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INTRODUCTION AND MOTIVATION
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Fundamentals of UWB Technology
Basic features

I It is the oldest but least explored form of radio communication

I Main characteristics:
I Impulsive transmission (i.e. no continuous wave)
I Very large spectral occupancy

I Advantages:

Low-complexity due to baseband transmission (i.e. no RF)
Extremely-short pulses ⇒ high data-rates

⇒ multipath immunity
⇒ precise positioning

Low power pulses ⇒ low probability of interception
High penetration capability
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Fundamentals of UWB Technology
Temporal characteristics

Frequency-Selective and Direction-Dependent
Propagation

Typical UWB Received Waveforms
(Unknown Aggregated Response)
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Fundamentals of UWB Technology
Spectral characteristics

FCC Spectral Mask (outdoors) Industry standardization approaches

UWB Forum
I Baseband approach (impulse radio)
I DS-UWB

WiMedia Alliance
I Carrier-based approach
I MB-OFDM
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Motivation and Objectives of this Dissertation

I Motivation of this dissertation:

I Evaluate the impact of pulse distortion in UWB communications

I Design robust signal processing techniques for UWB receivers

⇓ ⇓ ⇓

Evaluate the performance loss with unknown received waveforms

Design optimal detectors to cope with the absence of CSI

Design optimal non-coherent and non-assisted timing synchronizers

Design waveform estimation techniques for low-SNR scenarios
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Roadmap
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PERFORMANCE LIMITS FOR
COHERENT & NON-COHERENT UWB

J. A. López-Salcedo, G. Vázquez, ”Closed-Form Upper Bounds for the
Constellation-Constrained Capacity of UWB Communications”, Proc.
IEEE ICASSP’2007, Hawaii (USA), April 2007.
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Capacity in the Wideband Regime
Impact of Channel State Information

I Controversial result by Kennedy (1969) and Telatar (2000):

CAWGN
W→∞ = Cno CSI

W→∞ =
PS

N0
log2 e

I But, does UWB capacity -really- depend on CSI?

YES when taking into consideration:
I the actual effect of finite bandwidth
I peakiness constraints

I How to analyze capacity in the wideband regime?

Introducing the spectral efficiency ratio
(

R
W

)
⇒ SNR

R
W

= Eb

N0
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Capacity in the Wideband Regime
The same magnitude, two different perspectives

Capacity vs. SNR
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Capacity in the Wideband Regime
Analysis of Spectral Efficiency

I Key parameters for analyzing spectral efficiency [Verdu(2002)]:

I Local analysis of capacity around SNR = 0

C(SNR) = C′(0)SNR +
1
2
C′′(0)SNR2 + o

(
SNR2

)
I Minimum required bit energy for reliable communication:(

Eb

N0

)
min

=
1

C′ (SNR = 0)

I Wideband slope or capacity increase per 3 dB of Eb/N0,

S0 = −2
[C′ (SNR = 0)]2

C′′ (SNR = 0)
(bits/s/Hz/3dB)
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Capacity in the Wideband Regime
Wideband Optimality
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Capacity in the Wideband Regime
Wideband Optimality

I Results for AWGN and unknown Rayleigh fading channels

(Eb/N0)min S0

Unconstrained peakiness
AWGN log 2 2
Unknown Rayleigh fading log 2 0

Constrained peakiness
AWGN log 2 2
Unknown Rayleigh fading ∞ 0

I Concept of wideband optimality

I 1st Order optimal :
(

Eb

N0

)
min

=
(

Eb

N0

)AWGN

min

I 2nd Order optimal : if 1st order optimal and S0 is achieved
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Capacity Upper Bounds for UWB Communications
Channel Model

I UWB channel modeling is rather controversial.

I However, for some working conditions:

Gaussian assumption holds ⇒ easy statistical formulation
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Capacity Upper Bounds for UWB Communications
Coherent receivers - Available CSI

I Statistics for coherent PPM: f (y|xi,g) ∼ N (hi,Cw)

I Closed-form upper bound for the constellation-constrained capacity:

Cc | coh ≤ log2 P − log2

(
1 + (P − 1) exp

(
−ρ

2

))
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Capacity Upper Bounds for UWB Communications
Non-coherent receivers - Not available CSI

I Statistics for non-coherent PPM: f (y|xi) ∼ N (0,Cw + Chi
)

I Closed-form upper bound for the constellation-constrained capacity:

C US
c | no−coh ≤ log2 P− 1

P

P−1∑
i=0

log2

P−1∑
j=0

exp

(
−1

2

Nss−1∑
k=0

γi(k)− γj(k)
σ2

w + γj(k)

)
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Capacity Upper Bounds for UWB Communications
Coherent vs. Non-coherent receivers

Coherent receivers
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Non-coherent receivers (US)

−15 −10 −5 0 5 10 15 20 25 30
0

1

2

3

4

5

6

ρ (dB)

bi
ts

/c
ha

nn
el

 u
se

IEEE802.15.4 CM8
IEEE802.15.4 CM8 (closed−form upper bound)

P=64 

P=16 

P=8 

P=2 

Ph.D. Coherent and Non-Coherent UWB Communications



Introduction Performance Limits Detection Synchronization Waveform Estimation Conclusions

Capacity Upper Bounds for UWB Communications
Coherent vs. Non-coherent receivers

Coherent receivers
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Capacity Upper Bounds for UWB Communications
Some Conclusions...

I Then, which is the most convenient approach?
Coherent? Non-coherent?

Channel Available Detection Observations

time variation CSI approach

slow yes coherent -Excellent performance but,

how to obtain perfect CSI?

moderate/rapid no non-coherent -Low-complexity but,

penalty for no CSI

-Efficiency problem when P �

Ph.D. Coherent and Non-Coherent UWB Communications
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NON-COHERENT DETECTION OF
UWB RANDOM SIGNALS

J. A. López-Salcedo, G. Vázquez, ”Detection of UWB Random
Signals”, Under second review in IEEE Trans. on Signal Processing,
May 2006.
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Motivation

I How to detect information symbols from UWB signals?

Channel Available Detection Receiver

time variation CSI approach implementation

slow yes coherent correlator-based

moderate no non-coherent transmitted-reference (TR)

rapid no non-coherent statistics-based (?)

Ph.D. Coherent and Non-Coherent UWB Communications
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Waveform Signal Model

I Received waveforms ∼ Gaussian distributed with exponential PDP
- [Kar04], [Sch05b] -
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Optimal Decision Statistics

I Decision based on the Generalized Likelihood Ratio Test (GLRT)

L(rn|Cg) .= log
f (rn|H+;Cg)
f (rn|H−;Cg)

⇒ ŝn = sign (L(rn|Cg))

I Low-SNR optimal decision statistics (GLRT):

L′(rn|Cg) = Tr
( [

C+ −C−
]︸ ︷︷ ︸

2nd order correlation template

R̂n

)

Consistent with traditional but ad-hoc energy detection schemes
Extends deterministic correlation receivers to second order statistics
Insensitive to narrowband interferences
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Optimal Decision Statistics
Uncorrelated Scattering Assumption

I Low-SNR US optimal decision statistics:

L′(rn) =
Nsf−1∑
k=0

w(k)
Nf−1∑
i=0

r2
n,i(k)

Optimal statistics become a pure energy detector, but...
incoming samples are weighted according to their SNR

I Allows a simple receiver implementation:

Ph.D. Coherent and Non-Coherent UWB Communications
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Optimal Decision Statistics
Correlated Scattering Assumption

I Low-SNR CS optimal decision statistics:

L′(rn|Cg) = Tr
( [

C+ −C−
]︸ ︷︷ ︸

unknown!!

R̂n

)
I Proposed Conditional log-GLRT

1. Estimate C+ from incoming data: vec
(
Ĉ+

)
= A−1

S vec
(
R̂−CN

)
2. Create the correlation template: vec

(
Ĉ+ − Ĉ−

)
= AT

Dvec
(
Ĉ+

)
3. Compress the estimated template into the low-SNR GLRT:

L′ (rn) = vecT
(
R̂−CN

) (
AT

S

)−1
AT

D︸ ︷︷ ︸
hypothesis testing template

vec R̂n.
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Optimal Decision Statistics
Rank-1 Receiver via Jeffrey’s Divergence Maximization

I Rank-1 receiver:

I Rank-1 filter design criterion:

u? = arg max
um

J(H+‖H−)∣∣C+=umuT
m

I Jeffrey’s divergence:

J (H+‖H−) .= E rn|H+
[L(rn)]− E rn|H− [L(rn)]
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Optimal Decision Statistics
Rank-1 Receiver via Jeffrey’s Divergence Maximization

I For the problem at hand: J(H+‖H−)=‖C+−C−‖2F
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I Rank-1 Jeffrey’s divergence:

J(H+‖H−)∣∣C+=umuT
m

= 2
Nf

· λ2
m︸︷︷︸

eigenmode energy

·

1−
(
uT

mJN∆
um

)2︸ ︷︷ ︸
false detection constraint


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Simulation Results
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Simulation parameters:

2-PPM in CS scenario

Gaussian random waveforms

Exp-Ds=100 samples,
Exp-Cs=200 samples

Nf = 20, Nsf = 2000,
L = 500

Channel changes every two
frames

Conclusions:

ED and PDP significantly
degrade

Rank-1 near-optimal
performance when increasing
N∆
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NON-COHERENT TIMING
SYNCHRONIZATION

J. A. López-Salcedo, G. Vázquez, ”Waveform Independent Frame-Timing
Acquisition for UWB Signals”, IEEE Trans. on Signal Processing, Vol. 55,
No. 1, January 2007.

J. A. López-Salcedo, G. Vázquez, ”Frame-Timing Acquisition for UWB
Signals via the Multifamily Likelihood Ratio Test”, IEEE SPAWC, Cannes
(France), June 2006.
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Motivation

I How to synchronize when the received waveform is unknown?
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Proposed Frame-Timing Acquisition Technique (I)
Direct UML Approach

I Low-SNR Unconditional Maximum Likelihood (UML) criterion:

N̂UML
ε = arg max

0≤m≤(Nf−1)
‖ΠT (m)R2(0)Π(m)‖2

F

I Interpretation as an energy detection technique

Ph.D. Coherent and Non-Coherent UWB Communications
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Simulation Results
Direct UML Approach

0 1 2 3 4 5 6 7 8 9 10 11 12
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
s
/N

0
 (dB)

B
E

R

Perfect timing acq.
Without timing acq.
Dirty template
Proposed method

Simulation parameters:

2-PAM

IEEE 802.15.3a CM1

Tf = 86 ns, Nf = 16,
L = 200

Uniformly distributed
timing error

Conclusion:

Much more robust
performance compared to
existing techniques (DT)

Ph.D. Coherent and Non-Coherent UWB Communications



Introduction Performance Limits Detection Synchronization Waveform Estimation Conclusions

Simulation Results
Direct UML Approach
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Proposed Frame-Timing Acquisition Technique (II)
Multifamily Likelihood Ratio Test Approach

I Complexity can be reduced by reformulating the UML criterion as

N̂UML
ε = arg max

0≤m≤Nf−1
‖R1(0,−1)‖2

F

Rk(m, l) .= E
[
rn (m) rT

n+k(m + l)
]

I Timing acquisition becomes a model order detection problem

Ph.D. Coherent and Non-Coherent UWB Communications



Introduction Performance Limits Detection Synchronization Waveform Estimation Conclusions

Proposed Frame-Timing Acquisition Technique (II)
Multifamily Likelihood Ratio Test Approach

I How to determine the length of an unknown signal?

Multifamily Likelihood Ratio Test (MFLRT) [Kay05]

Reformulation of the UML cost function:

N̂MFLRT
ε = arg max

0≤m≤(Nf−1)
Tm(R)

Tm(R) =

Lm (R)︸ ︷︷ ︸
log-Likelihood

−Nu(m)
(

ln
(

Lm (R)
Nu(m)

)
+ 1
)

︸ ︷︷ ︸
model order penalty

u

(
Lm(R)
Nu(m) −1

)
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Simulation Results
Multifamily Likelihood Ratio Test Approach
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WAVEFORM ESTIMATION FOR
COHERENT RECEIVERS

J. A. López-Salcedo, G. Vázquez, ”NDA Waveform Estimation in the
Low-SNR Regime”, IEEE Trans. on Signal Processing, accepted for
publication.

J. A. López-Salcedo, G. Vázquez, ”NDA Maximum-Likelihood Waveform
Identification by Model Order Selection in Digital Modulations”, IEEE SPAWC,
New York (USA), June 2005.
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Motivation

I How to obtain (perfect) channel state information?

I Problems:
I Traditional channel estimation techniques require high SNR...

but UWB operates in the low-SNR regime

I Estimating the channel response may imply hundreds of delays and
amplitudes to be estimated

I Proposed approach:
I Unstructured approach for estimating the whole waveform

I The low-SNR Maximum Likelihood criterion is adopted

I Nondata-aided approach to avoid pilot symbols

Ph.D. Coherent and Non-Coherent UWB Communications
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Signal Model

I General signal model for PAM, PPM and APPM modulations:

r =
P−1∑
p=0

Ap(g)xp + w ⇒ r =
P−1∑
p=0

K∑
n=−K

xn,pKn,pg + w

Ph.D. Coherent and Non-Coherent UWB Communications
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Maximum Likelihood Estimation
Low-SNR Approximation

I Optimal ML waveform estimate:

ĝML = arg max
g

Λ (r|g;x)

I The low-SNR approximation leads to a compact log-Likelihood
cost function

L′ (r|g) = Tr
(
M̆
[
R− σ2

wINr

])︸ ︷︷ ︸
Correlation Matching

+
1
2
‖M̆‖2

F︸ ︷︷ ︸
2nd Order Constraint

M̆ .=
Lp−1∑
p=0

Kr∑
n=−Kr

K̆n,pggHK̆H
n,p

Ph.D. Coherent and Non-Coherent UWB Communications
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Maximum Likelihood Estimation
Subspace Compressed Approach

I Efficient formulation by using the projection coordinates onto the
signal subspace rather than the waveform samples themselves,

g = Usα ⇒ length {α}
length {g}

< 1 ⇒ SNR gain

I The log-Likelihood can indeed be formulated as a least-squares
problem by using the vec(·) operator,

max
αv

L′ (r|g) = max
αv

αH
v QH r̊v︸ ︷︷ ︸

CM

+
1
2
αH

v QHQαv︸ ︷︷ ︸
2nd OC

 = min
αv

‖̊rv −Qαv‖2
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Simulation Results
MSE Performance
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Simulation parameters:

16-QAM modulation

Complex-valued Gaussian
waveform with Ng = 8

Oversampling Nss = 2

Conclusions:

Significant gain in
low-SNR regime

Same slope as SS ⇒
optimal performance in
low-SNR regime

Floor effect at high-SNR
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Simulation Results
BER Performance
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Simulation parameters:

16-QAM modulation

Complex-valued random
waveform with Ng = 8

Oversampling Nss = 2

Conclusions:

No significant
degradation is observed
due to ill-conditioning

BER can be reduced up
to one order of magnitude
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Conclusions

Performance limits for coherent and non-coherent receivers
I Closed-form approximations of capacity are derived
I Tradeoff between using coherent or non-coherent receivers

Non-coherent detection of UWB signals
I Optimal schemes are proposed for rapid time-varying channels
I Low-complexity implementations are proposed via rank-reduction

Non-coherent timing synchronization
I Optimal acquisition techniques are proposed based on low-SNR UML
I Proposed techniques outperform existing frame-timing synchronizers

Waveform estimation for coherent receivers
I Optimal operation under the low-SNR regime is possible
I The link with correlation matching techniques is established
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Future Work

Capacity analysis for UWB signals
I Link between waveform distributions and capacity maximization

I Further insights into the capacity convergence rate of coherent and
non-coherent receivers

Challenges in specific applications
I Cognitive radio

I Self-synchronized ad-hoc networking

I High-sensibility positioning techniques
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Thank you for your attention!
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