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OBJECTIVES

@ Estimation of the time delay (and the carrier phase) of several
replicas of a known signal received in a scenario with multipath
propagation and/or directional interference.

@ Connecting themes:

o Application of the Maximum Likelihood Principle. Model-based
estimation.
o Noise with unknown correlation matrix.

@ Applications

o Measurement of distances: GNSS receivers, Radar, Source
localization

e Communications: Synchronization of receivers, channel
identification and equalization

o Shift between structures.
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INTRODUCTION: GNSS

@ Deployment in the early 70’s: GPS, GLONASS.
@ Constellation of satellites (~24) and several terrestrial stations that
allow to obtain the tridimensional position and the time in the receiver.

@ Applications: En route / precise navigation, surveying, geodesy,
atmospheric study, synchronization / time transfer, fleet control, ...
Requirements of availability, integrity and accuracy T1

@ Augmentation programs: LAAS, WAAS, MSAS, GNSS1 (EGNOS)
@ New systems: GNSS2 (GALILEO)

@ The design of improved receivers is necessary to fully exploit the
capabilities of these new systems, since receiver-induced errors limit
the ultimate accuracy attainable with these GNSS.
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SIGNAL STRUCTURE: GPS, GLONASS

@ Each satellite transmits one or several Direct Sequence — Spread
Spectrum (DS—-SS) signals at one or several frequencies.
@ The navigation message can be modulated on some of these signals.

@ GPS: 6 satellites in each of 4 orbital planes. Nearly circular orbits of
radius 26,560 km, orbital period: 11h 58’, asynchronous CDMA.
MAI is negligible in GPS (extremely long codes and no near-far effect).
@ Civilian users: L1 carrier (154x10.23MHZz)
C/A Code: Gold seq., 1.023 Mchips/s, period 1023 chips
Navigation message: 50 bits/s
CNo=40 — 55 dBHz
@ Military users: L1 carrier and L2 carrier (120x10.23MHz)
P Code, 10.23 Mchips/s, period of 266 days, encrypted.

@ GLONASS has a very similar constellation and signal structure, but the
chip rate for civil users is 511 Kchips/s and employs FDMA.
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SIGNAL STRUCTURE

@ SNR of the received signal ~ -15 dB ® The GNSS signals are buried in
the noise. The correlation matrix only contains information about the
interferences. Under certain models, the array will reject the interferences
but not the reflections.

@ SNR after despreading ~ 28 dB ® The contribution of the reflections

turns up.
Correlator output
y(Y Bit 2
................................... 2 us
- s acas fime
Bit 1 Bit 3
2 us 2 us
20 ms 20 ms
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OPERATION PRINCIPLE

@ Function of the receiver: Measurement of the satellite — receiver
distance ®» measurement of the propagation or time delay of the direct
(line-of-sight) signal.

1) Pseudorange: Delay of the equivalent baseband signal

Non-ambiguous measurement
Standard deviation ~ 3 meters (thermal noise)

l.p.C

- j2rf.t S (t) — ka(t\—T )ej27rfct e—j27zfcr0
s;(t)=a(t)e —/\/\—’ R 0

2) Carrier Phase: Ambiguous measurement (resolution of the initial
interger ambiguity and cycle slips)
Standard deviation ~ 2 mm (thermal noise)
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ERROR SOURCES

o Position (10 m® 0.05m)

@ Satellite-induced errors: < o Differential
(o Clock (3 m = 0 m) techniques

S

& lonosphere (15m ® 1 m) |o Use of two
@ Propagation-induced errors: <o Troposphere frequencies
g (2m = 0.05 m) =
.

* Multipath (coherent) ==p B|AS
Time-delay errors ~ 10, 100 meters

Domlngnt error sources in Carrier-phase errors ~ centimeters
most high precision

applications. Limiting

@ Receiver local errors: <

factor of present GNSS. * Interferences ==mmp  \VARIANCE
Jammers are already available
\ on the market.
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CONVENTIONAL RECEPTION SCHEMES
o Received signal: X(t) = o D d () p(t—IT) +w(t)

ML principle l w(t) ~N(0, %)

@ Carrier Phase = Costas loop

@ Decision and phase
directed. Coherent.

@ Time delay = DLL < AR
phase independent.
Non coherent.

N
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ERRORS IN CONVENTIONAL RECEIVERS

Time-Delay Estimation Bias/ T
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STATE-OF-THE-ART: CLASSIFICATION

@ Variety of methods as a function of the application, scenario ....

One antenna Signal processing technigues
Real-time, + flexibility

Received signal observables

Antenna arrays Post-processing techniques
Data processing, application-dependent

Observables new observables

final parameters
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SINGLE ANTENNA METHODS

@ Post-processing: changes in satellites positions ® periodic and slow
variations of the carrier-phase and SNR. They do not
combat diffuse multipath or interference.

@ Real-time: correlation methods, modifications of the DLL

Y4 Narrow Spacing DLL (§ ~ 0.05, 0.1)
X reduces only the magnitude of multipath errors

X fails with raised cosine pulses

Y4 Strobe Correlator™ or compensated correlators. 3

Approximation of the derivative by more complex finite differ.
Narrower S - curve > X

Y4 Edge Correlator™, e1/e2 Tracker. Noise I
Location of the leading edge of the cross-correlation curve

X None of these approches reduces carrier-phase errors.

\

vd Multipath Estimating DLL (MEDLL™): Estimator of the time-delays
and amplitudes in a multipath scenario.
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ANTENNA ARRAY METHODS

@ Spatial filtering: special reception patterns, wise location of the antennas.

@ Up to date, the use of antenna arrays in GNSS receivers has been
centered on interference mitigation.

SNRin<< 0 ® Output power minimization before despreading.

@ DOA estimation + beamforming
o The scenario is highly coherent => decorrelation techniques or
estimation methods that work with coherent sources.
o High computational complexity (spatial searches).
o Restrictions on the array geometry.

o The number of signals is limited by the number of antennas.

@ Processing the observables obtained at several antennas:
o Highly non-linear problems.
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SIGNAL MODEL

@ An arbitrary m element antenna array receives N samples of d replicas of
a known signal:

Y=AS(t)+E mxN

where
A=lo, o L a,,] mxd
; S(Ts _TO) S(2Ts _TO) L S(NTS _TO) :
S(T. — S(2T. — L S(NT. —
S(’C) = ( S z-1) ( S z-1) ( S z-1) d v N
M M L M
_S(Ts _Td—l) S(2Ts _Td—1) L S(NTS _Td—l)_

S(t) : finite-average-power signal. Asymptotic behaviour means N &
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UNSTRUCTURED SPATIAL SIGNATURES
NOISE MODEL

@ Unstructured spatial signatures
o Calibration of the array is not required.

o One delay — one DOA is not required. Scattered sources can be
received.

o Reduced computational complexity, even though the number of
parameters generally increases.

@ Noise
o Complex, circularly symmetric Gaussian vector.
o Temporally white.
o Unknonw spatial correlation matrix => Robustness against
co-channel interference.

E{elnle’ 1]} = Qs

o Trade-off between model realism and complexity.
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MAXIMUM LIKELIHOOD ESTIMATOR (1/2)

@ Negative log-likelihood
f(1,A,Q) = In|Q[+Tr{C(r,A)Q'}
~ -~

“Regularization” term Known Q

Za

C(t,A)=R, —AR (1)-R, (t)A"+ AR (1) A

*

@ After optimization with respect to Q

FaN
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MAXIMUM LIKELIHOOD ESTIMATOR (2/2)

@ After optimization with respect to A

f(r) = R, (DRI (DR,(1)| = In|Q,. (v)

It is a measure of the “magnitude” of the correlation matrix of the
residuals after a least square fit. This measure is the geometric mean of
the eigenvalues of Q,, (1)-

@ An equivalent expression is
V(1) =In|l - B(x)|

where B(’C) = é;yl/ZR (T)R (’C)R (T)R_llz _%R—UZYP % R_1/2

S (1)

o It is consistent and asymptotically efficient,
o but highly non-linear due to the determinant => multidimensional search.
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SPATIALLY WHITE NOISE

@ If the noise is assumed to be spatially white

f"(t) = Tr{@ML (1:)} = const-Tr{YPS* (T)Y*}

In this case, the measure of the magnitude of Q,, (T) is the arithmetic
mean of its eigenvalues.

@ Linear dependence on PS*
algorithms can be applied.

™ the IQML (and ESPRIT)

@ Frequency-domain representation elan | glares
X = ejwz T eja)z T4
S(t)=S,
M M
eja)N o eja)N Td—1
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ASYMPTOTICALLY EQUIVALENT ESTIMATOR

@ Objective: To obtain a cost function for the correlated-noise case that is
linear in the signal projection matrix.

The following criterion is asymptotically equivalent to the ML one.

0t W,) =-Tr{W, B®)}  where W, =(1-B(})*
since
g (t,W,,) =VO ) +o (N2)
g™ (t,W,,) =V (k) +0, 1)

@ Alternative: Computing the matrix W that minimizes the error covariance.

@ The optimum weigthing matrix can be replaced by a consistent estimate.
The consistent estimate of the delays 7 is obtained by minimizing g(t, 1),
which performs much better than f ¥ (1).
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HEURISTIC DERIVATIONS (1/3)

@ They shed light on how to approximate the determinant.

@ Series expansion of the ML cost function

V(z) = In|l -B(1)| = —Tr{B(t)}—%Tr{Bz(t)}—%Tr{B?’(t)}—L

» Unlike many other estimation problems, the first-order term is not
asymptotically equivalent to the original function because

lim B(t) = 1-R,”"QR,"* # 0

N —oo

» Therefore, we retain and approximate the second- and higher order
terms, which are the ones that introduce the undesired non-linear
dependence on the signal projection matrix:

VO () ~Tr{(1+B®)+B*(®) +L B (1)} =g (z, W)
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HEURISTIC DERIVATIONS (2/3)

@ Eigenvalue weigthing

» The geometric mean of the eigenvalues can be view as a weigthed
arithmetic mean.

» ML cost function and asymptotically equivalent approximation

V(t) = In|l -B(t)| = Inf[(l—ﬂk('c))

m

Vi e AT A2(®)
V() - () W
)= él 2w Eiam Y W

» Cost function providing the consistent estimates

0(e) =-Tr{B@}=-> 4() = ¢"@H=-Y ()

k=1

> The difference between them is an appropriate weighting of the eigenvalues.
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HEURISTIC DERIVATIONS (3/3)

@ Modified first order approximation

» Using a simple trick, a first-order approximation of the ML criterion
can be asymptotically efficient.

V(1) = In|l - B(%) + B(z) - B(1)|

=In|1 -B(7)|+In ‘I +(1-B(?)) " (B®) - B(T))‘
W™

and approximating the determinant by the trace

V(1) = In|1 - B(®)| + Tr{WB(%)} - Tr{WB()} = const + g(x, W)
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APPLICATION OF IQML

g(fc, W) = _%Tr{WUZ IQ_WUZYP : Y*ﬁ—y:yuzwl/z}

S (1)
@ Parameterization of the signal projection matrix in the frequency domain

> = . =7, *m_* ] =1 K x
P:., =P, =S.,G(GS,SG) GTs,
The dependence on the elements of G is quadratic if the central inverse
matrix is held fixed.

=

2 iterative processes A) Coupled iterations

> IQML i

> Computation of W B) Decoupled iterations
g
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SIMULATION PARAMETERS

The signal consists of M=3 square root raised cosine pulses with r/o 0.2
Each pulse is truncated to +37,, sampling frequency T./2
ULA, m=6 antennas, 0.5\
d=2 rays
o delays: 07,,0.47T,
o DOAs: 0° 10°.
o SNRy=16dB. Attenuation of the 2"d ray: 3dB
@ One interferer
o DOA: -30°
o SIR,=-3dB

© 0 ¢ ¢

@ Initialization of IQML using LS-ESPRIT with 6=2.
@ IQML is implemented with a quadratic contraint.
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SIMULATION RESULTS (1/4)

0
L o S S— L. ! ] I I I T
eiiiin| ——F1  CRB
] ¥ Asymp. Efficient Estim., IQML, g{ W)
........................... x----x_ Consistent Estim., ESPRIT, g, I)
White-noise Estim., IQML){ <)
2 B AN O----0  Asymp. Efficient Estim., IQML ("2 iter"), (W) [
@
10_1 ‘-‘ ...............................................
X B S

RMS Time-Delay Estimation Error / T

HUPC

8 10 12 14 16 18

» The proposed estimators
attain the CRB. The
coupled iterations’
approach has
advantages (smaller
RMSE and number of

iterations).

> The consistent estimator
IS not optimum but is
robust against directional
interferers. It takes the
spatial correlation into
account but not in an
optimal way.
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SIMULATION RESULTS (2/4)

100 ................................
o 5—=a CRB
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-
i
E\ ................................
8]
-
Q
£
l_ S e e P Pt PP PP PP PP PP P g
0
A SRR, S—— —
e S — Rz f v *“
o 2 S RN B , Em— o R Py *
10° ‘
-50 -40 -30 -20 -10 0 10 20 30
Signal to Interference Ratio (dB), with respect to the first signal
%
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40

» The method derived
under the white-noise
assumption is not suited
for strong CCI, though it
employs antenna arrays.

> The consistent and
asymptotically efficient
estimators are nearly
Insensitive to the
interference power.
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SIMULATION RESULTS (3/4)
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»The RMSE and the CRB
Increase as the delay
separation decreases.
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SIMULATION RESULTS (4/4)

0
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»The CRB increases
when the DOA
separation is smaller
than the array
beamwidth (but it does
not tend to infinity).

»For close DOAs, the
ESPRIT is deteriorated
because A tends to be
rank-deficient. However,
the proposed estimator

remains close to the
CRB.

28



MODIFIED IQML FOR FIR CHANNELS (1/2)

@ FIR channel S(r) =[s(z) [ s(z+T,) |L | s(z+(d-DT,)]
@ Modification of IQML = Polynomial rooting

. 1 ¥ =t
> Cost function: g(z',W) — N'|'r{W1/2Ry;IZYI:)SL*(T)Y Ry;/ZWm}
» Parameterization: Pé(f) = Ps;}c; =S'G (G*S;*S;}G)_l G's”

S e e b ]
Tl el e P e el s |

O O O O O O

0 9y Q4. L 1

where g = [1 g, L g, ]T are the coefficients of the polynomial (5(2).
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MODIFIED IQML FOR FIR CHANNELS (2/2)

gt

Q(z) =z° + 9,2 +L +gy = | [(z—x-exp(j27T,n/NT,))

n=0

where X(z) =exp(J2zz/NT,) .

> Given the common factor x in the roots of (3(2), the coefficients satisfy

[ g = Kt(x) J where K is a known diagonal matrix and
e
t(x):[l XX ] .

Foy B Jo >4
> If the term (G S Sa,lG) is computed using a previous estimate of x,
then the cost function becomes quadratic in the coefficients g, so

g(x, W) =t' (1/ x)K'CKt(X)

is a polynomial of order 2d in x.

* * _1
> The update of (G = S;lG) does not involve the inversion of a matrix.
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SIMULATION RESULTS
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KNOWN STEERING VECTOR OF THE DIRECT SIGNAL

@ The spatial signature of the line-of-sight signal is known up to a complex

scaling constant
Q, = & a,

% \ T Wit knowledge of the LOSS steering vector 1 1) Insignificant performance
C:CUU '|I‘ ISR SO improvement_

3 10" F4, :

5 Eh  —— 2) Increased computational
i FA load.

N

D \\1 T T TT T T T T TTTTT- TT TN

Z ........

5 \\ I Simplification of the

hg = : IIIIIIIIZ%T:&~ Signal mOdeI [

0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2

DOA.- DOA,=5h° Delay of the Reflection / T
17 0=

®
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MAXIMUM LIKELIHOOD ESTIMATOR (1/2)

e Signal model Y =,a,8' (r,) +E

@ Inverse likelihood function (concentrated with respect to Q and o)

4 =
o) = )| 1+ B (WA ) - o]
ST J L D PaW(r,)a, :
% N

Unstructured spatial signature
Knowledge of a,

N -3 N~ 2 -5 ’\_1 . .
W(r,)=R, — % (To)rys (z,)P, pnstructured estimate of the noise plus
interference correlation.
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MAXIMUM LIKELIHOOD ESTIMATOR (2/2)

@ Alternative expression of the inverse likelihood

[(z) = |Ryy | (1= G (70) B ()R} 3o )
@ Amplitude estimate = a, WL (70)F,s (7,)
Oyl = ———=
e I:)sa-o\N—l(fo)ao 22
@ Time delay estimate /=\
S (o)
w Fys (o _ Aw (7))

z'o e —> Ay (7)) =

(TO)R;ylAys (75) = w

$HUPC %
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RELATION WITH OTHER ESTIMATORS

> ML with only temporal ref.

= presents a peak for each
reflection.

= roughly determines the

position of the peak

» MV beamformer

~  =presents nulls for all

reflections, but not for

the direct signal.

= determines which peak

corresponds to the direct

signal.

2
10
1
10
=
Q
©
c
=)
w ol -~ ¢+ i 0 i F N EE T
%10
o}
O e
L RS
5 N
=
=L
(7))
<
-2
10 SIS £
—— ML TN
--------- ML only with temporal reference[ "}
----------- MV beamformer i
10'3 ] ] I i i HI
-06 -04 -0.2 0 0.2 0.4 0.6 0.8 1.2
Trial Delay /T,
%
#UPC <

1.4

36



CLOSED-FORM SOLUTIONS

@ Piecewise linear dependence

S(z,) = (1—5)8( pTO) i 58(( P +1)T0) in the p-th interval
¥

Ay (7;) becomes a quotient of second-order polynomial in 6.

@ Frequency domain
i
S(TO) = Sa) u(z)|z:exp(—j27rrolNTS) where u(z) = |:1 £ ZN_1:|
u(z™"s, YR la,a;R1YS, u(z)
u(z)s. (NI —Y*F“e;le)S;u(z)

Ay (7y) =

Quotient of (2N-2)th-order polynomials.
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ITERATIVE SOLUTION: HYBRID BEAMFORMING (1/2)

@ The minimization of the MSE between the output of a beamformer and a
partially known reference signal

/"

P ; * 2
Ty, 0y Wy, =arg min HW Y -a,s' (rO)H2

_< To,ao,W

_ subject to the spatial constraint ~ w a, =1

yields the same estimates of 7,,&, as the ML approach.

@ In order to obtain an iterative implementation, the optimum beamformer
Is computed for fixed 7,,, .
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ITERATIVE SOLUTION: HYBRID BEAMFORMING (2/2)

1

Wiyo (70, 0p) = 0‘0 ys£T )+ B(z,, 0‘0) R
temporal 19f ZWZB
reference spatial

reference

combines the reflections in phase combines the reflections in
with the direct signal counter-phase with the direct signal

P(zy, ) =1- &oa Ryy I (7,)

1-antenna
technique

Hybrid
beamformer
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SIMULATION RESULTS (1/7)

Direct signal + interference

inherit the poor

--------- CRB
=) N Z_"*'A ML

10 ps S S——— | S MI\_/ tﬁrﬁtne]fﬁ[)ﬂee'f '}Although the MVBE tends
5 = (o the CRB, it has a very
L% .................... poor finite_samp|e
'§ \\A .................... performance
_g AN
7 'AA.\ : :
> Bk »The MLE attains the CRB
<102 A e e
810 *\ e — b : —"— for a small number of
b I\ it
£ R - W samples and does not
= : A
7))
=
x

performance of the MVBE.

10

HUPC
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ROT)) et R S

Cancellation of the Interference (dB)

SIMULATION RESULTS (2/7)

Direct signal + interference

-10 ! ! ! ! !
A\, *——k  Hybrid beamformer
z L= MV beamformer

-15 U O---—-0O Temporal ref. beamformer N

& E Bl Temporal ref. beamformer (ML-TEE)
20 o N

BB
~ £& -._A’.. n [ u
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Y TR A A A

Aot A Conveyed by ao Wl” be

useful when reflections are
received.
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O
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SIMULATION RESULTS (3/7)
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I.*- 04 \\+
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> The range of reflection delays that cause a significant bias is reduced by the
estimators that assume the noise correlation to be unknown (with respect to
their white-noise counterparts).

> The magnitude of the bias is further reduced by the MLE (w.r.t. the ML-TEE).
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SIMULATION RESULTS (4/7)
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»CRB-D < CRB-S for large delay separation and small angular separation.

»MLE approaches the CRB-S for large delays and the CRB-D for small delays.

> By allowing a small bias, the RMSE of the MLE does not tend to infinity as the
reflection delay decreases. Advantage with respect to the detailed model.
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SIMULATION RESULTS (5/7)
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> The hybrid beamformer provides the greater attenuation. In the presence of
reflections, the knowledge of a; is relevant since the HB outperforms the TRB.
> The contribution of the MVB becomes smaller as the delay spacing increases.
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SIMULATION RESULTS (6/7)
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»>The MLE and the ML-TEE are asymptotically in SNR unbiased. The bias of the
MLE starts decreasing at a smaller SNR.
»The RMSE of the MLE starts at the CRB-S and tends to the CRB-D as SNR 7.
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SIMULATION RESULTS (7/7)
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[terations Iterations

» The estimates obtained with the iterative algorithm based on the hybrid
beamformer converge to the ML estimates.
> The contribution of the MV beamformer is noticeable in the “acquisition” stage.
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EFFECT OF ERRORS ON THE STEERING VECTOR

@ ML estimator without spatial reference:

1 d(r.) = ds(z,)

2(d* (TO)Pstro)d(To))(GZQ_lao) dr,

3
ERTEt

@ Minimum variance beamformer:
* g1 =
T aORnyRyyaO

Omv — < -
2(d" (7)Py.,,d (o))

‘2

a,R 0,
@ ML estimator with spatial reference:

i a,Qa,
ML —
2(d"(7,)Py, d(z,))

* 1 2
a,Q'a,|
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SIMULATION RESULTS
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»(Good agreement between theoretical and simulated values.
>The ML allows errors up to 10° (rbeamwidth at 3dB). The robust estimator
widens (in about 5°) the range of those tolerable errors.
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ADDRESSED PROBLEM

@ Code synchronization of a desired user in a DS-CDMA
communications system is an essential task

o Multiple-access interference in a near-far environment usually
necessitates the use of multiuser detectors.

o Most multiuser detectors require precise knowledge of several
parameters (timings, phases and powers) of the received signals.

o Some parameters, like the spatial signature, are easily obtained
once the code-timing is acquired.

o Moreover, the process of code synchronization may limit the
capacity of a DS-CDMA system.

$HUPC %
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OBJECTIVES, PROPOSED SOLUTION

@ Exploitation of the whole structure (spatial: provided by the array,
temporal: provided by the codes) of the signals.
@ Cancellation of possible external interference.

Near-far, frequency-nonselective, slowly fading channel.
Knowledge of the symbols of the desired user is required =
training sequence (acquisition), decisions’ feedback (tracking).

@ Near-far resistant, single-user technique (vs. joint estimation).
o Joint estimation of the parameters of all users leads to centralized
and excessively complex solutions.
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SPACE-TIME VECTORS (1/2)

Asynchronous DS-CDMA system

j th observation

Tl:g 1
1 @ m-1th symbol | mth symbol | m+1th symbol
2
@—— m-1th symbol | mth symbol | m+17th symbol -
| y Yy y ) y(l)
|
|
|
m @ m-1th symbol | mth symbol | m+7th symbol o
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SPACE-TIME VECTORS (2/2)

y(i) =[a®A(z)] d.() + e() i=0K M —1
= =N - =
» desired user’s * multiple-access interference
contribution » external interference
* noise

o . spatial signature (fading coefficients). UNKNOWN.
A(z,): “First part” and “last part” of the shifted PN sequence.

d,(i) =[d,(i) d,(i-1)] : desired user’s training symbols.
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INTERFERENCE MODELING

> SPACE-TIME COVARIANCE E{e()e’(}=Qs,

@ The estimator will be able to attenuate any interfering signal that
exhibits a certain space and/or time structure.

@ Each antenna adds P degrees of freedom.
@ Each user occupies only 2 degrees of freedom, and each point
interferer occupies between 1 and P degrees.

Previous works can be viewed as particular cases of the technique in this paper:

Q=Q,®I, Only the “spatial diversity” is exploited. It assumes that
: the signals are temporally white.

Q=1 ®Q Only the “temporal diversity” is exploited. It assumes
[ that the signals do not present definite spatial
signatures.
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ML ESTIMATOR

1) Closed-form estimation of the correlation matrix Q.

2) Asymptotically efficient (large sample) approximation of the determinant
Injl+B|~Tr{B}, B—0

3) Closed-form estimation of the spatial signature o .

Unstructured space-time
1D code-timing estimator correlation estimate

Vo N N

7, =arg max f(z,) W = RW—FAdeR;,g

*

yd

R
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CORRELATION MATRIX ESTIMATE (1/2)

@ Reduction of the duration of the observation period or length of the training
sequence M.

o Boundon M: M>mP+2 = W s non-singular with probability 1.

@ A non-singular estimate W can be obtained from W if M is greater than
the dimension of the mterference subspace of Q, although M < mP+2.

L \7VS Is obtained as the matrix with an “interference and noise subspaces
structure” that is closest to W in the sense of the Frobenius norm:

W, =P+o? 1

2
¢ IHF subject to rank{P} =d
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CORRELATION MATRIX ESTIMATE (2/2)

@ Other alternatives
= Diagonal loading Wd =W+ Al

Simpler, but the structured estimate performs slightly better.
= Pseudo-inverse W#

It fails because it neglects the projection of the data onto the
noise subspace, instead of emphasizing it.

$HUPC %

57



SIMULATION PARAMETERS

@ Comparison of our estimator (space-time diversity, STD) with other two
methods that also employ antenna arrays, denoted as space-diversity
(SD) and time-diversity (TD) estimator.

BPSK, N=15 chips/bit Gold sequence, m=4 antennas spaced A/2 apart.
M=80 bits, EbNo=4 dB per antenna (total: 10 dB).

Near-far ratio (NFR): 10 dB.

© © ¢

@ Two types of channels:
o “Static” channel
o Mobile channel.
- Angular spread 5°
» Doppler spread f, T =2 .107°. (900 MHz carrier frequency,
90 kb/s data rate and 120 km/h speed)
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SIMULATION RESULTS (1/4)
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| »STD outperforms TD and SD

in the static and mobile
channels.

»STD attains the CRB in the
static channel. All methods
are deteriorated in the mobile
channel.

1 »In this scenario, the SD is the

worst estimator since it is the
method with the smallest
number of degrees of
freedom.
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SIMULATION RESULTS (2/4)

sition

Probabili

3 >Only with the STD estimator it
Is possible to have more
users than the spreading
gain, i.e., K>P.
= AN | >SD and TD experience a
E T RN serious deterioration when
Sog N 1 the number of users exceds
S the length of the code, and
oF AR 1 completely fail when K>2P.
0.4 Be e o $\:+ ---------- - A :
~-+- Space div. fdT=0 ", * ] »Using the STD the number of
T e ey o Weerd  users may be increased
0.3 . SPace div. fdT=2e-3 N
~. | beyond twice the code length.
0z : L R . “‘;0 K=40 users can be allocated
K, Number of users using a P=15 spreading gain.
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SIMULATION RESULTS (3/4)

Timing RMSE (chips)
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SIMULATION RESULTS (4/4)

kS . Q »The STD estimator performs
o7t N B “ 1 satisfactorily in the mobile
Sod °| channel up to a NFR equal to
\ 35dB.
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CONCLUSIONS

@ General time-delay estimation problem in spatially colored noise.
o Derivation of an asymptotically efficient estimator that makes
possible the use of the IQML algorithm.

@ Estimation of the time delay and the carrier phase using the
knowledge of the steering vector of the direct signal.

o Connection with hybrid beamforming.
o Analysis of the effect of errors in the steering vector.

@ Code synchronization in DS-CDMA communications systems.

o EXxploitation of the spatial and temporal structure of the signals.
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TOPICS FOR FUTURE RESEARCH

@ Application of the ML principle with correlation matrices that have
a certain structure.

@ Use of unstructured stochastic spatial signatures.
@ Introduction of the temporal correlation using a parametric model.

@ Deeper exploration of the bias-RMSE trade-off.
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SIGNAL STRUCTURE: GALILEO

© ¢ © ¢ ¢

©

Chip rates: 3.069, 15.345 and 24,552 Mchips/s

Data rates: 1.5, 3 and 24 kbps

Complex spreading, coding and interleaving

Chip-shaping: Square root raised cosine pulse with roll-off = 0.2

3 carrier frequencies chosen among 1589.742, 1561.098, 1256.244,
1598.949, 1250.106 and 5014.746 MHz

Some PN sequences may not carry data modulation.

Target UERE on the order of 1-2 meters with single carrier ranging and
1-2 cm with three-carrier differential phase positioning techniques.
Adoption of a reginal IGSO / GEO or, alternatively, a global MEO
satellite constellation.
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CONVENTIONAL RECEPTION SCHEMES
@ Received signal: X(t) = oy > d (1) p(t—1T) + w(t)

ML principle l w(t): N(0,0°)

@ Costas loop: @, = 2y(IT +7,)d" ()
N

@ Decision and phase L (r,) = Re{Zd (1)e % y(IT +To)}

directed. Coherent.

> DLL

@ Non-data aided,

ohase independent. L (%) = 2 |y(IT + )

Non coherent. | %

y(t). despreader output
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SIMULATION RESULTS (3/8)

Direct signal + interference

8xlO
T :
&----4© ML with linear approximation
|_O
5y
mm R
c
=ors
T
£
4 g »Good performance
< despide the round shape
255 of the Nyquist pulses.
= N
n ;
oo, -'
& 00@\ o o
4.5
& O
4
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Spacing of the linearization grid, T,/ T
]
#UPC & 69



EFFECT OF ERRORS ON THE STEERING VECTOR (1/2)

@ The asymptotic variance of the time-delay estimates is computed as

1 lim L, NE{(A'()))

Gr = . 2
N (IImN%OO A”(TO))

;yl Ays (7, )‘ N AL

(TO)Ryy Fe(z) 1= Are(5)

o MLestimator: A,, (7,) =

= o, = actual spatial signature.
m d,; = nominal or a priori steering vector.

m The theoretical results are obtained by assuming the absence of reflections.
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ROBUST ESTIMATOR

@ The steering vector is parameterized by a nuisance/calibration parameter.
a, =a(p)

@ Robust method vs. autocalibration method.

@ Robust estimator {LP(TO) —E {Aw @ P)}J

L\ _a (p)W(z,)a(p)
A(TO ] IO) = *p y _10 p
a (p)R,,a(p)
P 1
o Approximations: a(p)=a, + pb, +—Nh, —  =l-X+X°
IR
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