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Analytical Assessment of
Multi-user vs. Spatial Diversity Trade-offs with

Delayed Channel State Information
Jose Lopez Vicario, Student Member, IEEE, and Carles Anton-Haro, Senior Member, IEEE

Abstract— In this letter, we explore the combined use of spatial
and multi-user diversity in a cellular system where channel state
information is subject to delays in the feedback channel. First,
we analytically derive the probability and cumulative density
functions of the post-scheduling signal-to-noise ratio (SNR) for
both a Single-Input Single-Output (SISO) and an Orthogonal
Space-Time Block Coding (OSTBC) transmission schemes. Then,
we obtain the closed-form expressions of the corresponding
average system capacities. By evaluating those expressions, we
analytically show that the OSTBC scheme is far less sensitive to
delays in the feedback channel.

Index Terms— Spatial diversity, multi-user diversity, delayed
channel state information, space-time coding.

I. INTRODUCTION

IN a wireless multi-user system, the average cell throughput
can be substantially increased when in each time-slot the

user with the most favorable channel conditions is sched-
uled [1]. This effect is referred to as multi-user diversity
(MUD) and relies on the assumption that different users
in the system experience independent fading processes. In
such fading environments, the exploitation of transmit spatial
diversity (e.g., by means of Orthogonal Space-Time Block
Coding, OSTBC) makes transmission links more robust by
using low-complexity receivers [2] and, for that reason, much
attention has been recently paid to the combined use of multi-
user and transmit spatial diversity. In [3], for instance, the
authors show that in a multi-user context Single-Input Single-
Output (SISO) schemes outperform OSTBC-based ones in
terms of aggregated cell capacity. Certainly, spatial diversity
helps reduce the probability of deep fades but, by averaging
over different transmit diversity branches, signal-to-noise ratio
(SNR) peaks (those that multi-user diversity can exploit)
are suppressed as well; hence, the overall system capacity
decreases. In [4], it was proven that with perfect Channel State
Information (CSI) at the transmitter, spatial diversity can be
efficiently exploited in a multi-user context by using optimal
beamforming. Unfortunately, perfect CSI is seldom available
at the base station. Alternatively, a scheme that concentrates
all the power in the transmit antenna with largest gain is also
considered. For this second approach only low-rate partial
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CSI is needed but its performance is considerably sensitive
to imperfections in the feedback channel. Recently, several
studies show that the increased robustness of OSTBC schemes
against imperfect CSI provides significant capacity gains with
respect to those of SISO approaches. For instance, the impact
of delay was addressed in [5] but, in that occasion, this issue
was exclusively assessed by means of system-level computer
simulations. In this paper, we conduct an analytical study
of the impact of delayed CSI on SISO and OSTBC-based
schemes. To do that, we derive closed-form expressions of
the post-scheduling SNR statistics and the average system
capacity as a function of the feedback delay. We analytically
show that using OSTBC pays off in some situations.

II. SIGNAL MODEL AND SCHEDULER

Consider the downlink of a cellular system with one Base
Station (BS) equipped with M antennas, and K single-antenna
Mobile Stations (MS). The received signal at the k-th mobile
station is given by:

rk = hT
k s + nk (1)

where hk ∈ C
M is the channel vector gain between the BS and

the k-th terminal, for which each component is assumed to be
independent and identically distributed, circularly symmetric
Gaussian random variable with zero mean and user-dependent
variance σ2

hk
(hk ∼ CN (0, σ2

hk
IM )), s ∈ C

M denotes the
symbol vector, and nk ∈ C stands for sampled additive white
Gaussian noise with zero mean and variance σ2 (time index is
dropped for brevity). Statistical independence is assumed for
the channel gains corresponding to different transmit antennas
and different users in the system. We denote by γk = Pt‖hk‖2

Mσ2

the instantaneous SNR experienced by user k in a given time-
slot and by γ̄k = PtE[‖hk‖2]

Mσ2 its long-term average SNR,
with Pt standing for the total transmit power. Notice that
the total transmitted power is constant and evenly distributed
among transmit antennas. At the BS, we will consider two
transmission schemes: a SISO configuration (M = 1) and
an OSTBC scheme with M = 2 transmit antennas1. As
for the scheduling process, it is organized on a slot-by-
slot basis following a modified version of the Proportional
Fair Scheduling [6] rule. In particular, in each time slot the
user with the largest normalized SNR, γk

γ̄k
, is selected for

transmission. By doing so, users are only allowed to transmit

1For simplicity, we have assumed only two transmit antennas but the
analysis can be easily extended to the general case.
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when their instantaneous SNR is near its own peak and, as a
result, multi-user diversity is still exploited by granting access
probability of 1/K to each user. In the presence of delays in
the return channel, though, one should notice that the partial
CSI information available at the scheduler, γ̂k, differs from
the actual SNR γk.

III. DERIVATION OF THE

POST-SCHEDULING SNR STATISTICS

Since system capacity is closely related with the post-
scheduling SNR, i.e., the SNR experienced by the scheduled
user, we will start by deriving an expression of its probability
density function (pdf). As a previous step, one should identify
the pdf of the actual SNR, γk = Pt‖hk‖2

Mσ2 , conditioned on
the (delayed) estimate available at the centralized scheduler,
γ̂k = Pt‖ĥk‖2

Mσ2 . Throughout this work, we will adopt a Jakes’
scattering model and, hence, hk and ĥk turn out to be samples
of the same Gaussian process. In other words, hk and ĥk

follow a joint complex Gaussian distribution with correlation
coefficient ρk = Jo(2πfdk

Tk), where fdk
stands for the

Doppler frequency, Tk is the delay in time units, and Jo(·)
denotes the zero-order Bessel function of the first kind. As a
consequence, the pdf of hk conditioned on ĥk can be easily
obtained by applying Bayes’ Theorem:

fhk|ĥk
(hk|ĥk) =

fhk,ĥk
(hk, ĥk)

fĥk
(ĥk)

=
1

πM det (Rk)
e−(hk−ρkĥk)HR−1

k (hk−ρkĥk) (2)

where Rk = (1−ρ2
k)IM is the covariance matrix. Notice that

Rk models the degree of CSI uncertainty and, hence, it is
equal to Rk = 0 when hk = ĥk. From this expression it is
straightforward to show that γk conditioned on its estimate, γ̂k,
follows a non-central chi-square distribution with 2M degrees
of freedom:

fγk|γ̂k
(γk|γ̂k) =

M

γ̄k(1 − ρ2
k)

(
γk

ρ2
kγ̂k

) 2M−2
4

e
−M(γk+ρ2

kγ̂k)

γ̄k(1−ρ2
k
)

×IM−1

(
2M

√
ρ2

kγkγ̂k

γ̄k(1 − ρ2
k)

)
(3)

with In(·) standing for the nth-order modified Bessel function
of the first kind. Now, by defining Ai as the event that user
i is the selected user, Ai = { γ̂i

γ̄i
= maxk=1..K

γ̂k

γ̄k
}, one can

readily obtain the CDF of the post-scheduling SNR, γ∗, as:

Fγ∗(y) =
K∑

i=1

Prob (γi ≤ y|Ai) Prob (Ai)

=
K∑

i=1

∫ ∞

0

Fγi|γ̂i
(y|γ̂i)fγ̂i|Ai

(γ̂i|Ai)dγ̂iProb (Ai)

=
1
K

K∑
i=1

∫ y

γi=0

∫ ∞

γ̂i=0

fγi|γ̂i
(γi|γ̂i)fγ̂i|Ai

(γ̂i|Ai)dγidγ̂i (4)

where Prob(Ai) = 1/K, i = 1..K, due to the scheduler
properties and fγ̂i|Ai

(γ̂i|Ai) denotes the pdf of the estimated
post-scheduling SNR associated to user i conditioned on

event Ai. In such a multi-user context with independently
distributed Rayleigh fading channels and a max-normalized
SNR scheduler, we can write fγ̂i|Ai

(γ̂i|Ai) as [7]:

fγ̂i|Ai
(γ̂i|Ai) =

K

γ̄i
f ′

i

(
γ̂i

γ̄i

) K∏
k=1
k �=i

F ′
k

(
γ̂i

γ̄i

)
(5)

where f ′
k(·) and F ′

k(·) are the pdf and CDF of the normalized
SNR associated to user k, γ̂k

γ̄k
. Then, by bearing in mind that

F ′
k(x) is equal to 1−e−x and 1−e−2x (2x + 1) for the SISO

and OSTBC configurations respectively, we can particularize
the above result to the different transmission schemes:

fγ̂SISOi
|Ai

(γ̂i|Ai)=K
e
− γ̂i

γ̄i

γ̄i

(
1 − e

− γ̂i
γ̄i

)K−1

(6)

fγ̂OST BCi
|Ai

(γ̂i|Ai)=
4Kγ̂ie

− 2γ̂i
γ̄i

γ̄2
i

(
1 − e

− 2γ̂i
γ̄i

(
2γ̂i

γ̄i
+ 1

))K−1

(7)

Last, by plugging (6) (or (7)) along with (3) into (4), the cor-
responding post-scheduling CDF expressions can be obtained.
For the SISO approach, by using the binomial expansion and
identities Eq. 6.614.3, Eq. 9.220.2 and Eq. 9.215.1 in [8] one
can show that:

Fγ∗
SISO

(y)=
K∑

i=1

K−1∑
k=0

(
K−1

k

)
(−1)k

k + 1

(
1 − e

− y(k+1)
γ̄i(1+(1−ρ2

i
)k)

)
(8)

On the other hand, for the OSTBC case one should resort
to identities Eq. 8.406.3, Eq. 6.643.4 and Eq. 8.970.1 in [8]
instead and, then, the CDF can be expressed in terms of the
incomplete gamma function (Γ(n, x) =

∫ x

0
e−ttn−1dt [8]):

Fγ∗
OST BC

(y) =
K∑

i=1

K−1∑
k=0

(
K−1

k

)
(−1)k

k∑
n=0

(
k

n

) n∑
m=0

(
n+1
n−m

)

×
n!(1 − ρ2

i )
n−mρ2m

i Γ
(
m + 2, 2y(k+1)

γ̄i(1+(1−ρ2
i )k)

)
m!(k + 1)m+2(1 + (1 − ρ2

i )k)n
(9)

Notice that, by solving only the inner integrals in equation
(4), the corresponding post-scheduling pdfs can be obtained:

fγ∗
SISO

(γ) =
K∑

i=1

K−1∑
k=0

(
K − 1

k

)
(−1)ke

− γ(k+1)
γ̄i(1+(1−ρ2

i
)k)

γ̄i(1 + (1 − ρ2
i )k)

(10)

fγ∗
OST BC

(γ) = 4
K∑

i=1

K−1∑
k=0

(
K − 1

k

)
(−1)k

k∑
n=0

(
k

n

)
n!γ

×
(1 − ρ2

i )
ne

− 2γ(k+1)
γ̄i(1+k(1−ρ2

i
)) L1

n

(
−2γρ2

i

γ̄i(1−ρ2
i )(1+(1−ρ2

i )k)

)
γ̄2

i (1 + (1 − ρ2
i )k)n+2

(11)

where Lα
n(x) is the Laguerre polynomial [8, Eq. 8.970.1].

IV. SYSTEM CAPACITY

Going one step beyond, in this section we derive the
analytical expressions of the system capacity in the presence
of delays in the feedback channel, which is given by

C =
∫ ∞

0

log2(1 + γ)fγ∗(γ)dγ (12)



590 IEEE COMMUNICATIONS LETTERS, VOL. 10, NO. 8, AUGUST 2006

−10 −8 −6 −4 −2 0 2 4 6 8 10
10−2

10−1

100

SISO
OSTBCw/out 

delay 

w/delay
20 km/h

w/delay
30 km/h

w/delay
50 km/h

Normalized SNR (dB)
                   

C
D

F

Fig. 1. CDF of the normalized post-scheduling SNR, γ
γ̄

, for the different
transmission schemes and different MS speed (K=30 users).

where the average is taken over channel (SNR) realizations
and the corresponding pdf expressions can be found in Eqs.
(10) and (11) above. For the SISO approach, we have that this
integral can be solved with the help of [8, Eq. 4.331.2] and
written in closed form as:

CSISO = −
K∑

i=1

log2e
K−1∑
k=0

(
K − 1

k

)
(−1)k

k + 1
e

k+1
γ̄i(1+(1−ρ2

i
)k)

× Ei

(
− k + 1

γ̄i(1 + (1 − ρ2
i )k)

)
(13)

with Ei(x) standing for the exponential integral function
(Ei(x) = − ∫ ∞

−x
e−t

t dt, for x < 0). Analogously, for the
OSTBC case we have that (12) can be analytically solved
by resorting to [9, Eq. 78]. By doing so, the average system
capacity can be expressed in terms of the complementary
incomplete gamma function (Γc(n, x) =

∫ ∞
x

e−ttn−1dt) as:

COSTBC = 4
K∑

i=1

log2 e
K−1∑
k=0

(
K − 1

k

)
(−1)k

k∑
n=0

(
k

n

)
n!

×
n∑

m=0

(
n + 1
n − m

)
ρ2m

i (1 − ρ2
i )

n−m(m + 1)e
2(k+1)

γ̄i(1+k(1−ρ2
i
))

×
m+2∑
l=1

2m−lΓc(l − m − 2, 2(k+1)
γ̄i(1+(1−ρ2

i )k)
)

γ̄m+2−l
i (k + 1)l(1 + (1 − ρ2

i )k)m+n−l+2
(14)

V. NUMERICAL RESULTS AND DISCUSSION

In this section, we are interested in assessing spatial vs.
multi-user trade-offs in situations where the partial CSI avail-
able at the BS is subject to delays. Due to space constraints,
we will restrict ourselves to only show results corresponding
to an homogenous case, i.e., γ̄i = γ̄. First, the cumulative
densities functions derived in Section III are plotted in Fig. 1
as a function of MS speed. As for the CSI delay, we adopt
the parameters used in [5] for a High Speed Downlink Packet
Access scenario where the authors justify that scheduling
decisions can be made every 2 ms with a time delay of
T = 4 ms. In the absence of delay, the SISO approach is far
more effective than its OSTBC counterpart in shifting curves
towards higher values of the post-scheduling SNR, which is
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Fig. 2. Average system capacity vs. MS speed for the different transmission
schemes (K = 5 and 30 users, γ̄ = 10 dB).

clearly beneficial in terms of system capacity. For delayed
feedback channels, though, the degradation experienced by
the SISO scheme as the MS speed increases is larger than
that of OSTBC. In other words, the single-antenna approach
is less robust to channel uncertainty arising from CSI delays.
For v=50 km/h, the relative ordering of both curves is reversed
almost for the whole SNR range. As shown in Fig. 2, such
behavior can be translated into system capacity measures. In
particular, better results are obtained with OSTBC in scenarios
with increasing MS speed. However, as the number of active
users grows, the post-scheduling SNR peaks generated by the
SISO configuration grow faster than those of OSTBC. As a
result the SISO configuration performs better than OSTBC
for higher values of MS speed (i.e., larger user sets partially
compensate for SNR uncertainties). Finally, one can also
observe that beyond 50 km/h curves are driven again towards
higher values of the system capacity. This is because under
the assumption of a Jakes’ scattering model, the correlation
depends on the zero-order Bessel function of the first kind,
which is not a monotonically-decreasing function. In conclu-
sion, OSTBC-based schemes are more appropriate for high
mobility scenarios, in particular for a reduced number of users.
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