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Abstract—Orthogonal random beamforming (ORB) consti-
tutes a mean to exploit spatial multiplexing and multi-user
diversity (MUD) gains in multi-antenna broadcast channels. To
do so, as many random beamformers as transmit antennas (M )
are generated and on each beam the user experiencing the most
favorable channel conditions is scheduled. Whereas for a large
number of users the sum-rate of ORB exhibits an identical
growth rate as that of dirty paper coding, performance in sparse
networks (or in networks with an uneven spatial distribution of
users) is known to be severely impaired. To circumvent that, in
this paper we modify the scheduling process in ORB in order to
select a subset out of the M available beams. We propose several
beam selection algorithms and assess their performance in terms
of sum-rate and aggregated throughput (i.e., rate achieved with
practical modulation and coding schemes), along with an analysis
of their computational complexity. Since ORB schemes require
partial channel state information (CSI) to be fed back to the
transmitter, we finally investigate the impact of CSI quantization
on system performance. More specifically, we prove that most
of the MUD can be still exploited with very few quantization
bits and we derive a beam selection approach trading-off system
performance vs. feedback channel requirements.

Index Terms—Orthogonal Random Beamforming (ORB),
beam selection, sparse networks, opportunistic scheduling, Multi-
user Diversity (MUD), broadcast channel, feedback quantization.

I. INTRODUCTION

IN recent years, applications that involve the transmission
over broadcast channels in multi-user wireless systems

have increased the interests. In the context of single-input
single-output (SISO) systems, the strategy that maximizes
the sum-rate consists in selecting for each time slot the
user which experiences the most favorable channel conditions
[1], [2]. Dirty paper coding (DPC) constitutes the capacity-
achieving strategy for the Gaussian multiple-input multiple-
output (MIMO) broadcast channel [3] and, consequently, it
maximizes the sum-rate too [4]. In DPC, multiple users can
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be simultaneously served thanks to the spatial multiplexing
capabilities of the MIMO links. However, DPC is not practical
due to the need for successive encodings and decodings.
Transmit zero-forcing (ZF) is an affordable suboptimal alter-
native as it exhibits the same sum-rate growth as DPC for
an asymptotically high number of users when efficient user
selection is adopted [5], [6]. Unfortunately, both ZF and DPC
schemes require perfect channel state information (CSI) at
the transmitter, which is seldom available. Instead, the so-
called orthogonal random beamforming (ORB) schemes [7]
only demand partial CSI at the base station (BS). In ORB,
the transmitted data is pre-coded with a set of randomly-
generated beamformers for which each user has to report its
instantaneous signal-to-interference-and-noise ratio (SINR).
This leads to a substantial decrease of the amount of data
to be conveyed over the feedback channel but, still, the sum-
rate exhibits an identical growth rate to that of the DPC and
ZF schemes for an asymptotic number of users [7]. However,
the performance of ORB for a realistic number of users is far
from being satisfactory.

Contributions: In this paper, we investigate scheduling
strategies for ORB suitable for sparse networks. When the
power is evenly allocated to transmit antennas we show that
having as many active beams as the number of transmit
antennas is not always optimal. Instead, it is more appropriate
to select a subset of active beams according to propagation
conditions (i.e., for noise- or interference-limited scenarios)
and the objective function (sum-rate or aggregated through-
put). We investigate some beam selection algorithms featuring
different complexity levels and performance gaps with respect
to a brute-force approach. All those schemes merely require
partial CSI at the transmitter (either the measured SINRs or,
alternatively, the channel gains associated to each beam). In
addition, we derive a closed-form expression of the aggregated
throughput in the presence of adaptive coding and modulation
schemes and, thus, we extend the work in [8] to the multiple
antenna case. Such an expression is obtained both for the
cases of analog or quantized partial CSI. As observed in the
single-antena case [8], [9], we find out that most of the MUD
gain can be preserved even when the measured SINRs are
roughly quantized with a very few bits. As for the quantization
process, we empirically prove that a non-uniform law based
on the post-scheduling SINR distribution is an efficient choice
to exploit MUD.

Relation to prior work: The optimization of ORB for
sparse networks is an open issue addressed by few authors.

1536-1276/08$25.00 c© 2008 IEEE
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Kountouris and Gesbert proposed to exploit the temporal
correlation of the channel response in order to identify the
best subset of beamformers [10]. In [11], the same authors
proposed a method to make performance less sensitive to
channel properties. By means of a low-rate feedback chan-
nel the most promising user subset is selected first. Then,
more sophisticated techniques are applied to such user subset
according to the nature of the CSI at the transmitter (full
or partial). Among these techniques, it was proposed an
algorithm which motivated the idea of embedding a beam
selection mechanism into ORB. According to the SINR of the
different users, the transmission scheme switched from SDMA
(all the available beams active) to TDMA (only the best beam
active). Kobayashi et al. also showed that activating all the
available beams is not the optimal choice when the feedback
channel is delayed [12].

Independently from our work (part of it initially presented
in [13], [14]), the pure concept of beam selection has been
recently investigated and further developed in [15] and [16].
Our contribution here is more extensive as we compare
different beam selection methods and consider the inherent
trade-offs in terms of system performance vs. the amount of
information required in the feedback channel. Furthermore,
we show that most of the MUD provided by ORB can be
exploited with a few bits in the feedback channel and we
derive a beam selection approach trading-off performance vs.
feedback bits requirements. Our study is then more practical
than that carried out in [17], where it is shown that most of
MUD gain in ORB can be extracted with one feedback bit
when the number of users is high enough (say K ≥ 1000
users).

Organization: In Section II, the corresponding signal model
is presented. Then, in Section III, we derive closed-form
expressions for both the probability and cumulative density
functions (pdf and CDF) of the post-scheduling SINRs. In
Sections IV and V, we assess ORB performance both in terms
of sum-rate and aggregated throughput, respectively. Next, in
Section VI, we propose several beam selection algorithms ac-
companied by a system performance vs. complexity analysis.
In Section VII we evaluate the impact of feedback quantization
on the aggregated throughput. Finally, in Section VIII, we
conclude by summarizing the main results obtained in this
paper.

II. SIGNAL MODEL

Consider the downlink of a wireless system with one BS
equipped with M antennas and K single-antenna mobile
stations (MS). In order to serve multiple users in the same
time-slot, a linear precoding matrix is applied at the base
station. According to the orthogonal random beamforming
(ORB) strategy [7], in each time-slot we generate a ran-
dom matrix W = [w1,w2, ...,wM ], where wi ∈ CM×1,
i = 1, ..., M , are random orthonormal vectors drawn from
an isotropic distribution [18]. Then, each of those vectors
are used for transmitting different streams to the users with
the highest SINRs. Unlike the approach in [7], here we do
not necessarily transmit with all the beams vectors wi, but
rather, the transmission is made with a subset of active beams
B ⊂ W = {w1,w2, ...,wM} (details on the beam selection

procedure are given in Section VI). The received signal at the
k-th MS can be expressed as:

rk = hT
k WBsB + nk (1)

where hk ∈ CM×1 is the channel vector gain between the BS
and the k-th MS modelled as hk ∼ CN (0, IM ) (independent
Rayleigh fading), WB ∈ C

M×B is the precoding matrix
with the columns of W corresponding to the subset of active
beams B, sB ∈ CB×1 is the symbol vector broadcasted from
the BS with B = card(B) ≤ M active beams, and where
nk ∼ CN (0, σ2) is AWGN. The active users in the system are
assumed to undergo independent Rayleigh fading processes.
Further, we consider block-fading where the channel response
remains constant during one time-slot and changes to a new
independent realization in the subsequent one. Concerning
channel state information, we assume perfect CSI knowledge
of hk for each user at the receive side, and the availability of
a low-rate error-free feedback channel to convey partial CSI to
the transmitter. The total transmit power is constant and evenly
distributed among the active beams so that E{sH

B sB} = Pt

and, thus, each active beam is allocated a transmit power
equal to Pt/B. The average signal-to-noise ratio (SNR) of
the system is defined as ρ = Pt

σ2 .

III. POST-SCHEDULING SINR STATISTICS

Before deriving the beam selection algorithms, we analyze
the system in a context where the number of active beams
B is kept constant but still B ≤ M . According to the signal
model of the previous section, the received signal for user k
when using beamformer wi can be re-written from (1) as:

rk = hT
k wisi +

∑
j∈B,j �=i

hT
k wjsj + nk (2)

where sj stands for the symbol transmitted with beam j.
Notice that the last two terms in the above expression are
associated with the interference-plus-noise contribution and,
hence, the corresponding SINR for k-th user and i-th beam
amounts to

SINRk,i =
|hT

k wi|2
B/ρ +

∑
j∈B,j �=i |hT

k wj |2 =
z

B/ρ + y
. (3)

Since we assume that all users experience i.i.d Rayleigh
fading and the active beams are orthonormal to each other,
the two random variables z and y are independent chi-square
distributed: z ∼ χ2

2 and y ∼ χ2
2B−2. Bearing this in mind, the

CDF and pdf of the SINR can be expressed as [7]:

FSINR(γ) = 1 − e−γB/ρ

(1 + γ)B−1
(4)

fSINR(γ) =
e−γB/ρ

(1 + γ)B

(
B

ρ
(1 + γ) + B − 1

)
(5)

Notice that in a i.i.d Rayleigh fading scenario the SINR
statistics only depend on the number of active beams B.

The scheduling process is organized in a slot-by-slot basis
following a max-SINR rule. That is, each user reports to the
BS the SINR associated to its best beam and the beam index.
With this information, the BS selects for each beam the user
with the highest SINR. By assuming that a different user is
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chosen for each beam, the active user k∗
i selected for beam

i is then that satisfying1 k∗
i = arg maxk=1,...,K {SINRk,i}.

As shown in Section VI, however, CSI and user selection is
given in a different form when beam selection procedures are
in use.

Since all the users experience i.i.d Rayleigh fading, the CDF
of the SINR experienced by the scheduled user (the post-
scheduling SINR) FSINR∗(γ) can be readily expressed as [7]:

FSINR∗(γ) = (FSINR(γ))K =

(
1 − e−

γB
ρ

(1 + γ)B−1

)K

Finally, by simply differentiating the above expression the
corresponding pdf of post-scheduling SINR follows:

fSINR∗(γ) =K
e−

γB
ρ

(1 + γ)B

(
B

ρ
(1 + γ) + B − 1

)

×
(

1 − e−
γB
ρ

(1 + γ)B−1

)K−1

(6)

IV. SUM-RATE ANALYSIS

Here, we evaluate the ORB performance as a function of the
number of active beams B. The purpose is to analyze whether
activating all the available beams is an appropriate strategy in
scenarios with a low number of users, since in those scenarios
the probability that the generated random beamforming vectors
match users’ channel characteristics is considerably lower. We
begin our study by showing the behavior of the system in terms
of the sum-rate. According to the proposed scheduling policy,
the achievable sum-rate when B beams are active is given by2:

R(B) �Eγ

[∑
i∈B

log2

(
1 + max

1≤k≤K
SINRk,i(B)

)]

=B

∫ ∞

γ=0

log2 (1 + γ) fSINR∗(γ)dγ (7)

Sharif and Hassibi [7] derived a closed-form expression for
the asymptotic case (K → ∞) which exhibits the same sum-
rate growth as DPC. For a practical scenario with a finite
number of users, though, resorting to numerical integration
is needed. Still, this expression is tractable when the average
SNR of the system is arbitrarily high (ρ→∞) and the system
is so called interference dominated (B>1). In this case, the
pdf of the post-scheduling SINR given by Eq. (6) can be re-
written as follows:

fhigh,SINR∗(γ) = K
B − 1

(1 + γ)B

(
1 − 1

(1 + γ)B−1

)K−1

(8)

1As proved in [7], the probability that one user achieves the highest SINR
on more than one beam is negligible when the number of users is large
compared with the number of active beams. In particular, the authors showed
that the maximum number of beams ensuring a negligible probability for
this event can be roughly expressed as B∼log2K . In the case that a beam
has not users who have reported their SINRs, a random user (out of the set
of remaining users) is selected. However, this situation occurs with a low
probability under the conditions of this paper (B ≤ 4 and K ≥ 10) as the
relation B∼log2K holds [7]. Besides, it has been empirically proven that the
impact of this low probability event on system performance is negligible.

2The approximation comes from the fact that this expression is an upper
bound of the sum-rate that ignores the probability that one user has the
maximum SINR on more than one beam. As proved in [7], this upper
bound is tight for those scenarios with a number of active beams lower or
approximately equal to B∼log2K (as the scenario considered in this work).

As a consequence, a closed-form expression can be readily
derived for the sum-rate [19]:

Rhigh � B

B − 1
log2(e)

K∑
k=1

1
k

; B>1 (9)

where the term
∑K

k=1
1
k accounts for the multi-user gain.

Clearly, the sum-rate decreases with the number of active
beams due to the B

B−1 term, which suggests that a reduced
number of beams should be used in interference-limited sce-
narios as also stated in [7], [15].

A different scenario results in the low-SNR regime. By
neglecting the interference term in Eq. (3) (i.e., B/ρ + y →
B/ρ for ρ → 0), the post-scheduling pdf reads

flow,SINR∗(γ) =
K

ρ
e−

γB
ρ

(
1 − e−

γB
ρ

)K−1

.

Notice that this expression is identical to that of a multi-user
system with a SISO configuration and average SNR = ρ/B
[20]. This follows from the fact that we assume i.i.d Rayleigh
channel fading and we generate the orthonormal vectors wi

according to an isotropic distribution. Then, one can easily
show that the sum-rate can be expressed as [21]:

Rlow � BK log2 e

×
K−1∑
k=0

(
K − 1

k

)
(−1)k+1

k + 1
eB(k+1)/ρEi

(
−B

(k + 1)
ρ

)
(10)

where the exponential integral function is defined as
Ei(−x)�−∫∞

x
e−t

t dt, for x>0 and can be written in series
form as Ei(−x) = e−x

∑n
l=1(−1)l (l−1)!

xl + Rn, being Rn a
remainder term [22]. By considering the above expression and
bearing in mind that ρ→0, we can further simplify (10):

Rlow �BK log2 e

K−1∑
k=0

(
K − 1

k

)
(−1)k+1

k + 1

(
− ρ

B(k + 1)

)

�ρ log2(e)
K∑

k=1

1
k

(11)

where it is observed that the sum-rate still depends on the
MUD gain but it is independent of B. It is worth noting that
authors in [16] proved that the single-beam solution is the
optimum choice in the case that ρ→0. In their proof, they
considered a system adopting a beam selection algorithm.
In this section, however, we have not already taken into
consideration any beam selection strategy. Instead, we are
investigating what is the most appropriate number of active
beams when the original ORB scheme is used and, for that
reason, a different result is obtained.

Table I and Fig. 1 illustrate the accuracy of the approximate
sum-rate expressions for the low- and high-SNR regimes,
respectively. On the one hand, Fig. 1 shows that the proposed
high-SNR approximation becomes valid from ρ>25-30 dB.
On the other hand, one can notice in Table I that when the
SNR is low enough to neglect the interference term (ρ = −5
dB) both the simulated and approximated results given by Eq.
(10) reflect the same trend for a growing number of beams.
In the case that the SNR is considerably low (ρ = −25 dB),



3388 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 7, NO. 9, SEPTEMBER 2008

TABLE I
SUM-RATE PERFORMANCE (BITS/S/HZ) IN LOW-SNR SCENARIOS

(K=200 USERS).

B=1 B=2 B=3 B=4
Simulation (ρ=-5 dB) 1.485 1.759 1.836 1.893
Eq. (10) (ρ=-5 dB) 1.485 1.848 2.071 2.179

Simulation (ρ=-25 dB) 0.0262 0.0267 0.0269 0.0267
Eq. (11) (ρ=-25 dB) 0.0268 0.0268 0.0268 0.0268
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Fig. 1. Sum-rate vs. average SNR (ρ) for a different number of active beams.
Horizontal lines correspond to the asymptotic results given by Eq. (9). Solid
lines: K=20 users, dashed lines: K=200 users.

approximation in Eq. (11) becomes valid and, in this case,
approximately the same sum-rate is achieved with different
values of B. To summarize, in noise-limited scenarios a higher
number of active beams turns out to be beneficial, in particular
when K is high (see Fig. 1). Nonetheless, when the system
becomes interference-limited or the SNR is extremely low,
the use of multiple beams does not pay off. In the case of
high SNR, activating a lower number of beams gives better
results. In the sequel, we will consider ρ=0 dB as the low-SNR
region. In our opinion, to take into consideration lower values
of SNR is not useful for practical implementation. Notice that
in this region using several beams is beneficial for sum-rate
performance.

V. AGGREGATED THROUGHPUT ANALYSIS

Sum-rate measures obtained in the previous section simply
provide a rough idea on how spectrally efficient the system can
be when ideal Gaussian codebooks of large block length are
available. However, in practical systems with a limited number
of adaptive modulation and coding (AMC) modes and realistic
coding methods, the achieved rate can be quite different. In
that case, the aggregated link layer throughput provides a more
realistic view.

A. Closed-form Expression

For a given modulation scheme, indexed by variable m,
the aggregated throughput can be expressed as ηm(B) �
Eγ

{∑
i∈B bm (1 − PERm(max1≤k≤K SINRk,i))

}
where bm

is the number of bits per symbol and PERm denotes the
packet error probability. By considering L symbols packets,
the aggregated throughput can be re-written as follows3:

ηm(B) �BEγ

{
bm(1 − SERm( max

1≤k≤K
SINRk,i))L

}

=Bbm

∫ ∞

γ=0

(1−SERm(γ))LfSINR∗(γ)dγ (12)

with SERm standing for the symbol error rate associated to
the modulation scheme m. As shown in [24], the SER for
M-QAM modulation schemes can be approximated by:

SERm(γ) � bm0.2 exp(−1.6γ/(2bm −1)) = αm exp(−βmγ)
(13)

where αm and βm are constellation-dependent parameters
(being the approximation also quite accurate for BPSK by
setting βm=1). Note that, Eq. (13) is based on Gaussian
approximation for the overall inter-user interference that holds
when the number of interfering beams is high. Even if
the proposed scheduler is aimed at finding the MSs which
maximize the resulting SINR (or equivalently minimize inter-
user interference), the interference term in Eq. (2) is expected
to be small in comparison with the noise term, in particular
when the number of users is high. Therefore, the Gaussian
approximation proves to be quite accurate even for the B=2
case [21].

In the presence of adaptive modulation mechanisms, the
aggregated throughput will depend on the modulation scheme
selected for each beam (indexed by mi) as follows:

η(B) � Eγ

{∑
i∈B

bmi(1 − SERmi( max
1≤k≤K

SINRk,i))L

}
(14)

Concerning the adaptive modulation rule, we consider a cross-
layer strategy that selects for each beam i the constellation
size maximizing the instantaneous link layer throughput i.e.,
mi = arg maxm∈M bm(1 − SERm(γk∗,i))L, where γk∗,i =
max1≤k≤K SINRk,i stands for the SINR corresponding to
the scheduled user on beam i. From the above expression,
the corresponding thresholds (γth,m) are obtained for a sys-
tem with a number of modulation schemes given by the
ordered set M = {BPSK,QPSK,16-QAM}. Consequently,
the constellation size associated with the measured post-
scheduling SINR on beam i is determined according to the
rule mi = m ⇐⇒ γth,m ≤ γk∗,i < γth,m+1 with γth,1=0 and
γth,card(M)+1=∞. As a result, the throughput for beam i can
be computed as:

Eγ

{
bmi(1 − SERmi( max

1≤k≤K
SINRk,i))L

}
=

card(M)∑
m=1

bm

∫ γth,m+1

γ=γth,m

(1 − SERm(γ))LfSINR∗(γ)dγ

where one should bear in mind that the SINR of the different
beams are identically distributed [7] and, for that reason, this

3For mathematical tractability, we restrict ourselves to uncoded trans-
missions but the analysis can be easily extended to transmissions with
convolutional coding by resorting to the accurate exponential approximations
of the PER derived in [23].
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expression does not depend on index i. Finally, by introducing
the previous result in (14) and by taking into account (13),
one can re-writte the aggregated throughput in the presence
of adaptive modulation as:

η(B) � B

card(M)∑
m=1

bm

∫ γth,m+1

γ=γth,m

(1 − αme−βmγ)LfSINR∗(γ)dγ

(15)
After some algebraic manipulation (see Appendix), the aggre-
gated throughput becomes:

η(B) �

BK

card(M)∑
m=1

bm

L∑
l=0

(
L

l

)
(−αm)l

K−1∑
k=0

(
K − 1

k

)
(−1)keμμc

×
[
B

ρμ

(
Γ (1 − c, (1 + γth,m)μ) − Γ (1 − c, (1 + γth,m+1)μ)

)

+(B − 1)
(

Γ (−c, (1 + γth,m)μ) − Γ (−c, (1 + γth,m+1)μ)
)]

(16)

where μ = βml + B
ρ (k + 1), c = (k + 1)(B − 1); and

Γ(α, x) �
∫∞

x
e−ttα−1dt stands for the complementary in-

complete gamma function.

B. Asymptotic Analysis

In order to gain some insight, we analyze the behavior of
the aggregated throughput in the asymptotic high SNR regime
(ρ→∞). We focus on B=1 as this is the case that presents the
main difference with respect to the sum-rate analysis. When
B=1, c=0 and Eq. (16) can be re-written as:

η �
card(M)∑

m=1

bmK
L∑

l=0

(
L

l

)
(−αm)l

×
K−1∑
k=0

(
K − 1

k

)
(−1)keβml+ k+1

ρ
1

ρβml + k + 1

×
(

e−(1+γth,m)(βml+ k+1
ρ ) − e−(1+γth,m+1)(βml+ k+1

ρ )
)

where the equivalence Γ (1, x) = e−x has been used. When
ρ → ∞, all the terms in the summations with l �=0 vanish
while for l=0 the summations also tend to zero except for
the terms related to m = card(M) since γth,card(M)+1 = ∞.
Then, η for ρ → ∞ becomes

ηhigh �bcard(M)K

K−1∑
k=0

(
K − 1

k

)
(−1)k

k + 1

=bcard(M)

K∑
t=1

(
K

t

)
(−1)t−1

=bcard(M)

Differently from the sum-rate case, a saturation effect is
observed in the asymptotic SNR regime when B=1. This
saturation effect (known as bit cap effect) is due to the fact that
a finite number of practical modulation schemes are adopted
[25]. The smaller the constellation size of the highest AMC

level, the more severe the saturation effect is. For the case
B>1 (i.e., c �=0) and ρ→∞, it can be easily shown that (as
the sum-rate expression) Eq. (16) is monotonically decreasing
in B (details are omitted here for brevity but can be found
in [21]). Therefore, activating more than two beams is not
beneficial in the high-SNR regime4.

In conjunction with the previous asymptotic result, one can
conclude that the most appropriate strategy could be using one
or two active beams according with the size of the highest
available AMC level. Using only one active beam may be the
best option in the asymptotic regime when the constellation
size of the highest AMC level is high and the number of
users is low. In the opposite case, it is more appropriate to
allocate the transmit power to two active beams as setting B>2
would be less efficient5. The numerical results shown in Fig.
2 confirm these conclusions. Since the single beam solution
quickly saturates, increasing the number of beams pays off
in the high-SNR region as long as the number of active
beams is B≤2. Besides, in densely populated scenarios, the
SINR associated with the active beams take higher values and,
as a result, the gap between the curves corresponding B=1
and B>1 cases becomes wider. This is because interference
generated by the beams tends to its average, whereas the power
of the desired signal grows for increasing K . Notice that an
asymptotic analysis cannot be carried out for low SNR as
the SER approximation (13) is a loose approximation in this
region [24]. Still, one can notice from the numerical results
that using several beams is not an appropriate strategy for
noise-limited scenarios as PER levels are very high to support
several active beams, even with the lowest modulation scheme
(BPSK). Spatial multiplexing capabilities can be exploited
in the mid-SNR region of highly-populated cells (see Fig.
2), where the SNR is neither low enough to penalize PER
behavior nor high enough to enter the interference-limited
region.

In summary, due to granularity and saturation effects, dif-
ferent conclusions are drawn for aggregated throughput with
respect to the sum-rate case. Nonetheless, we have proved
in both cases that using all the active beams is not the best
strategy in a scenario with a practical number of users (say
K < 100). This motivates the need for developing beam
selection schemes.

VI. ADAPTIVE BEAM SELECTION

In this section, we propose several beam selection strategies
capable of identifying the best subset of beams (and users)
according to scenario conditions. These algorithms are quite
interesting for sparse networks as the value of K can be
virtually increased. That is, the number of SINR combinations
is larger and, then, system performance is improved as if K

4It is worth recalling that here we are not considering beam selection
strategies.

5Analytically, it is not straightforward to obtain the values of K and
modulation schemes for which it is better using one or two beams. Then,
numerical evaluation is needed to obtain these limiting values. For instance,
using B=2 is more appropriate when K>16 and the highest modulation
scheme is 64-QAM. In the case of 16-QAM, the number of users is reduced
to K>6.
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of active beams (L=10 symbols). Horizontal line corresponds to the spectral
efficiency of 16-QAM. Solid lines: K=20 users, dashed lines: K=200 users.

were increased6.

A. Beam Selection Algorithms

In an ORB system, the Optimum Beam Selection algorithm
consists in conducting an exhaustive search over all the possi-
ble subsets of beams and users. This procedure is computation-
ally intensive as the number of SINRs to be tested grows expo-
nentially with the number of available beams. More precisely,
for a fixed number of active beams B, a total of

(
M
B

)
KB

SINRs must be computed in order to find the best transmission
configuration. Then, by considering all the possible number of
active beams, the number of SINR computations is increased
to a total of

∑M
B=1

(
M
B

)
KB = KM2M−1 operations. Further,

this search requires all the gains |hT
k wi|2 to be known for

any user-beam pair. Therefore, it is necessary for each user to
report M real numbers to the BS over the feedback channel.
It is worth noting that the amount of feedback required by this
strategy is higher than the conventional ORB strategy (only
one real number plus log2 M bits for indicating the best beam)
but, as shown in the next subsection, this amount of feedback
increase results in significant gains in terms of sum-rate and
aggregated throughput performance.

In order to reduce the computational complexity, we next
present some sub-optimum approaches. Notice that the amount
of feedback required by these strategies (except for the re-
stricted beam selection strategy) is the same as that required
by the optimum beam selection approach.

1) Bottom-up Beam Selection: The algorithm starts by se-
lecting the best user for each beam in terms of the performance
metric. After that, the users selected in the first step (with their
associated beams) are grouped in all the possible subsets of
two users in order to find the best combination with two active

6In the single beam case (B=1), for instance, the number of equivalent
users it is equal to MK . This is because SINRk,i for k = 1, ...,K and
i = 1, ...,M are i.i.d distributed in this case. For a higher number of active
beams, however, the SINRs of the different beam sub-sets may be correlated
and the diversity increase cannot be easily obtained.

beams. The algorithm is iterated until the combination B=M
active beams is reached. Basically, the objective is to reduce
the computational cost by focusing on the users achieving the
highest gains with only one active beam (i.e., in the absence of
interference). By doing so, KM computations are still needed
in the first level but only

(
M
B

)
B operations for B=2, ..., M .

As a result, complexity drops to M2M−1 +M(K − 1) SINR
computations.

2) Top-down Beam Selection: In the bottom-up proce-
dure, we restrict the search to the users maximizing system
performance when only one beam is active. However, this
subset of users may not be adequate when the number of
beams increases and interference comes into play. For this
reason, we propose a similar approach where the recursion is
started by activating the maximum number of available beams
(B=M ). Then, an exhaustive search is performed with the
aim of finding the best sub-set of users and beams in that
configuration. After that, the algorithm is iterated in the reverse
ordering by testing all the possible combinations with a lower
number of active beams in each step. Again, user-beam pairs
chosen in the first step are retained. One can easily verify
that the number of SINR operations is equal to that of the
bottom-up approach.

3) Greedy Beam Selection: The greedy beam selection
procedure extend the search to a larger set of users. Specific
details about the proposed greedy algorithm can be found
in Table II but essentially it consists in selecting in each
step the pair user-beam leading to a higher increase of sum-
rate (or aggregated throughput). The algorithm is iterated
until the configuration with all the active beams is reached
and, then, the best subset with B = j∗ active beams is
selected. The algorithm performs (M − B + 1)K SINR
computations in each iteration with a total computational cost
of
∑M

B=1(M − B + 1)K = KM
2 (M + 1) SINR operations.

4) Enhanced Greedy Beam Selection: In the greedy beam
selection scheme proposed above, the overall performance
depends on the user-beam pair of the first iteration (i.e., in
the absence of inter-user interference). Instead, we can defer
such decision to the second iteration where some inter-user
interference is already present. In other words, we initialize
the algorithm by identifying the best user for each beam
i = 1, ..., M (i.e., in the absence of interference). Then, we
run the greedy algorithm M times taking as a starting point
each user-beam pair obtained in the initialization. As a result,
KM

2 (M + 1) − K(M − 1) operations should be done each
time the algorithm is run and, since this procedure should be
repeated M times, the total computational complexity amounts
to KM

2 (M2 − M + 2) SINR computations.
5) Restricted Beam Selection: Finally, we present a

methodology where the optimum beam selection procedure
is restricted to a predetermined number of active beams B.
In other words, all the possible transmission configurations
with B active beams are tested only. By doing so, the number
of SINR computations drops to

(
M
B

)
KB = KM !

(M−B)!(B−1)!
operations. This strategy is very appropriate in those situations
where the optimum number of active beams is known before-
hand. Due to the complexity of the sum-rate and aggregated
throughput expressions, obtaining the optimum number of
beams (in terms of the SNR and K) is a quite complicated task
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TABLE II
GREEDY BEAM SELECTION ALGORITHM

1. Set j=1, K1={1, . . . , K} and B1={w1, . . . ,wM}.
2. Compute the best pair user-beam for the case with only one active beam as:

(k1, i1) = argmax(k,i)ρ|hT
k wi|2, ∀(k, i) ∈ K1 × B1

3. Compute R1 = Θ(ρ|hT
k1wi1 |2), where Θ(x) =

{
log2(1 + x) for sum-rate
bmi(1 − αmie

−βmi
x)L for aggregated throughput

4. Set j = j + 1, Kj=Kj−1 − {kj−1} and Bj=Bj−1 − {wij−1}.
5. Compute the best pair user-beam that can be added to the system as:

(kj , ij) =

= argmax(k,i)

{
Θ

(
|hT

k wi|2
j/ρ +

∑j−1
s=1 |hT

k wis |2

)
+

j−1∑
p=1

Θ

(
|hT

kp
wip |2

j/ρ + |hT
kp

wi|2 +
∑j−1

s=1
s�=p

|hT
kp

wis |2

)}
,

∀(k, i) ∈ Kj × Bj

6. Compute

Rj =

j∑
p=1

Θ

⎛
⎜⎝ |hT

kp
wip |2

j/ρ +
∑j

s=1
s�=p

|hT
kp

wis |2

⎞
⎟⎠

7. If j < M , go to step 4. Otherwise go to step 8.
8. Set j∗ = argmaxjRj .
9. The algorithm is finished and the set of selected users and beams is the following:

(k1,wi1), ..., (kj∗ ,wij∗ )

and an exhaustive search is required. Operating points can be
obtained off-line and provided to the base station. However, by
taking into consideration the analysis carried out in Sections
IV and V, some rules can be derived. In terms of sum-rate
performance, the optimum strategy is using a single active
beam when the high-SNR scenario is considered, whereas
the use of several active beams pays off for decreasing values
of SNR7. When the aggregated throughput is considered, the
single beam solution quickly saturates in the high-SNR region
and (according to the size of the highest order modulation
scheme) using a higher number of active beams could be
a more appropriate choice. It is in the mid-SNR region
where spatial multiplexing gains are efficiently exploited, since
the impact of inter-beam interference on PER performance
restricts its use in the low-SNR region. For both the sum-rate
and aggregated throughput metrics, one can enlarge the SNR
regions where adopting a multi-beam strategy is beneficial by
increasing K .

Besides, since the number of active beams is fixed a priori,
this strategy allows for a reduction in the amount of feedback.
This is because each user can report the highest SINRs for
each configuration instead of all the gains |hT

k wi|2 (required
by all the previous strategies) with a reasonable amount
of feedback. Then, by sending only SINRs associated to a
limited number of transmission configurations, sub-optimum
approaches can be derived in terms of system performance vs.
feedback requirements (further details are given in the next
section). In the sequel, this algorithm will be called BSX ,

7As previously commented, we consider ρ = 0 dB as the low-SNR region
due to practical constraints. For lower values of SNR, using only one active
beam is the optimum strategy when a beam selection approach is considered
[16].

where X stands for the number of active beams.

B. Numerical Results and Discussion

We consider a system with a number of active users in the
range K = 10, ..., 100 transmitting data packets with L=10
symbols in each and with M=3 antennas at the base station.
Notice that, in the proposed scenario, results obtained with
the BS3 strategy will be equivalent to those obtained with
ORB strategy with all the active beams (B=M=3). Then, these
results can be considered in the analysis of the gain obtained
with the proposed beam selection strategies with respect to the
conventional ORB technique. Finally, it is also worth noting
that both the restricted (BSX) and optimum beam selection
(Optimum BS) algorithms presented in this work coincide with
the static and dynamic ORBF/SBS strategies independently
proposed in [16].

In Fig. 3, the different beam selection methodologies are
compared in terms of sum-rate performance. We start by ana-
lyzing the low-SNR case (ρ=0dB). As expected, the best per-
formance is obtained with the exhaustive search. Regarding the
sub-optimum approaches, performance losses can be observed
for both the bottom-up and greedy methodologies, whereas
most of the sum-rate gains can be achieved with the top-down
and enhanced greedy approaches. This is because using several
active beams may be beneficial when the SNR is low and,
then, incorrect decisions made in the first step of the greedy
and bottom-up algorithms penalize system performance. This
effect is even clearer when K increases. As for the restricted
beam selection procedures, the best results are obtained with
BS2. It is worth noting that better performance can be obtained
with BS3 in scenarios with M>5 antennas. In those situations,
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however, the complexity of the system and the amount of
information to be conveyed in the feedback channel becomes
inappropriate for practical implementation and, for that reason,
we have considered M=3.

When the SNR increases (see the top part of Fig. 3),
the system becomes interference-limited. As a result, system
behavior is more sensitive to the accuracy of the beam selec-
tion procedure. One can also observe that results associated
to BS1 improve, whereas performance associated with BS3
deteriorates. This is because the optimum solution tends to use
a reduced number of active beams when the SNR increases.
This effect can be clearly observed in a high-SNR scenario,
say ρ>30 dB (not shown here for brevity).

For the throughput case, however, a different behavior can
be observed. As discussed in Section V, the most appropriate
solution in low-SNR scenarios is to use only one active beam.
Then, as confirmed by the results obtained for ρ=0 dB in Fig.
4, BS1 and those recursive techniques starting with one active
beam (bottom-up, greedy and enhanced greedy) perform much
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Fig. 5. Aggregated throughput vs. users for the different beam selection
procedures (L=10 symbols, ρ= 20 dB).

TABLE III
COMPUTATIONAL COMPLEXITY FOR THE DIFFERENT APPROACHES IN

TERMS OF SINR COMPUTATIONS (K=20 USERS).

M=1 M=2 M=3 M=4 M=5
Optimum BS 20 80 240 640 1600

Bottom-up/Top-down 20 42 69 108 175
Greedy 20 60 120 200 300

Improved Greedy 20 80 240 560 1100
BS-1 20 40 60 80 100
BS-2 - 40 120 240 400
BS-3 - - 60 240 600
BS-4 - - - 80 400
BS-5 - - - - 100

better. However, throughput saturates when the SNR grows
and adding more active beams pays off then (see Figs. 4 and
5). For moderate SNRs and a high number of users, better
results are obtained with the top-down and BS3 approaches
(see the high-users region of the ρ=10 dB case). Otherwise,
BS2 seems to be a reasonable strategy due to its simplicity
and overall performance.

Finally, in Table III we compare the different schemes in
terms of computational complexity. The sub-optimum ones,
either recursive or not, lead to substantial savings with respect
to conducting an exhaustive search, which compensate for
their performance losses in some cases. Out of the sub-
optimum approaches, enhanced greedy is the one exhibiting
the highest complexity.

VII. IMPACT OF FEEDBACK QUANTIZATION ON

AGGREGATED THROUGHPUT

In this section, we focus on the case where the SINRs
conveyed over the feedback channel are quantized versions
of the analog ones. Motivated by the work in [8], this section
is devoted to find out how many feedback bits are required
to exploit MUD in an ORB context. Finally, a beam selection
approach trading-off system performance vs. feedback require-
ments is proposed.
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A. Aggregated Throughput with Quantized Feedback

Let Q={q1, q2, ..., q2Lq } be the set of quantization levels.
After an arbitrary user k identifies the beam i∗ with the highest
SINR, γk,i∗=maxi∈B SINRk,i, it is quantized according to
the rule ”Q(γk,i∗)=γqj if γqj≤γk,i∗<γqj+1”, where γqj (j =
1, ..., card(Q)) are the different SINR thresholds associated
with the quantization levels. Notice that such quantization
rule results into a conservative, but reliable, assignment of
AMC modes. Next, an Lt=Lq+Lb-bit message is sent over
the feedback channel, with Lb=log2(B)� bits dedicated to
identify the selected beam.

Now, we define Ak,i as the event that user k is selected on
beam i, and we obtain the probability of Ak,i conditioned on
the fact that γk,i belongs to the level qj as [8]:

Prob(Ak,i|γk,i ∈ qj) =
K−1∑
l=0

1
l + 1

(
K − 1

l

)
Prob (#users different from k in qj = l)

×Prob(#users different from k in levels lower than qj=K−l−1)

Each term in the summation takes into consideration that, apart
from user k, l users lie in quantization level qj and that the
rest of users must lie in lower quantization levels. The term
1/(l+1), on the other hand, is referred to the probability that
user k is scheduled for transmission for each value of l, since
a random user must be selected if more than one user lie in
qj .

In an homogeneous scenario, Prob(Ak,i|γk,i ∈ qj) does not
depend on k or i. More specifically, by modeling the SINRs
of all the users with a generic random variable γ with CDF
and pdf expressions given by Eqs. (4) and (5), respectively,
the following expression results:

Prob(Ak,i|γk,i ∈ qj) =
K−1∑
l=0

1
l + 1

(
K − 1

l

)
(Prob(γ ∈ qj))

l

×
⎛
⎝Prob

⎛
⎝γ ∈

⋃
p<j

qp

⎞
⎠
⎞
⎠

K−l−1

After some algebraic manipulation and bearing in mind
that Prob(γ ∈ qj) = FSINR(γqj+1) − FSINR(γqj ) and

Prob
(
γ ∈ ⋃p<j qp

)
= FSINR(γqj ), it can be readily shown

that

Prob(Ak,i|γk,i ∈ qj) =
1
K

(
FSINR(γqj+1 )

)K − (FSINR(γqj )
)K

FSINR(γqj+1 ) − FSINR(γqj )
(17)

The throughput share corresponding to user k on beam i
follows as:

ηk,i �
card(Q)∑

j=1

Prob(Ak,i|γk,i ∈ qj)bmj

×
∫ γqj+1

γ=γqj

(1 − αmj e
−βmj

γ)LfSINR(γ)dγ , (18)

where each integration interval corresponds to the expected
throughput in each quantization level. Besides, we assume that
the modulation scheme for quantization level qj is selected
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according to the quantized value of γk,i, that is mj = m ⇐⇒
γth,m ≤ γqj < γth,m+1.

Finally, by plugging Eqs. (17) and (5) into Eq. (18) and
summing up over users (k=1, ..., K) and active beams (i ∈ B),
we can write the aggregated throughput expression as:

η(B,Q) �
K∑

k=1

∑
i∈B

ηk,i = B

card(Q)∑
j=1

bmj

×
L∑

l=0

(
L

l

)
(−αmj )

l

(
FSINR(γqj+1 )

)K − (FSINR(γqj )
)K

FSINR(γqj+1 ) − FSINR(γqj )

×
∫ γqj+1

γ=γqj

(
B

ρ
(1 + γ) + B − 1

)
e−γ(βmj

l+ B
ρ )

(1 + γ)B
dγ .

The integral term in the above expression resembles that of
Eq. (21) in Appendix. Therefore, one can once again follow
the same procedure to finally obtain:

η(B,Q) � B

card(Q)∑
j=1

bmj

L∑
l=0

(
L

l

)
(−αmj )

l

×
(
FSINR(γqj+1 )

)K − (FSINR(γqj )
)K

FSINR(γqj+1 ) − FSINR(γqj )
eμq μcq

q

×
[

B

ρμq

(
Γ
(
1 − cq, (1 + γqj )μq

)− Γ
(
1 − cq, (1 + γqj+1 )μq

))

+(B − 1)
(

Γ
(−cq, (1 + γqj )μq

)− Γ
(−cq, (1 + γqj+1 )μq

))]

(19)

where μq = βmj l + B
ρ and cq = B − 1.

B. Quantization Law

So far, the quantization law has been left as a free parameter.
Obtaining the set of quantization thresholds maximizing the
throughput expression (19) is quite involved. However, we
can simplify this issue by recalling that, according to the
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adopted scheduling rule, only the highest SINRs are relevant
to take advantage of multi-user gains. Therefore, we expect
that throughput maximization is obtained from a non-uniform
quantization law with smaller quantization intervals in the
high-SINR region. As depicted in Fig. 6, the quantization
thresholds could be given by the inverse of either the post-
scheduling CDF function or the pre-scheduling, i.e. individual,
CDFs. Of course, a quantization law tailored to the post-
scheduling SINR is expected to give better results since this is
directly related with the scheduling rule. Numerical evaluation
in Subsection VII-C confirms this conjecture. In summary, the
SINR thresholds related to the different quantization levels are
selected as:

γqj = F−1
SINR∗

(
j − 1
2Lq

)
for j = 1, ..., card(Q)

with γq1=0 and γqcard(Q)+1=∞. Notice this is a extension of
the quantization procedure proposed in [26] in the sense that
a multi-beam scenario is considered and a cross-layer strategy
is adopted. The last affirmation comes from the fact that
quantization levels in the physical layer depend on the number
of admitted users decided by the access control mechanism in
the data link layer. As a final remark, it is worth pointing out
that the proposed method may have practical limitations as all
the users need the value of K . Then, the BS must broadcast
this information to the users periodically. As a result, the
overall throughput of the system may be affected (specially
in scenarios with bursty traffic) but the analysis of such effect
is out of the scope of this work.

C. Numerical Results and Discussion

As in the previous section, we restrict the analysis to a
scenario with M=3 transmit antennas. First, we evaluate in
Fig. 7 performance in terms of aggregated throughput for the
quantization methodologies based on pre- and post-scheduling
statistics. The post-scheduling based criterion significantly
outperforms its pre-scheduling counterpart for the whole range
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of users. For an increasing number of active users, the per-
formance gap gets larger since the increased clipping rate
(i.e., the SINR of the scheduler user is potentially higher
than the highest quantization threshold) penalizes much more
the quantization law based on pre-scheduling statistics. When
adopting a quantization law based on the post-scheduling CDF
most of the MUD gain can be efficiently captured with Lq=4
or Lq=2 bits. The curves depicted in Fig. 8 provide some more
insight into the impact of quantization on system performance.
First, the higher the SNR the larger the impact of quantization
since, in this case, the range of SINR fluctuations is larger.
As commented above, this is emphasized in scenarios with
a high number of users. However, most of the MUD can
be effectively captured by a very low number of bits. More
precisely, for the worst case (ρ=20 dB and K=60 users),
the proposed quantization law attains approximately 81% and
92% of the analog throughput by just using 2 or 3 bits,
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respectively.
Finally, we focus on the BS1 and BS2 procedures with

the aim of analyzing their performance as a function of the
total number of feedback bits Lt. As shown in Section VI,
these schemes exhibit remarkable performance vs. complexity
trade-off and allow the derivation of sub-optimum approaches
according to the restrictions in the feedback channel. For
instance, consider a scenario with M=3 available beams. In
this case, three transmission configurations are available for
both the BS1 and BS2 procedures. That is, with B=2 the beam
subsets available at the base station are B1={1, 2}, B2={1, 3}
and B3={2, 3}; whereas for the single beam case the subsets
are B1={1}, B2={2} and B3={3}. The system can then be
simplified by considering only one (No Beam Selection, only
B1 is available) or two transmission configurations in the
selection procedure (BSX-2 tx, B1 and B2 are available). By
doing so, the total number of bits Lt required in the feedback
channel is lower. For the BS1 case, only the quantized version
of the highest SINR and the beam index must be sent
to the BS. As a consequence, the number of required bits
amounts to Lt = Lq + log2 Ntxconf

�, where Ntxconf
stands

for the number of transmission configurations. Conversely,
Lt = Ntxconf

(Lq + log2 B�) bits are necessary in the BS2
scheme since both the quantized versions of the SINRs and
the index beams must be reported.

First, we analyze BS1 in the low-SNR regime (Fig. 9,
bottom). As long as we increase the number of quantization
bits, performance improves. Further, if some of those bits are
dedicated to incorporate beam selection capabilities, larger
gains can be achieved. As an example, by using Lt=2 bits
we gain 29.46% with respect to the Lt=1-bit case if both bits
are used for quantization, whereas the gain rises to 58.34% if
one of those bits is used for beam selection (BS1-2 tx). For the
Lt = 3-bits case, the gain with BS1-3 tx amounts to 69.96%.
As for the high-SNR region (Fig. 9, top), similar conclusions
follow to BS2. In particular, a good performance vs. feedback
trade-off is provided by BS2-2 tx as substantial gains can be
obtained with only Lt=6 bits.

VIII. CONCLUSIONS

In this paper, we have investigated the performance of ORB
in a context where the number of active beams is used as
design parameter and a realistic number of users has been
considered.

From the analysis in terms of sum-rate we have proved
that in interference-limited scenarios one single active beam
turns out to be the best strategy whereas a higher number of
beams is preferred in a noise-limited context. The throughput
analysis (where granularity and saturation effects result from
the limited number of AMC modes) has shown that in the
interference-limited scenario, the single-beam solution quickly
saturates for small constellation sizes and one should rather
use B=2 beams. In noise-limited scenarios, the (high) PERs
experienced by the smallest constellation size often make
multiple-beam solutions barely recommended.

On the basis of the conclusions above, we have pro-
posed optimum and sub-optimum beam selection schemes.
Their sum-rate or throughput performance has been assessed

thus proving that restricted beam selection exhibits a good
performance-complexity trade-off.

Finally, we have analyzed the impact of SINR quantization
on system performance, showing that 2 quantization bits is
enough to have the MUD gain offered by ORB. Afterwards,
we have proposed a beam selection algorithm capable of
trading-off system performance vs. feedback requirements.
In particular, we have shown that ORB performance can be
considerably improved by requiring a few bits in the feedback
channel with the help of restricted beam selection.

APPENDIX

In order to derive a closed-from expression of the ag-
gregated throughput, one should solve expression (15). By
plugging (6) into (15) and using the binomial expansion, the
following expression results:

η(B) = B

card(M)∑
m=1

bmK

L∑
l=0

(
L

l

)
(−αm)l

K−1∑
k=0

(
K − 1

k

)
(−1)k

×
∫ γth,m+1

γ=γth,m

(
B

ρ
(1 + γ) + B − 1

)
e−γ(βml+ B

ρ (k+1))

(1 + γ)k(B−1)+B
dγ

(20)

where it is observed that the problem is reduced to solve an
integral of the type:∫ v

t=u

e−at

(1 + t)n
dt =∫ ∞

t=u

e−at

(1 + t)n
dt −

∫ ∞

t=v

e−at

(1 + t)n
dt a > 0; n = 1, 2, ...

(21)

By using the change of variables x = (1 + t)a, one can
re-writte anyone of the integrals above as

∫∞
t=u

e−at

(1+t)n dt =
eaan−1

∫∞
x=(1+u)a

e−xx−ndx and notice that can be easily
solved by resorting to the identity [22, Eq. 8.350.2]:∫ ∞

t=u

e−at

(1 + t)n
dt = eaan−1Γ(1 − n, (1 + u)a) (22)

where Γ(α, x) stands for the complementary incomplete
gamma function (Γ(α, x) �

∫∞
x e−ttα−1dt). Finally, by using

Eq. (22) in Eq. (21) one can solve Eq. (20) and verify that
Eq. (16) holds.
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