished
in the literature, namely: i) static allocation and ii) dynamic allocation [Cel03, Pie05]. The DVB-
RCS standard document [ETS05a] includes both. Within a static approach, terminals receive a
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certain amount of resources, which remain constant during the connection’s lifetime. However,
note that each terminal can dynamically manage its portion of bandwidth (depending on the
information flows that use the static link) without involving the sub-satellite network. In other
words, DBA techniques can still be used in this case for scheduling issues within each terminal.
On the other hand, a dynamic approach focuses the already described process whereby users
request resources (in the DVB-RCS scenario we consider a central node in the network which
is referred to as Network Central Controller or NCC that collects those demands) and receive
grants indicating the allocation. Note that the information available at the NCC to compute
the allocation is the collection of requests from all the terminals and the available resources
(known since all the information is centralized). Furthermore, we can differentiate three possible

strategies within dynamic allocation. From less flexible to more flexible solutions:

e Fixed allocation, where each terminal requests a rate capacity to be able to transmit at
its maximum source rate. If the satellite capacity can not satisfy all requests, then the
capacity is somehow shared. The most simple way to do it is by means of performing
a proportional allocation, although more elaborate decisions can be taken. In general, we
consider that the validity period of each allocation is large when compared to more flexible
solutions. As it will be discussed in Chapter 4, radio resources are organized in DVB-RCS
in a Multi Frequency-Time Division Multiple Access (MF-TDMA) frame. The work in
[Kifl06] contributes with a number of strategies to attain an efficient frame utilization

under a fixed-like allocation approach.

e Mixed DBA and fixed allocation techniques, when part of the satellite capacity is dedicated
to perform a fixed allocation whereas the remaining part is used to statistically multiplex
the flows of the users. Operating in shorter time-scales, this DBA part is intended to absorb

the traffic burstiness.

e Full DBA techniques, aiming to exploit the whole satellite capacity in order to attain both
good tracking of traffic variation and efficient utilization of radio resources. Examples of
full DBA strategies using different performance criteria and different ways to solve the

underlying optimization problem can be found in [Lee04, Alo05, Cel06, Ros06].

In real life, a mixed strategy seems to be the most adequate solution since both the fixed
allocation and the full DBA have its pros and cons. A fixed allocation is clearly inefficient from
the point of view of resource utilization because significant amounts of satellite capacity are lost
in the silent periods. On the contrary, it has advantage in terms of delay and signalling. Since
there is no need to negotiate a resource allocation before a transmission occurs, this extra delay
is avoided. Note that this delay is at least the RTT, which is a relatively high value in GEO
satellites. Furthermore, the request-grant process involves signalling and it is avoided using a

fixed allocation. Therefore, a compromise solution might be to use a fixed allocation for traffic



22 2.4. Applications of Dynamic Bandwidth Allocation

types that require stringent QoS provisioning and that generate traffic in a periodic basis and
to statistically multiplex traffic types that are more bursty in nature. Note that bandwidth
utilization is not severely compromised because we do not squander the fixed allocation portion.
DVB-RCS defines several ways to request capacity (detailed in Chapter 4) and among them,
Constant Rate Assignment (CRA) can be explicitly employed for fixed allocation purposes. The

multiplexing task is then associated to the remaining types of request.

However, related research lines in the literature do not exclusively focus their attention on the
best possible way to react to the requests emitted by the terminals. Some of them also consider
how requests are generated [Chi04b, Pri04, Pie05] and how this generation influences the system
behaviour. In order to help the explanation, let us consider in Figure 2.7 a generic architecture
of a DVB-RCS terminal implementing Internet Protocol (IP) with differentiated services, which
has been inspired by [Pie05]. The IP data flow to be transmitted through the satellite is classified
and regulated, which results in various queues that map distinct IP service or priority classes.
The IP packets within the queues are then scheduled and segmented into MAC layer units in
order to be conveyed at this lower layer. Without loss of generality, a number of queues at the
MAC layer are defined as well to represent the priority classes at that level. Finally, the MAC
scheduler makes an ordered selection (following a given criterion) of the contents in the queues

to be sent to the air interface.

Note that each terminal drains its queues depending on the amount of PHY layer resources it
can use to transmit, which definitely configures its link capacity. Thanks to a DAMA technique
implemented by means of a DBA solution, the satellite spectrum (or part of it) is statistically
shared among users. As depicted in the figure, it is necessary to gather information about the
MAC queues (basically length and priority) at a DBA control module, who requests capacity
to the NCC and receives the assignments in the Terminal Burst Time Plan (TBTP) table.
The works in [Pri04, Pie05] show that the intuitive solution of requesting just the length in
the queues works well for non-congested states, i.e. when the satellite capacity is able to fulfill
all the requests. Notwithstanding, the average queue length can be reduced if control theoretic
mechanisms are implemented to track a reference queue length value. The result is that in
congested states, the requests are computed as the input rate plus an extra demand that depends
on the queue length. The authors also propose a modification on their scheme to cope with free
capacity assignments, which are capacity grants that have not been previously requested (this
occurs when some satellite capacity is left unused). However, as discussed in [Nea01], free capacity
assignments must be carefully studied in combination with the Transfer Control Protocol (TCP)

since they may introduce unexpected degradation.

Finally, we can further distinguish within DBA techniques between reactive and proactive
strategies. Note that all the solutions that we have introduced up to this point, which are

classified as reactive techniques, aim to respond to the current status of the queues but they
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do not try to anticipate to traffic dynamics. A major drawback of reactive approaches with
GEOQO satellites is that, due to the high RTT value, the requests may not represent the actual
QoS needs. Free capacity assignments are intended to counteract this fact and they can be
useful, for example, to send an HyperText Transfer Protocol (HTTP) request without waiting
for the completion of a resource request/allocation phase [Nea01]. In general, proactive schemes
try to anticipate to future traffic requirements to paliate the RTT problem. In [Chi04b] the
authors introduce an adaptive traffic predictor implemented with a Recursive Least Squares
(RLS) adaptation scheme [Hay96, Ch. 13] that adjusts the parameters of the Auto-Regressive
(AR) model [Hay96, Ch. 2] proposed for the input traffic flow.

Our DBA proposal for DVB-RCS in Chapter 4 is focused on how the resources available in
the MF-TDMA of the satellite are distributed for a given resources request. We do not consider
how requests are generated and we concentrate our attention in supplying a DBA framework that
provides a proper set-up of the shared spectrum taking into account the PHY layer configuration
of the satellite terminals and allowing to balance the resulting allocation towards the most
prioritized flows under a global fairness criterion. A mathematical representation of the situation
as a NUM problem and the novel decomposition technique developed in Section 3.3 allows us to

attain the optimal allocation and to obtain it efficiently (in terms of computational time).

2.4.2 Distributed Scheduling in WiMAX Networks

Similarly to what happens in DVB-RCS, the multiple access in the WiMAX [IEE04, IEE06]
uplink also responds to a DAMA solution, where there is a process of requesting and granting
transmission opportunities. The interested reader can find a good review on the PHY and MAC
layer aspects of WIMAX in [And07, Ch. 8, Ch.9]. Notwithstanding, we notice that the WiMAX
scenario is more rich due to the following issues: i) the network topology and ii) the PHY layer

reconfigurability.

Regarding network topology, a Point-to-MultiPoint (PMP) structure is always assumed in
the DVB-RCS satellite subnetwork. In any case, satellite terminals may distribute their capacity
among various users to which are connected, for example, through a Local Area Network (LAN)
or a Wireless LAN (WLAN). WiMAX, as the broadband wireless solution for the medium
distance, also considers PMP and optionally, a mesh network configuration. In mesh mode,
terminals do not need to communicate directly to the Base Station (BS) as they do in PMP
mode. Therefore, a global optimal network operation (given some performance metric) requires in
general a more complex formulation and practical strategies to attain it, which implies searching
for adequate distributed solutions. Finally, we want to remark the interest in tree-deployed
topologies. They are an intermediate case between PMP and general mesh networks and have
been considered in WiMAX deployments that build the backhaul transport network [Lee0OGb,
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Hin07].

The WiMAX standard includes four different PHY layers that are based on a single carrier,
an Orthogonal Frequency Division Modulation (OFDM) or an Orthogonal Frequency Division
Multiple Access (OFDMA) architecture. All the solutions offer different reconfiguration possi-
bilities and thus, it is possible to send information at a number of distinct rates. Since WiMAX
is envisaged for both fixed and wireless scenarios working at the microwave band, where channel
fluctuations may be significant, PHY layer reconfigurability allows to track those variations and
to make the best possible channel use (almost reaching Shannon capacity [Sha48]). Among oth-
ers, the standard includes adaptive coding and modulation, power control, subcarrier allocation
in OFDM/OFDMA [Won99, Kiv03] or Multiple-Input-Multiple-Output (MIMO) [Ale08] tech-
niques. Always in relation with the multiple access in the system, DBA is found in the literature
according to two distinct interpretations (possibly mixed): 1) assuming fixed link capacities, the
goal is to distribute the bandwidth among the information flows in order to sustain the QoS
definitions and ii) considering non-empty MAC queues to be drained, the goal is to operate the
network at a proper multi-user rate point in the network capacity region [Cov9l, Ch. 14] in

order, for example, to achieve maximum network throughput.

If we search for an integrated QoS provisioning, one approach does not exclude the other.
In fact, the goal is to balance the available bit rate at each link towards the most priority flows
and, at the same time, to select a feasible rate point in the network that allocates more resources
to the links transporting such priority flows. It is a joint vision of DBA that responds to the
previously discussed vertical decomposition of [Chi07] and, in general, to cross-layer designs. In
this joint direction goes the work in [Sol06] for a single-carrier WiMAX network. The authors

use a NUM formulation similar to (2.1) and extend it to a proper selection of the link capacities

as
max sz\il Ui(ri)
{Ti}vc
s.t. Ar <e , (2.8)
ceC
T Z 0

where 7; is the rate of the " flow, A is the routing matrix and C is the set of all feasible
link rates, i.e. the capacity region of the network. The authors divide the problem into a flow
allocation problem (solving {r;} for fixed ¢) and a scheduling problem that updates the link
rates in order to find the optimal value of (2.8). They make use of the Mean Value Cross (MVC)

decomposition method (described in Section 3.2.3) to attain a vertically distributed solution.

The works about DBA in WiMAX that have appeared in the literature can be understood
as particular solutions to smaller problems considering parts of the aspects included in the
general framework in (2.8). Depending on the PHY-layer considered and on the network topology,

researchers put more stress on some network issues than in others. For example, the works in
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[Erw06, Niy07] put the emphasis on the flow control part of two distinct network topologies. In
particular, [Niy07] assumes a mesh topology and formulates the flow control using game theory
and attaining a Nash bargaining solution. Papers [AY07, Mak07] provide algorithms to optimize
the sum-rate in a single-cell OFDMA WiMAX system by allocating subcarriers to users in the
OFDM modulation and by performing bit and power allocation. On the other hand, the concern
in [Tao05, Wei05, Du07] is to find a proper routing tree and scheduling in mesh mode in order to
minimize interference among transmissions (possibly allowing concurrent transmission), which
allows us to enhance the network throughput or to reduce the length of the scheduling cycle.
We define the length of the scheduling cycle as the number of time slots required to complete

all pending transmissions.

In summary, the challenge is to be able to provide practical mechanisms that allow us to
jointly optimize as many system variables as possible (i.e. including scheduling, flow control,
power allocation, ... ). Therefore, we need to cope with general formulations that include these
variables in the PHY and MAC layers (and possibly higher layers), as it is the case in (2.8).
In that context, distributed computation techniques are crucial to split the optimization into
the distinct layers and network elements and hence, to define future cross-layer interactions and
protocols. In our DBA contribution in Chapter 5, we concentrate on the flow control problem
(as an important piece in more sophisticated formulations) in PMP and tree-deployed WiMAX
mesh networks. More precisely, we show that it is possible to attain a fully distributed and time

efficient computation thanks to the coupled-decomposition method described in Sec. 3.3.



Chapter 3

Unified Decompositions Framework
in Convex Programming

This chapter is devoted to the main theoretical contribution of this thesis: a framework to for-
mulate and efficiently solve DBA problems. The results herein have been derived using a special
mixture of two distinct lines of thought in the mathematical optimization community, namely
convex optimization theory and mathematical decomposition theory. The former defines an im-
portant type of problems in optimization with many real application examples in engineering
(see for example [Boy03, Part II], [Dat99, Ch. 5] and [Ger05, Ch. 8]). The latter provides some
results that allow us to split some specific optimization problems into several smaller (and more
tractable) problems (from now on the subproblems). We review both theories before describing

our proposed method.

3.1 Review of Convex Optimization Theory

In order to write a formal definition of a convex optimization problem (or convex program),
consider first the following representation of a general optimization problem,

min  fo(x)

st fl@) <0 1<i<m (3.1)

hi(x) =0 1<i<p

where € R" are the optimization variables and fy(x) is the objective function. The problem
is constrained through the functions f; and h; on the variables in x. The first ones are called
inequality constraints while the second ones are the equality constraints. In case there were none
of them, the problem is said to be unconstrained and it is a classic problem in the optimization
literature, strongly related to the numerical resolution of nonlinear equations. A good reference
can be found in [Den83|.

A particularization of (3.1) conducts to the definition of a convex optimization problem.

27
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More precisely, if the functions fj ... f;, are convex functions of the variables and the functions
hy...h, are affine (linear) functions, then the problem is said to be convex. A function f :
R™ — R is convex if, for any two points in its domain,  and y, and any scalar 6 € [0, 1],
it holds: i) the domain of the function is a convex set, i.e. fx + (1 — 0)y € dom f and ii)
f0x+ (1—-0)y) <Of(x)+ (1 —0)f(y). That is, the value of the function at any point within
the line segment between x and y is always under the segment that connects the points f(x)
and f(y). Note that some well-studied problems in the literature fall or can be arranged into
a convex representation. For example, when all the functions f; and h; are affine (linear), we
talk about linear programs (LP), or when the objective function is quadratic and the constraint

functions are linear, it is a quadratic program (QP).

The goal in convex optimization problems (and in all optimization problems in general) is
to find the optimal solution to the problem, which we denote as «*. The optimal solution is the
point in the domain of the optimization problem that attains the minimum possible value of the
objective function, i.e., p* = f(«*), and accomplishes all (equality and inequality) constraints.
A formal definition of the domain of the problem is the set of points where the objective and

constraint functions are defined, i.e.,

m p
D= ﬂ dom f; N ﬂ dom h; (3.2)
i=0 i=1

A subset of the domain of the problem is the feasible set and it contains all the feasible
points of the optimization problem. A feasible point is a point in D that accomplishes all the
constraints. On the contrary, an unfeasible point belongs to D but does not satisfy at least
one constraint. Therefore, the optimal solution is always inside the feasible set. In the case
the feasible set is empty, we say that the optimal value of the problem p* = +o00. Regarding
inequality constraints, we distinguish between those that are satisfied with equality in a given
point inside the feasible set and those that are not. We call active constraints to the first ones

and inactive constraints to the second ones.

Such convex optimization problems have attracted much attention in the last decades with
many application examples. See some of them in [Boy03, Part II]. Also in the communications
community, the convex way of representing and solving problems has inspired lots of works and
it has been the tool to deal with problems that had not been solved previously. A good example,
among others, is the work of D.P. Palomar [Pal03].

From a practical point of view, we have good numerical procedures to compute convex
problems. This implies that if it is possible to write a given problem in convex form, we can
say that it is readily solved. Many works that can be found in the literature are devoted to
transforming original non-convex problems to their equivalent convex representations. This is not

always possible and there is not a systematical procedure to do so, requiring some handcrafted
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work.

3.1.1 Numerical Algorithms to Solve Convex Problems

Convex problems can be sometimes solved analytically thanks to the optimality conditions of
the solution. These are well defined in the so-called Karush-Kuhn-Tucker (KKT) conditions,
which we review later. In this section, we want present an overview of the numerical algorithms
that are used in convex problems, and maybe the most famous ones are the family of interior
point methods. They were initially proposed for linear programming by Karmarkar in 1984 and
generalized for convex problems in [Nes94]. As one of the major contributions of this thesis is a
novel algorithm specialized in a particular case of convex problems, a brief idea of interior-point

methods will give the reader some perspective about the topic.

In the sequel, a basic interior-point method, the barrier method, is presented. Further details
to the ones exposed next can be found in [Boy03, Sec. 11.3]. Notwithstanding, other represen-
tative methods that we do not review here are the primal-dual interior-point methods [Boy03,
Sec 11.7], [Ber99, Sec. 4.4.4] and the cutting plane methods [Ber99, Sec. 6.3.3]. Let us consider
now a reformulation of (3.1) that implicitly includes the inequality constraints in the objective

function:
min  fo(z) + 3L 17 (fil=))

) 3.3
s.t. Ax =0 (33)

where A € RP*" with rank(A) = p < n, the functions f; (i = 0...m) are assumed to be twice
differentiable and I~ : R — R is the indicator function for the non-positive real numbers:

_ 0 <0
I(u):{oo ws0 (3.4)

Note that the indicator functions enforce to search the optimal solution inside the feasible set
and also to keep the objective function of the redefined problem equal to fo(x) in the feasible

set.

The logarithmic barrier method approximates the indicator function as

F(u) = (~ ) log (~u) (3.5)

which is twice differentiable and a smooth functions of the variable u. The reader can find in
Figure 3.1 two different plots of the indicator function for two values of the parameter ¢, namely
t = 0.5 and t = 2. Note that as the value of ¢ increases, the approximation resembles more and

more the indicator function.

The basic idea of the method is quite simple and intuitive. Assuming that good numerical
methods to solve unconstrained convex problems are available and well studied (e.g. Newton-like

methods[Boy03, Fle80]), the idea of the barrier method is to solve a sequence of unconstrained



30 3.1. Review of Convex Optimization Theory

Approximations of the indicator function

30 i : :
t=0.5
- - =2
25 1
20 1
151 1

—(1/t)log(-u)

-2 -15 -1 -0.5 0 0.5

Figure 3.1: Approximations of the indicator function.

minimization problems in such a way that, in the last iterations, the problem resembles as
much as desired the original problem. In practical terms, the method first uses a non-accurate
approximation of I~ (u), i.e. with a low value for ¢t and computes the solution. This is used as
the initial guess to solve the next unconstrained problem, that uses an increased value of t. The
equivalent problem to (3.3) that is solved at each iteration (from [Boy03])

min t fo(x) + ¢(x)

s.t. Ax=0» (3.6)
where ¢(x) = —> 7", log (—fi(x)) with dom¢ = {z € R"|fi(x) < 0,i = 1,...,m} is called
the logarithmic barrier of the problem. The name of the method comes from the use of those
mathematical barriers that avoid to find a solution outside the feasible set and that slightly

modify the objective function inside the set (assuming a high value for the parameter t).

Then a summary of the method is [Boy03]:

given an strictly feasible x, ¢t := t* and p > 1

repeat
1. Compute x*(t) by solving (3.6) with initial guess x

2. Update = x*(t)

3. Stopping criterion: quit if the optimal solution is found



Chapter 3. Unified Decompositions Framework in Convex Programming 31

4. Increase t, t := ut

In numerical optimization, the stopping criterion defines when the optimal solution has
been found so that the iterations can be stopped. Typical stopping criteria decide to finish the
iterative procedure when W < eor % < € or both. However, depending
on the operating principles of each particular method, other criterions can be designed. In the

previous examples, n indexes iterations and € is the tolerance of the method.

After this brief review of a particular case of an interior point method, note that the method is
clearly dependent on the parameters ¢ and u, which are defined arbitrarily (the interested reader
can find some guide on the design of the parameters in [Boy03]). Furthermore, the performance
in speed of convergence of the algorithm is affected by a proper or improper choice. This fact
is not an exclusive feature of the barrier method and it is quite common among numerical
optimization procedures (in interior point methods and even in Newton-like methods). Although
it is something unavoidable in most cases, that dependance on user-defined parameters is not
desirable. An interesting issue from that point of view is to contribute with methods that are

non-parameter dependant. We achieve this with the novel method proposed in this thesis.

3.1.2 Duality Theory in Convex Optimization

Once convex problems have been formally defined and once some flavour about how to solve
them numerically (using interior-point methods) has been given, it is the turn now to introduce a
different (but related) perspective to look at optimization problems in general. In this occasion,
duality theory is introduced. It is not specific to convex optimization problems and allows to
formally formulate any optimization problem using an alternative representation. In that sense,
the reader can think about the possibility of having two versions of the same problem, namely
the primal and the dual problem (hence the name of dual). The primal problem is already defined
in (3.1) and the dual problem is derived using the Lagrange dual function. Thanks to duality
theory applied to convex problems, many useful optimality conditions have been derived. These
are summarized in the so-called KKT conditions, which have provided most of the analytical or

semi-analytical solutions to convex problems in many areas of interest.

Consider again the problem in (3.1) and define the Lagrangian function of the problem as

L(va’V) :fO(m)+Z>\zfz(m)+ZVzhz(m) (37)
=1 =1

with dom L = D x R™ x RP. The set of variables A and v are the Lagrange multipliers associated
to the constraints. More precisely, \; is associated to f;(x) < 0 and v; is associated to h;(x) = 0.
Note that the Lagrangian function is the objective function of the original problem additively

augmented by the constraints of the problem (each one scaled by its corresponding multiplier).
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From the Lagrangian function, the Lagrange dual function (or just dual function) is defined

as the minimizer of L(x, A, v) over the variables in . Hence, g : R™ x RP — R,

xeD

m p
gAw) = inf L(zAw) = inf (fo(w) + 3 N+ uihi@c)) (3.5)
=1 =1

In the case the Lagrangian is unbounded below in @, the dual function takes the value —oo. We
say that the values (A, v) with XA = 0 and g(X\,v) > —oo are dual feasible.

Both the Lagrangian in (3.7) and the dual function in (3.8) are not exclusive definitions of
convex problems. They are valid for all type of problems. However, some useful results appear
when convex problems are considered. A key point now is that the dual function is a concave
function of the dual variables (A and v), even if the original problem is not convex, as it is the

point-wise minimum of a family of affine functions of (X, v) [Boy03].

Proof. Consider that f1(A) and fa(X) are two concave functions over the variable A and define

FA) = min{f1(X), f2(A)} (3.9)

with domf = domf; N domfs. We want to prove first that f(\) is also a concave function
of A. This fact is easily verified form the definition of concavity. For any two given points in

dom f, A1, A9, and any scalar 6, 0 < 8 < 1, we already know
fi(OA1 + (1= 0)A2) > 0fi(A1) + (1 = 0) fi(A2), i=1,2 (3.10)

The definition is also verified with the function f as

FOXN+ (1 =0)A) = min {f1(0A1 + (1 — 0)A2), fa(0A1 + (1 — 0)A2)}
> min {0 f1(A1) + (1 = 0) f1(X2),0f2(A1) + (1 — 0) f2(A2) } (3.11)
> Omin { f1(A1), fa(A2)} + (1 — 0) min { f1 (A1), f2(A2)} = 0f (A1) + (1 = 0)f(A2)

Note also that min {f1(X), f2(A), f3(A)} = min { min { f1(A), fa(A)}, fg()\)}. Recursively ap-
plying this result, it is derived that the point-wise minimum of any number of concave functions
is also concave. The dual function is then a family of affine functions of A and v (indexed by all

the points € D) and hence, concave. g

Ezample 1: Consider the problem

min  3(z —2)% —logy

s.t. r+y<1 (3.12)

with primal variables  and y and D = R x R4 . In Figure 3.2 the reader can find a plot of the
objective function (left) and a contour plot of the same function together with the constraint
x4y = 1 (right). Note that the optimal values of the problem (z*, y*) can be obtained graphically

in this small example.
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Objective function of Example 1 Contour plot + constraint (Example 1)
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Figure 3.2: Objective function and contour plot + constraint for Example 1.

The Lagrangian function of the problem is
L(w,y,\) = 3(z — 2)2 — logy + Al +y — 1) (3.13)

Forcing the partial derivative of L(z,y, A) with respect to  (or y) equal to zero, we obtain the

following minimizers of the Lagrangian, which are functions of the multiplier A:

12-x 1
= yr(\) =~ (3.14)

Finally, the substitution into the Lagrangian gives the dual function, which in this case is:

2" (A)

—)\2
g(A) = SR +logA+A+1 (3.15)
It is easily verified that the dual function is concave. In Figure 3.3, g()) is represented and the

maximum value of the function is marked as \*.

An important property of the dual function is that it is a lower bound of the optimal value

of the problem p*. That is, for any A > 0 and any v, it holds that

g\, v) <p*. (3.16)
Given a feasible point " for the problem in (3.1) and A = 0, then
m p
L™, A v) = fo@™) + Y Nifi(@™) + > vihi(a™) < fo(z), (3.17)
i=1 i=1

since Y P_, v;hi(x®) = 0 for a feasible  and > | \;f;i(x") < 0 for a feasible  and X = 0. It
is also true that

g(Av) = min L(z, A, v) < L(z”, A, v) < fo(z") (3.18)
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Dual function of Example 1

Figure 3.3: Dual function for Example 1.

since the dual function chooses a minimizer of the Lagrangian in the set D, that includes the

*

feasible set. And as (3.18) is valid for every feasible point, it also holds for fo(x*) = p*.

In the light of the previous result and as the dual function is concave, it makes sense to find
the best under-estimator of p* from a dual point of view. We refer to it as d* and it is obtained
as the solution of the following convex optimization problem

d* = max g(\,v)
AV (319)
st. A>=0
Note that the constraints are convex and that to maximize a concave function g(A,v) is equiv-

alent to minimize —g(\, v), which is convex. We have shown that
d* < p*. (3.20)

We refer to the quantity [p* — d*| as the duality gap. When the duality gap is zero, we say that
strong duality holds. Otherwise, we have weak duality.

All the results discussed up to now about Lagrange duality hold even when the problem under
study is not convex. When the previous analysis is applied to convex problems, we reach a central
result of great importance in convex optimization. It establishes that, under some technicalities
(usually called constraint qualifications), the duality gap reduces to zero [Boy03]. A simple
version of the constraint qualifications is Slater’s condition, that is satisfied if the problem in (3.1)
has at least one strictly feasible point (if f;(zf) < 0,i=1,...,m and h;(x) =0,i=1,...,p,
then z' is strictly feasible). Constraint qualifications are not hard to accomplish and most convex

problems exhibit strong duality.
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Assuming that strong duality holds, convex problems can be solved by minimizing the primal
problem in (3.1) or, equivalently, one can solve the dual problem in (3.19). In other words, given
the optimal values for the dual, A* and v*, the primal optimal point x* is readily found as the

minimizer of the Lagrangian.

Let us suppose that we have both primal (x*) and dual (A*, v*) optimal values and that we

have strong duality. Then,

d* = g()‘*7 V*) = L(m*v )‘*7 V*)

* mooyx * X * " " 3.21
= fo(®") + 225 A fila™) + 220 viha(@®) = p* = fola™), (321
and as > -, v;hi(x) = 0 for any feasible point (also for z*), it must hold that

Nfix*) =0, i=1,...,m (3.22)

since A\; > 0 and f;(z) < 0 in the feasible set. The set of conditions in (3.22) are called comple-
mentary slackness conditions. From slackness conditions, we know that if \; > 0, then the i*
inequality constraint is active, i.e. f;(x) = 0. Conversely, if the optimal solution is not bounded

by the i*" inequality constraint, then A\; = 0 and the Lagrange function is not augmented by

Note also from (3.21) that d* = p* = g(A*,v*). Taking into account the definition of the
dual function in (3.8), we can conclude that the gradient of the Lagrangian must vanish at
(z*, X", v*). With that last condition and grouping previous results, we can formulate the KKT

conditions for convex problems (whenever strong duality holds):

filz*) < 0, i=1,....m
hl(ac*) = 0, 1=1,...,p
Af> 00, i=1,...,m (3.23)
Nfi(x*) = 0, i=1,....,m
Vfo(x*) + 200 NV fila*) + 20, vi Vhi(z®) = 0.

In practical terms, KKT conditions are very useful to find analytical solutions to convex

problems.

3.2 Review on Decomposition Methods

The philosophy under decomposition methods [Ber99, Las02] is very simple: the idea is to split
an optimization problem into several smaller problems, which are usually called the subproblems,
and let a master problem to be in charge of coordinating all the subproblems so as to achieve
the global optimum. Therefore, all decomposition techniques require some signalling between

the subproblems and the master problem.
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This approach is advantageous in many cases since it is easier to solve each of the subprob-
lems separately than to attack the original problem as a whole. There are, however, additional
motivations in some application examples within the communications area, where decomposi-
tion methods have attracted much attention in the recent years due to the fact that distributed
solutions have been used to cope with some problems that are still of interest. A good example
of that can be found in the works of Chiang [Chi07] and Palomar (see [Pal07] and references

therein).

In the sequel, two basic decomposition methods are revisited, namely primal decomposition
(also known as decomposition by right-hand side allocation [Ber99]) and dual decomposition
(also referred to as Lagrangian relaxation of the coupling constraints or decomposition using a
pricing mechanism [Ber99, Las02]). Finally, a more recent approach that combines both primal
and dual decompositions, the Mean Value Cross (MVC) decomposition method, is revisited
[VR&3, Hol92, Hol97, Hol06].

3.2.1 Primal Decomposition

A primal decomposition strategy is adequate for separable problems of the form

min Z}'Izl fi(z;)

{ijmj}
o1y b

with variables {azj,yj}. Here, f; : R — R and &; are subsets in R™. Furthermore, A; is a

7 X nj matrix with real entries and b, {y,} € R".

Note that for fixed values of {yj}, the problem is fully separable. A primal decomposition

technique makes use of this fact. Equivalently to (3.24), we can write

min 37, min  fi(z))
{y;} IS Xj
Aja:j j yj (325)
s.t. ijlyjjb, y; €Yy, J=1...,J
where the subsets ), take into account that the inner minimization problem,
min i(x;

s.t. Aja:j = Y, TjE Xj
has at least one feasible solution. The inner minimization problems are usually called the sub-

problems, and they depend on the values taken by the variables y; with domp; = Y.

Using this definition, the original problem in (3.24) is rewritten as

min i1 pi(Y;) (3.27)

J .
s.t. Ejzlyjjb, y; €Y, j=1,...,J
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and is usually called the master problem. Note that with this approach, the master problem fixes
the variables y; so as to achieve the optimum of the problem given the coupling constraint. Using
these values, the subproblems fix, at their turn, the local variables x;. Often in the literature
a resource allocation interpretation is given to this strategy. Imagine that the total quantity of
available resources is b and that it has to be distributed among some entities, the subproblems.
Under this point of view, the master problem decides the allocation of the available resources
while the subproblems are in charge of achieving the highest revenue with the granted values of

the shared means.

Up to this point, no convexity assumptions have been made, so the discussion above is
valid for all kind of problems in the form of (3.24). However, from a practical point of view,
the interest is in finding the optimal solutions to the problem. In the sequel, a pretty simple
numerical method, the subgradient method, is reviewed to attain the optimal solution when the

subsets X; are convex and the functions fj(x;) are also convex.

The subgradient method is in fact an adaptation of the gradient projection method [Ber99,
Sec. 2.3 to the problem in (3.27). In short, the gradient projection method iteratively finds
the solution to the problem by: i) moving the current solution towards a descent direction (the
opposite of the gradient) and ii) projecting the solution onto the feasible set. In the case under
study, a deeper insight into the functions p; (yj) is required. We need to certify that the subsets
Y; are convex, which is required by the gradient projection method. Another issue is to define
and to be able to numerically evaluate a gradient (or a similar function) of p;(y,) at any point
in V;. Note that, in general, any descent-type method will find local solutions to the problem
under study. However, if the problem is convex, a local solution is also global [Ber99, Prop.

2.1.1]. Since it is assumed that f;(x;) are convex, it is also important to establish the convexity
of p(i‘/j)-

In order to answer the questions above, let us rewrite the j** subproblem in (3.26) in a more

general form [Ber99, Sec. 5.4.4] (subindex j is omitted in the subsequent analysis).

p(y) = min f(x). (3.28)
reX

gl(m)gyu i:17”’7r

with domp = ) as above. The functions g;(x) are convex and define the feasible set of the
problem for a given! y. Note that we can interpret that representation as a perturbation on the
general representation of a convex problem, with tightened or loosened constraints. That is, if
y; > 0, then we are loosening the i*" constraint; otherwise, when y; < 0, we are tightening the

it" constraint. When y = 0, the problem resembles to the initial formulation in (3.1).

'They shall not be confused with the dual function g(x).
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Lemma 1 Given the problem in (3.28), i holds that: i) the subset Y is a convex subset and ii)

the function p(y) is convex over Y.

Proof. See [Ber99]. To verify it, take any two points inside Y, y; and y,, any scalar a € [0, 1] and
e > 0. Then choose any two points inside X, i.e. 1,9 € X, that satisfy: i) g(x;) < y;, i = 1,2
and ii) f(x;) < p(y;) + €, ¢ = 1,2. Assuming convexity of X, f and {g;}, it holds that [Ber99]

play; + (1 —a)y,) < ap(yy) + (1 — a)p(y,) + € (3.29)

Since p (ay; + (1 — @)y,) < +00, ay; + (1 — @)y, € Y and Y is a convex set. And taking the
limit € — 0, (3.29) converts into the definition of a convex function, so the primal subproblems

are convex functions with convex domains. g

To finally complete the subgradient method, a gradient of the primal subproblems at any
point inside the corresponding domains is required. In the general case, the subproblems are
convex but non-differentiable, so the existence of a gradient is not guaranteed. However, it is
possible to resort to a more general definition of the concept, the subgradient. It does not require
differentiability and suits for our purposes. From [Las02, Appendix 2|, a vector s(x°) is said to
be a subgradient of f at the point = if it holds

fl@) > f(&°) + s(x”)" (z — 2°) (3.30)

and thus, the subgradient is the slope of a supporting hyperplane of f at «°, even if the function is
non-differentiable. When f is differentiable at any point @, then it holds that s(x) = V f(x). See
Figure 3.4. Note in the figure that it is possible to define other subgradients at 2° accomplishing
(3.30).

We assume now that strong duality holds in the problem (3.28) and that a dual optimum is
attained at the point A* for the unperturbed problem (i.e., y = 0). Take any feasible point x
for the perturbed problem (i.e., g(x) = [g1(), ..., g-(x)] < y) and it holds

p(0) = g(A") < f(®) + Y Ngi(m) < f(x) + ATy (3.31)
=1

since the dual function is always an under-estimator of the optimum value of the problem and
A = 0. And since @ can be any point in X, we can choose the one that gives the optimum value,

p(y). We finally get
p(0) <p(y) + A"y (3.32)

from where (together with (3.30)) we see that —A* is a subgradient of p at the point y = 0. The
result is easily extensible to any value of y, y*, after the application of the change of variables
y' = y — y® to the perturbed problem in (3.28) and the previous derivation in (3.31)-(3.32).

Therefore, we can establish that:
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Figure 3.4: Illustration of the subgradient concept.

—X*(y") is a subgradient of p(y) at the point y = y".

Using the subgradient, problem (3.27) can be iteratively solved using the conditional gradient
method [Ber99, Sec. 2.2] by just replacing the gradient with the subgradient. Therefore, it is
of interest to find the subgradient of the objective function of the problem, i.e. Z}]:l pi(y;)-

Using the previous relation between the subgradient and the Lagrange multipliers, it is readily

established that a subgradient of the function at the point [y, ...,y ] is:
J
s S mitw | =~ Al (3.33)
[ylr--yy‘]] j=1

from what the updates of the subgradient method are given by the equation (k indexes iteration

number)
yk+1 — [yk _ aksk]T (3'34)

where [-]' denotes the projection on the constraint set {y =[ys,--->y )7 ijl y;=by, € yj}
and of is a positive step size. The projection of a given point on a set finds out the point in
the set that is closer to the given point (in any defined distance function). Note that in the case
where the point is already in the set, the projection is the same point. For more information

about projections on sets, please refer to [Boy03, Sec. 8.1].

Resorting to the results on the gradient projection methods [Ber99, Sec. 2.3], there are several
possibilities to set up the step size in a manner that convergence of the algorithm is guaranteed.
Maybe the most used ones in practice are the constant step size, the constant step length and

the diminishing step size [Pal07]. In the constant step size,

ok = a, k=0,1,... (3.35)
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whereas in the constant step length,

k [0

of = —
Is*I

k=0,1,... (3.36)

For the diminishing step size, we set up a* such that

of — 0, Z of = oo, (3.37)
k=0
for example [Pal07]
14+m
k
= — k=0,1,... 3.38
Y T Etm T (3.38)

where m is fixed and nonnegative. Note that in all cases the speed of convergence will depend
on a user-defined parameter (*), which is generally not optimized to guarantee the maximum
speed of the algorithm. Therefore, it is desirable to avoid such procedures when possible so as

not to slow down the obtention of solutions.

3.2.2 Dual Decomposition

A dual decomposition strategy is adequate for separable problems of the form

H;i_l% Sl fila))

s.t. ;€ Xj, i7=1...,J (339)
Sy () < b.

Here, h; : R" — R" and b € R".

Different to a primal decomposition, in this occasion the problem is separated thanks to
a Lagrangian relaxation of the coupling constraint [Ber99, Sec. 6.4.1]. The corresponding dual

function is
J

a(p)=> _nin {fi(xj) + u"hj(x;)} —pu'b (3.40)
=1 B

Note that the dual function is separable, each part associated to a different ;. Taking this
into account we define the subproblems, that are expressed as ¢;(p), where

qi(p) = mig}j {fi(®;) + n"hy(x;)} (3.41)

x;€

It is assumed at this point that it exists a vector «; for all j and p that attains the minimums
*
J
subproblems are finally rewritten as

above. We refer to those vectors as x(p) and replacing them in the equation above, the dual

ai(1) = (@) + 1" hy (@] () (3.42)
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and the dual master problem becomes

max  q(p) = S qi(p) — b

3.43
st. u=0 ( )

As in the primal decomposition, we can numerically solve the dual master using a subgradient
method. To do so, the subgradient of the dual subproblem g;(p) at the point p is required.
Consider now one of the subproblems, g;(p), and for any value of p, x}(p) is the minimizer of

(3.41). Note that gi(p) is the dual function of the following optimization problem

min x
s.t. hk(a:k) = 0

From the definition of the dual function, it is verified that

(k) < fu(@i(B") + p (@ (1))
= @ (1) + 10" Ry (@ (1)) + (1 — 1O Ry (2 (1)) (3.45)
= q(p) + (1 — p®) by, (2 (1°))
where the inequality holds since the dual function chooses the point in X} that minimizes the

Lagrangian in (3.41) and so, any other point will attain the same value or higher.

Since (3.45) is valid for any u® € R", we can conclude that hy(z}(u°)) is a subgradient of
the dual subproblem k at u°, which is readily verified from the subgradient definition in (3.30),

and therefore
su0.k @k = hi(xh(B°)), ae(p) < qe(p®) + (1 — p°) s 0k (3.46)

With this last result, it is easy to compute a subgradient for the dual master and to finally
determine the subgradient method for dual decomposition. A subgradient of the dual master at

a point u®, 8,0, 1s given by

J
8“0 = Z SNOJ ) (3.47)
j=1
and the iterates of the method use an updating equation that resembles the one in primal
decomposition,
y’k+1 — [Uk + aksk]+ (3.48)

where k indexes iterations. Note that the projection on the feasible set is easier this time since
the master dual problem only requires g > 0. Therefore, the projection is readily solved by
fixing the negative values of u* + o*s* to 0. More formally,

+ _J a a>0
[a] —{07 a<0 (3.49)

Finally, o* is the step size of the method as in primal decomposition and the same results and

conclusions can be drawn.
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3.2.3 Mean Value Cross Decomposition

In this section we review the cross decomposition method developed by Holmberg and Kiwiel
and described in their relatively recent paper [Hol06] when applied to convex programs. Previous
steps of this mixed proposal for other types of problems can be found in [VR83, Hol92, Hol97].
The technique is designed to solve some special types of convex problems with a wider framework
than in primal or dual decompositions, and thus, problems suiting such strategies can also be
embedded in the Mean Value Cross (MVC) decomposition method. Conceptually speaking, the
philosophy of the technique is quite different from the preceding solutions due to two main

reasomns:

e The way the problem is separated is different (as will be seen in the problem formulation).

e The idea is to update primal and dual variables at the same time while information among
primal and dual visions of the problem is interchanged. Note that in primal decomposition,
the goal is to iteratively move towards the optimal values for the primal variables, whereas

in dual the decomposition the goal is the equivalent in the dual domain of the problem.

Consider the following problem formulation,

Igiyn c(x) +d(y)
s.t. Al(ac) + Bl(y) < b
As(z) + Ba(y) 2 be (3.50)
reX
ye)y

where ¢ : R™M — R, d: R™ — R, A; : R — R™ By :R"™ — R™ Ay :R™ — R™
and By : R™ — R™2 are convex functions. The sets X' and ) are also convex and compact. It

is further assumed that strong duality holds.

Note that all the functions in (3.50) depend only on one subset of primal variables, either
x or y. If, for example, we define z = [z],...,z]]|7, Ai(x) = Az, Bi(y) = -y, by = 0
and As(xz) = By(y) = by = 0, 2 then we have a primal decomposition-type structure but
without explicit separation of the variables within . Similarly, if we set A;(x) = E}-Izl h;(x;),
Bi(y) = 0, by = b and Ax(x) = Ba(y) = bz = 0, then the structure coincides with the one

suitable for a dual decomposition.

Construct now the partial Lagrangian function of the problem (3.50) as

L(z,y, p) = c(z) +d(y) + p' (A1 (z) + Bi(y) — b1) (3.51)

2The set of constraints Z;']:1 y; = bis included in Y.
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and minimize it over the variable @, including the constraints that have not been taken into

account in the Lagrangian definition, to obtain the function K (y, p),

K(y,p) = min L(z,y, p)
s.t. Ag(:l)) < b2 — Bg(y) (3.52)
reX

Note that the problem is convex given that g = 0 and that for a fixed value of y, it coincides
with the definition of the dual function of (3.50) according to the Lagrangian definition in (3.51).
Therefore, as stated in [Hol06], it is intuitively true that K(y, ) is a convex function of y given
p and a concave function of p given y. Primal and dual subproblems, as defined by Holmberg

and Kiwiel, make use of this fact.
The primal subproblem is defined as

p(y) = max K(y,p)

(3.53)
s.t. np>=0

whereas the dual subproblem is defined as

d(p) = min K(y,p)

3.54
st. ye)y ( )

Since strong duality holds and since the primal subproblem (for a fixed value of y) can be
interpreted in terms of the maximization of a dual function (i.e., it is in fact a dual problem for
a fixed y), it is possible to attain the same optimal value by solving the corresponding primal
problem, which is

ply)= min  clz) +dy)
st. Aj(x) < by — Bi(y)
As(x) < by — Bs(y)
reX

(3.55)

The complete expression for the dual subproblem for a fixed value of p is (by substitution)

d(p) = min c(x) +d(y) + p" (Ai(z) + Bi(y) — br)

z,y

s.t. As(x) + Ba(y) < by (3.56)
rxeX
yey

Once the subproblems (primal and dual) are fully described, a possibility to solve the whole
problem is to define the master problems associated to the subproblems. In that way, we finally
have to options: i) solve from a primal-only perspective or ii) solve from a dual-only perspective.

The master problems are defined as:

(3.57)
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for the primal and
d*= max d(p)
m

st. =0 .
Both are convex optimization problems [Hol06] that verify p* = d* due to strong duality. When

(3.58)

evaluated not in the optimum, the primal subproblem is an over-estimator of the optimum and

the dual subproblem is an under-estimator of it [Hol06]. In other words, it holds that

d(p) < d* =p* <p(y) (3.59)

and the result is consistent with the duality results in Section 3.1.2.

Note that this approach is conceptually the same as in primal or dual decompositions with
some important differences regarding the structure of the problem: in the MVC decomposition
method, the separability of the problem in some subgroups of variables (except for a coupling
constraint or a coupling variable) is not exploited as it happens with the previous techniques.
Although the formulation is in principle more general (in the sense that more types of convex
programs fulfill the MVC decomposition approach), it lacks for specialization (a distributed so-
lution is not naturally derived as in primal/dual decompositions). As it will be discussed later,
primal and dual decomposition techniques are suitable for parallel computing as the subproblems
can operate independently with some signalling with the master problem, which coordinates the
global problem. Such parallelization is sometimes an important feature, since it enables to per-
form distributed solutions. These are very interesting in application problems where centralizing
operations needs great effort. The works within network optimization are an example of this
issue [Pal07].

Consider again the master problems in (3.57) and (3.58). Now, instead of keeping the same
philosophy as in primal or dual decompositions, the MVC decomposition method proposes to
skip the usage of master problems and to update primal (y) and dual (p) variables among primal
(3.55) and dual (3.56) subproblems. That is, once the primal subproblem in (3.55) is solved (for
a given value of y), the dual variables pu, related to the constraint A;(x) < b; — B (y), are
readily found. These are then used (with some modifications) as an input to the dual subproblem
in (3.56). Once it is solved, the primal variables y are obtained at no cost as its minimizers.
And finally, the circle is closed by feeding again the primal subproblem with the new values of

y (with some modifications).

As noted, primal and dual variables are not directly passed between subproblems and instead,
it is required to average a new value with all past results previously to the exchange. More

formally,
= k—1
k= . dpFt and gF =) gyt (3.60)
i=0 =0

where k indexes iterations. Note that the method implicitly defines an step-size () for each

ol

new contribution to the mean value, and it diminishes as the number of iterations increase. The
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same problems that primal and dual decomposition methods had, related to the choice of the
step-size also appear in this case. In practical terms, the smoothing approach slows down the

speed of convergence of the technique (it is further discussed later on in this chapter).

To end this review of the method, let us summarize it in an algorithmic form:

Take starting points u° = 0 and y° € Y and let k = 1.

Repeat
k—
k).

2. Let gF = =z ZZ 0 Lyh=1 = =z Lgk=1 4 % g*~1 and compute p(g*) as in (3.55). Get p*

as the inner Lagrange multiplier of p(g*).

3. k=k+1.

kT fF~1 and compute d(*) as in (3.56). Get y*

k=1 _ 1
1. Let gk = 1 ZZ oM =
as an inner minimizer of d(j

Until p(g*) — d(@*) < e

Note that the stopping criterion of the method is defined using a measure of the duality gap,
that is, the difference between the primal and dual versions of the problem. It is assumed that
the duality gap is zero since strong duality holds. For further details on the MVC decomposition
method, please refer to [Hol06].

3.3 Proposed Coupled-Decomposition Method

Once the decomposition methods in the literature have been reviewed, it is now turn to develop
the coupled-decomposition method that we propose in this thesis, which is our major theoretical
contribution. Conceptually speaking, it can be classified in between primal/dual decomposition
methods and the MVC decomposition method. From the former, we get the way the problem is
separated (in a master problem with several subproblems). From the latter, the idea of combining

both primal and dual decompositions in a single method is shared3.

Note that, as it has already been discussed in the previous chapter, it is also possible to create
several decomposition layers within certain types of problems. To exemplify it, imagine that the
primal or dual subproblems derived through decomposition of the original optimization problem,
at their turn (and whenever it is possible), are solved by performing a second decomposition
(primal or dual) running at a lower level. The idea, well exposed in [Pal07], should not be confused

with our proposal here, where both decompositions intertwine as in the MVC decomposition

3The idea of the coupled-decomposition method was autonomously conceived. We related it to the works in
[VR83, Hol92, Hol97, Hol06] when a reviewer mentioned them.
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method. Moreover, the decomposition we propose here can replace either the primal or the dual
decomposition (if the formulation of the problem suits) in a multi-layer decomposition strategy.
In that sense, it is not an excluding technique and the benefits of the method must be interpreted

not only as an isolated procedure but also in combination with others.

3.3.1 Description of the Method

Consider now the following convex problem formulation

min 37 fi(x))

{=i}y
s.t. x; € &), j=1,...,J
hj(ey) <yj,  j=1,...,J (3.61)
Ay <c

yely, YV=Mx...xYs

where f; : R" — R and h; : R — R are convex functions of x;, &; and ) are convex and
compact subsets, A = [ay,...,a,;]T is a r x J (r < J) matrix with entries a;; € {0,1} and
rank(A) = r and ¢ € R7. The subsets ); are defined as the images of the subsets X; through
the functions h;(x;), i.e. hj : X; — Y}, Vj. Note that the constraint y € ) is redundant since
Y collapses the information already available in the subsets X;. Notwithstanding, it is necessary
to derive the proposed method and hence, we include it in (3.61). We further assume that strong
duality holds, i.e., for every point y in the domain, there exists a point x; in the interior of X;

that attains h;(x;) < y; for every j =1,...,J with Ay < c and y in the interior of V.

In short, the coupled-decomposition method intertwines the primal/dual subproblems that
would be obtained with a primal/dual decomposition. However, the connection is not direct
and we need to introduce the novel dual/primal projection elements instead. A complete block
diagram of the method can be found in Figure 3.5. We do not define at this moment the variables
that appear in the figure because they will be next introduced while we describe all the steps

within the proposed strategy.

From Primal Projection to Dual Projection: the Primal Subproblems

Assume now that the values of y are fixed in (3.61), with y € Y (¢ in Figure 3.5). Then, the

problem clearly decouples into J subproblems depending on the variables x;,

min - f;(x;)
J
s.t. T; € Xj, : (362)
hj(z;) < yj

We refer to this subproblems as the primal subproblems for the coupled-decomposition method.

The corresponding optimal solutions ac?*(yj) can be attained in the general case using numerical
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Figure 3.5: Block diagram of the coupled-decomposition method.

methods (e.g. interior point methods, see Section 3.1.1). However, in some cases, they can also

be found analytically using the KKT conditions in (3.23).

As stated before, there is certain similarity in formulation between the subproblems in pure
primal decomposition and the subproblems in the proposed technique. However, there are slight
differences in the way we use them. In the first case, the interest was in extracting information
from the subproblems in (3.26) in order to coordinately advance towards the optimal solution
in the master problem of (3.27). More precisely, a subgradient 4 for the master problem was
readily computed from the subgradients extracted from the subproblems, which were obtained
at no cost given the Lagrange multipliers related to the constraints A;z; < y;; c.f. (3.33). In the
cross decompositions method, the goal is to use that dual information provided by the primal
subproblems to optimize the original problem in (3.61) from a dual perspective. In that sense,
the method resembles the MVC decomposition method. However, the interchange of information

from primal to dual and viceversa differs from the smoothing mean value applied there.

Assume now that the minimizers of the primal subproblems (3.62) are attained at the points

:I:;-’* (y;) and let us represent the subsets X; by an arbitrary number K; of constraints of the type

4A subgradient is a generalization of the gradient concept also valid for non-differentiable functions: a vector
s(xo) is said to be a subgradient of the function f at the point xo if, given any point « € domf, it is true that

fla) = f(a°) + s(x®)" (@ — 2).
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g;(z;) = 0, where g; : R" — R. Then, the application of the KKT conditions in (3.23) forces

the following equalities and inequalities to the dual variables,

Aj =0,
of >0, k=1,...,Kj,
Aj(hj(®E") —y;) = 0, (3.63)
v; gf($§*) = 0,
V@) + Vi (@) + Sy vl Vi) = 0,
where v; = [vg,... ,ij]T are the dual Lagrange variables associated to the set of constraints

g;(z;) = 0and J; is the dual variable associated to h; (a:?*) <y;, being A = [A1,..., \s]7. From
the previous equations, the values of A\; can be computed, either analytically or numerically.
These are labelled as A in Figure 3.5. Note that the slackness constraint A;(h;(z *) yj) =0
forces A\; = 0 if the constraint is not active, i.e. h; ( ") < y;. We say then that the Gt value
of A is not active. Furthermore, the values of A are cla551ﬁed accordingly into two subsets: the

active and the non-active ones.

From Dual Projection to Primal Projection: the Dual Subproblems

It is also possible to decouple the problem in (3.61) from a dual perspective using the ideas
from a pure dual decomposition strategy. For that purpose, a partial Lagrangian for (3.61) is

constructed by relaxing only the constraints Ay < ¢ with associated dual variables p,

<

L({m;},y,p) = Z (x;) + p" (Ay — ©). (3.64)

From this Lagrangian definition, the dual function of the problem can be derived. The
constraints not explicitly included in the Lagrangian are now implicitly taken into account.

The resulting dual function is

q(p) = min L({z;},y,p) (3.65)
{mj}7y
S Xj,Vj
hj(x;) < y;, Vi

and finally, substitution of (3.64) into (3.65) attains

g

.
I Mu
I

min  f(z5) +y;((A7]; u>) e (3.66)
Zj,y;

Z; S Xj
hj(x;) < y;

Y; € yj
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since T (Ay —¢) = yTATp — p"c = (Z}'le y; [AT]; ) — pTe. We define [M]; to be the ;%
file of matrix M.

This result clearly decouples the dual function into several dual subproblems, g;(u), where

qj(p) = min filzy) +y; (AT ), G=1,...,J (3.67)
Tj,Yj
Z; S Xj
hj(x;) < y;
y; €Y
and
J
g(p) = aj(w) —p'e (3.68)
j=1

The dual converse to extracting the dual variables A from fixed values of y applies now.
Using the dual subproblems and fixing a value g = 0, the optimal values of x; and y; are
d*

obtained. We call these values & (p) and y}i* (p), respectively.

Let us consider now a full Lagrangian of (3.61),

Lz, v, 8 by ) = S0 (@) + 0, S, vl (a)
+ 327 Ajhy(as) + uT (Ay - c) - (3.69)
+ 37 iy —sup V) — 307 85(y; — inf V)

If we assume that the local constraints in ); are not active at the optimal y; values, then it is
true that v; = d; = 0 (due to the slackness constraints). Under this hypothesis, the application

of the KKT conditions imposes the following subset of constraints,

;{yj([AT]j 1) + Nj(hi(;) — ;) } =0, j=1,...,J (3.70)
Yi Yi=y;

and hence we verify that

A= (A7) (3.71)

when the local constraints on y; are not active. Furthermore, if [AT] jp >0, then \; > 0 and

the slackness constraints impose y; = h; (:L';)

Again, the values yf* (p) provide the necessary information to obtain a subgradient of ¢(u)
and one could proceed as in a pure dual decomposition. Once more, the idea now is to interchange
that primal information with the primal subproblems in order to coordinately reach the optimal
solution. Note that, due to strong duality, the optimal values of u for the general problem applied
to the dual subproblems return the optimal values of x; and y;. The converse is also true: given
the optimal values of y; to the primal subproblems, the optimal values of x; and A\; = [AT] j My
derived from (3.71), are found.
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However, a direct interconnection between primal and dual subproblems is not possible unless
an adequate treatment of data in both directions is performed. Checking whether the KKT
conditions hold or not with the sole use of primal and dual subproblems reveals that something
else is required. An example supporting the discussion is found in the MVC decomposition
method, where a key point was to perform a time average of the successive updates from primal

and dual subproblems.

We keep in background by the moment the task of analyzing the KKT conditions of the
original problem in (3.61) in order to finally conclude the method. The interest now is on
studying the dependencies between primal and dual subproblems, that is, how the variables y;

are related to the Lagrange multipliers \; = [A]; p.

Primal-dual Relationship in Subproblems

Take now the j* primal subproblem in (3.62) and assume that the constraint h;(x;) is active
between the values yjl and y?—, ie. hj(xj) =vyj,y;5 € [yjl, y]2] The objective is to understand the
evolution of the associated dual variable A; within that interval. In other words, we want to
know what variation in A\; may be expected as a reaction to a variation in y;. We take a rather
practical approach this time to gain intuition on the question. However, the reader may find in

[Boy03, Sec. 5.6.3] a more formal analysis under the topic of local sensitivity analysis.

Define @ (y;) as the optimal solution of the primal subproblem in (3.62) and allow y; to be
in the range [yjl-, y?] Then, 27 describes a curve in the domain of the subproblem as y; moves.
Figure 3.6 exemplifies the situation. In darkest line, there is the curve :Ej(y]) between yjl and
yj2 Moreover, we have depicted in dotted lines the contour plots for the objective function and
in solid lines the constraints h(xz;) = yjl and h(x;) = y]2 Finally, the subset X; is represented

using an arbitrary number of constraints gé- (z;) <0.

Primal subproblems are now redefined as one-dimensional optimization problems making
use of the previously defined optimal curve, a:;(tj) with ¢; € [yjl,yjz], and assuming that the

constraint is active as .
min - fj(@j(t;))
J

st hj(x}(t;)) < y;-

Note that the set of constraints x; € & in (3.62) is not necessary now as that information

(3.72)

is implicitly included in the curve (tj). Moreover, the optimal value of (3.72) function of y;
forms a convex function with convex domain, as can be extracted from the discussion in (3.28)
and (3.29).

If the Lagrangian of (3.72) is differentiated with respect to t;, it holds that

OL(t;, ;)  Ofi(x;(t;)) Oh;(x(t;))
aij - = atjj A atjj =0 (8.73)
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e g)(x)=0
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h()=y;  hi(x)=y;

Figure 3.6: Interpretation of the relationship between y; and