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Abstract—This paper focuses on the symbol detection problem of
random pulse-position modulation (PPM) ultrawideband (UWB)
signals in the absence of interframe interference. Particular atten-
tion is devoted to severely time-varying channels where optimal
detectors are proposed for both uncorrelated and correlated scat-
tering scenarios. This is done by assuming the received waveforms
to be unknown parameters. In UWB communication systems, the
assumption of unknown random waveforms is consistent with the
fact that the received waveform has very little resemblance with
the original transmitted pulse. In order to circumvent this limi-
tation, a conditional approach is presented herein by compressing
the likelihood ratio test with the information regarding the second-
order moments of the end-to-end channel response. Both full-rank
and rank-one detectors are derived. For the reduced complexity
rank-one detector, an iterative procedure is presented that maxi-
mizes the J-divergence between the hypotheses to be tested. Finally,
simulation results are provided to compare the performance of the
proposed detectors in different propagation environments.

Index Terms—GLRT, low-SNR, pulse-position modulation
(PPM), random signals, signal detection, ultrawideband.

I. INTRODUCTION

I N the recent years ultrawideband (UWB) communication
systems have attracted the attention of many disciplines

including, among others, antennas and propagation, electro-
magnetic compatibility, electronics, and signal processing for
communications. UWB technology is based on the emission of
low-power and extremely short pulses that occupy a very large
bandwidth, and it is being considered for the next generation
of wireless short-range communication systems [1]. Typically,
UWB signals are defined to have an effective bandwidth larger
than 500 MHz or a fractional bandwidth greater than 20%,
according to the U.S. Federal Communications Commission
(FCC) [2]. As a key feature, using such a very large bandwidth
involves many intricate problems that do not appear in tradi-
tional narrowband communications.

One of the main problems with the transmission of UWB sig-
nals is that the received waveform has very little resemblance
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with the original transmitted pulse. There are several reasons for
this to occur. First, the solid state pulse generating devices ex-
hibit implementation imperfections such as random timing jitter
or asymmetric polarity rising times that prevent the transmitted
pulses to be all exactly the same [3]. Second, the radiating el-
ements are found to differentiate the transmitted pulse [4], [5].
Third, the propagation environment is found to be terribly fre-
quency-dependent and this causes a severe pulse distortion at
the receiver [6], [7]. Fourth, experimental results show that pulse
distortion is also path-dependent and thus, different pulse distor-
tions are experienced when propagating through different paths
[8]. As a result of these impairments, but especially when the
propagation paths change due to the relative movement between
transmitter and receiver, the end-to-end channel response can be
assumed to be time-varying. In some applications, however, the
paths can also change as a result of moving scatterers caused by
moving persons in indoor scenarios [9]. In these circumstances
it is reasonable to assume that the received waveforms are all
random. This will be the starting hypothesis for the study to be
presented herein.

It is interesting to remark that in those UWB applications
where the channel remains static for a long time, traditional
signal processing techniques for narrowband communication
systems can still be applied. When channel information is avail-
able, this involves a deterministic approach based on applying
the well-known matched-filter principle to all the propagation
paths (see, for instance, [10]–[12] or [13] among many other).
When no channel state information is available but some feed-
back between receiver and transmitter is allowed, a promising
approach is to use time-reversal as indicated in [14] and [15].
However a rather different approach must be adopted when the
channel becomes severely time-varying. In that case it is reason-
able to assume that the received signal is random. Consequently,
the symbol decision strategy cannot rely on the specific shape
of the received waveform but on the underlying statistics of the
received signal. Clearly this is a problem of noncoherent signal
detection, a topic that has received significant attention in the
last decades with many important contributions to RADAR and
SONAR applications [16], [17], among many other.

Due to the absence of channel state information and the adop-
tion of noncoherent detection, multilevel signaling based on
pulse-amplitude modulation (PAM) cannot be adopted. For this
reason, the work to be presented herein is based on pulse-po-
sition modulation (PPM). For the sake of simplicity, this paper
will focus on the noncoherent symbol detection problem of bi-
nary-PPM UWB signals. Based on the statistical characteriza-
tion of the received waveform, the symbol detection problem is
formulated within the framework of likelihood ratio testing for
the low-signal-to-noise ratio (SNR) regime. On the one hand,
the low-SNR assumption can be understood as a realistic hy-
pothesis to the real working conditions of UWB systems. On
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the other hand, operating under the low-SNR regime allows the
analytical tractability of the detection problem and the applica-
bility of maximum likelihood techniques as in [18]. Once the op-
timal symbol decision statistics are derived, different practical
cases of interest are further analyzed. For instance, an informa-
tion-theoretic based receiver is proposed as a tradeoff between
performance and implementation complexity in the presence of
correlated scattering. The result is a gradient based scheme that
provides the best and the simplest receiver filter for maximizing
the divergence measure of the symbol decision problem. Sim-
ulation results are presented to evaluate the performance of the
proposed receivers and insightful links are established with ex-
isting contributions in the recent literature.

The paper is organized as follows. The signal model and
problem statement are introduced in Section II. The estimation
of the actual propagation statistics is presented in Section III.
Next, the optimal low-SNR symbol decision rule is provided
in Section IV. The particularization of this symbol decision
strategy to the case of uncorrelated and correlated scattering is
analyzed in Sections V and VI, respectively. Finally, simulation
results are discussed in Section VII and conclusions are drawn
in Section VIII.

II. SIGNAL MODEL AND PROBLEM STATEMENT

A. Modulation Format

The signal model to be considered in this paper assumes the
transmission of ultra-short pulses with binary pulse-position
modulation (2-PPM). The transmission of every single infor-
mation bearing symbol is implemented by the repetition of
low-power pulses. Each of these pulses is confined within a
frame duration of samples that must be sufficiently large so
as to avoid interframe interference between consecutive frames.
Consequently, the frame duration must encompass the max-
imum delay spread of the channel and the maximum time-shift
introduced by the PPM modulation and the time-hopping (TH)
sequence. Since we focus on the symbol decision problem, the
TH sequence is assumed to have been previously acquired in a
prior stage of the receiver. Thus, no TH is assumed hereafter.

At the receiver, the transmitted pulses arrive in the form of
distorted waveforms. This degradation is caused by the inherent
distortion produced by the wideband radiating elements, but es-
pecially, because of the propagation physics of UWB signals.
In this sense, and similar to [19], an unstructured approach is
adopted for modeling the received signal. That is, we completely
disregard the paths of the propagation channel and we just con-
sider the received waveform as a whole. This received wave-
form is denoted by the discrete-time representation and the
whole received signal can be expressed as

(1)

with representing the number of samples for the PPM time-
shift, is the number of samples per frame (i.e., the frame
duration), and is the number of samples per symbol (i.e.,
the symbol duration). Because of the frame repetition within the

symbol duration, the number of samples per symbol is
. Since binary PPM is adopted, the pulse-position sym-

bols are restricted to . Moreover, the sequence
accounts for the polarity randomization code that

is introduced in order to avoid the existence of spectral lines
that may violate spectral regulations [20]. Finally, incor-
porates the contribution of both the thermal noise and the in-
terference signal. That is, where
are the zero-mean Gaussian samples of thermal noise with vari-
ance and is the interference signal to be described in
Section II-B.

Regarding the received waveform, note that in (1)
stands for the received waveform corresponding to the th
symbol and the th frame. The received waveforms
have a finite time support of samples and the indexation

is consistent with the fact that the received waveform
may possibly differ from frame to frame. For instance, this vari-
ation in the received waveforms may be caused by the relative
movement between transmitter and receiver but also because
of moving scatterers like moving persons [9]. Moreover, and
similarly to spread-spectrum systems, the timing error can be
decomposed into frame-level (i.e., coarse) timing error and
pulse-level (i.e., fine) timing error. The signal model in (1)
assumes that the frame-level timing error has been previously
acquired so that the residual pulse-level timing error becomes
part of the shape of the unknown waveform [18].

With the above considerations, let us express the signal model
in (1) into a more compact matrix notation. To this end let us di-
vide the observation interval into a total of segments , each
with a length equal to the symbol duration . By doing so the
observation interval assumes the transmission of binary-PPM
symbols. Similarly, let us divide each received symbol vector

into a total of segments with dimensions
corresponding to the frames within a symbol duration. That
is, . According to the structure
of binary PPM, the received signal for each frame interval can
be expressed as follows:

(2)

Matrices and in (2) are a zero-padding
matrix and a -samples time-shift matrix, re-
spectively. That is, whereas

for and for
. Finally, the vector incorporates the sam-

ples of the received waveform for the th symbol and th frame,
and the corresponding samples of the noise and interfer-
ence contribution.

B. Interference Signal Model

The two main features of UWB communication systems are
their very large spectral occupancy and their very low power
spectral density. The spectral occupancy of UWB signals is on
the order of a few GHz and this forces UWB signals to coexist
with most of the existing wireless communication systems.
However, the very large spectral occupancy of UWB signals
makes current wireless communication systems to be perceived
as narrowband interferences by a UWB receiver. In particular,
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the most significant source of interference are IEEE 802.11a
WLAN devices, whose central frequency is located around
5 GHz with a transmitted bandwidth on the order of 20 MHz.
These narrowband interference sources can be considered to be
high-power sources compared to UWB signals [21].

The Gaussian signal model is assumed in this paper for mod-
eling interference signals arriving at an UWB receiver. As in
[11] or [22], interference signals are assumed to be discrete-time
passband Gaussian random processes with zero-mean and spec-
tral density characterized by a central frequency and a
bandwidth occupancy as follows:

otherwise
(3)

Consequently the interference in the equivalent noise term
in (1) is characterized by a covariance

matrix whose entries are given by
with the

interference power.

C. UWB Channel Model and Operating Conditions

Certainly, the optimal design of a communication system
must take into consideration the propagation conditions of the
transmitted signal on its way to the receiver end. However,
many issues related with the propagation conditions of UWB
signals are still under study. This is due to the fact that, al-
though UWB technology has been around since the 1960s,
most channel measurement campaigns are being performed
in the recent years. Therefore, there is still a lot to be learned
about the propagation characteristics of UWB signals and more
measurement campaigns are still required [23].

The most common characteristic of UWB transmissions is
the extremely frequency-dependent and path-dependent transfer
function. From a stochastic point of view, some authors indicate
that the statistical modeling of the measured small-scale fading
is related to the Nakagami distribution [24], or to the lognormal
distribution [25]. These results for high data rate UWB systems
in residential and office environments were included in the IEEE
802.15.3a channel model [25]. However, UWB channels mea-
sured by other authors were found to be not so different from tra-
ditional channels. For instance, measurement campaigns were
carried out with both moving and fixed terminals in open space
environments such as a lobby [9], [26], and in industrial environ-
ments [27]. For these propagation environments, the small-scale
fading statistics of the received waveforms were found to be
closer to the traditional Rayleigh and Rice distributions rather
than to Nakagami and lognormal distributions assumed in IEEE
802.15.3a channel models. Similarly to traditional wideband
channels, the Rayleigh distribution was found to comply with
moving terminals whereas the Rice distribution was found to
comply with static terminals. This is somehow surprising be-
cause the very large bandwidth of UWB signals is often argued
for not assuming the traditional Gaussian distribution for the
channel tap amplitudes. These new results for low data-rate ap-
plications in industrial, outdoor, or rural environments were in-
cluded in the IEEE 802.15.4 channel models [28].

In the present paper, the Gaussian approach suggested by [9],
[26] or [27] is adopted for mathematical tractability. Conse-
quently, the samples of the received waveforms are modeled
by a zero-mean random Gaussian process driven by a

covariance matrix . According to the signal model in
Section II, let us indicate the hypothesis of transmitting
by and the hypothesis of transmitting by . Under
hypothesis , the conditional probability density function for
the th received symbol is given by the multivariate Gaussian
probability density function as follows:

(4)

with the covariance matrix for the signal re-
ceived under and the covariance matrix
for the Gaussian contribution of both thermal noise and interfer-
ence. Similarly, the probability density function under hypoth-
esis is found by substituting with in (4).

It is important to note that the probability density function
in (4) is conditioned on the covariance matrix . This covari-
ance matrix is unknown since it conveys the information
regarding the second-order statistics of the actual received
waveforms, which are usually unknown and depend on the
particular transmission/reception setup and propagation condi-
tions. Therefore, the covariance matrix can be regarded as
a nuisance parameter that has to be estimated. Replacing
with a suitable estimate leads to a compressed or conditional
approach where the symbol decision statistics do not depend
on anymore. This conditional approach is presented in
Sections V and VI, whereas the estimate for is to be pre-
sented next in Section III.

III. ESTIMATION OF THE UNKNOWN CHANNEL

COVARIANCE MATRIX

Because of the unknown distortion suffered by the trans-
mitted pulse, the covariance matrix of the Gaussian random
received waveform model is also unknown. However, this co-
variance matrix is ultimately required for evaluating the symbol
decision statistics and thus, it must be estimated from the
incoming data. To do so, an estimate for is presented herein
based on the least-squares principle. The key point is to exploit
the structure of the frame-level synchronous autocorrelation
matrix of the received data. Let us denote the
frame-level synchronous autocorrelation matrix by . Then
the signal model for is given by

(5)

The signal model in (5) assumes binary-PPM with equiprob-
able symbols. In this sense, the observation interval must
be large enough so as to guarantee the equiprobability of
received symbols (e.g., ). Since
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and according to Section II-A, the
following least-squares criterion can be formulated:

(6)

In (6), stands for the estimate of the synchronous autocorre-
lation matrix

(7)

With the above considerations, and since
for any real matrix , the unique solution to

the least-squares problem in (6) is given by

(8)

with the so-called mixture matrix, repre-
senting the linear mapping of the covariance matrix onto the
synchronous autocorrelation of the received data. In addition,

stands for the inverse of the column-stacking
operator.1 Finally, note that the mixture matrix is a constant
matrix that can be calculated offline. This is because the matrix

only depends on the time-shift which is usually a priori
known at the receiver.

IV. OPTIMAL SYMBOL DECISION STATISTICS

This paper proposes a fully stochastic approach for ad-
dressing the symbol detection problem of random UWB
signals. By doing so, the time-varying behavior of the unknown
propagation conditions can be easily incorporated into the
model. Next, the optimal test statistics for the binary-PPM
decision problem are presented and the relationship with some
previous contributions in the literature is overviewed.

A. Log-Generalized Likelihood Ratio Test (GLRT) for the
Binary-PPM Decision Problem

Since the received waveforms are assumed to be random, the
symbol detection problem must rely on the statistical proper-
ties of the received data rather than on the particular shape of
the received waveforms. The optimal symbol decision statistics
will be derived based on the GLRT, which maximizes the prob-
ability of detection for a given probability of false alarm [17].
The GLRT just requires the knowledge of the probability den-
sity function for the hypotheses to be tested. For the problem at
hand, two hypotheses must be decided depending on whether

or . Thus, the GLRT is obtained by evaluating
the ratio

(9)

1The solution can also be formulated in terms of the vech( � ) operator which
eliminates the redundancy of symmetric matrices by just considering the entries
on and below the main diagonal.

and deciding when or when
.

At this point, two important assumptions are considered.
First, the noise and the interference signals are considered
high-power sources compared to the UWB signal. Second, the
very large bandwidth of UWB signals allows us to assume
that interference signals from existing wireless services are all
narrowband. This second assumption is reasonable because
the bandwidth of UWB signals is on the order of a few GHz
whereas the bandwidth of existing wideband wireless systems
is on the order of 10 to 20 MHz (e.g., IEEE802.11a/b/g wireless
LAN devices).

With the above considerations, the logarithm can be applied
to both sides of (9). Then a simple expression is obtained for the
log-GLRT decision rule for binary-PPM

(10)

where are the frame-level covariance matrices for
the signal model under hypotheses , and is the
estimate of the frame-level synchronous autocorrelation matrix
during the th received symbol duration. That is

(11)

All the analytic derivations to obtain (10) are omitted for
clarity reasons but they are all given in Appendices A and
B. Finally, the symbol decision rule can be implemented as

.
Note that and in (10) depend on according to

Section II-A. Since the covariance matrix is unknown, it
must be first estimated from the incoming data. An estimate for

was already presented in (8) and the compression of the log-
GLRT with this estimate will be presented later on in Sections V
and VI. Finally, note that for the particular case of a constant
waveform, both and would be rank-one matrices and
the detector in (10) would naturally lead to the matched filter
detector.

B. Relationship of the Proposed Log-GLRT With Existing
Literature

The log-GLRT presented in (10) is a rather general result
for the symbol detection problem of binary-PPM UWB signals
under the assumptions of low SNR and low signal-to-interfer-
ence ratio. In this sense, it is interesting to note that many of the
receivers heuristically proposed in the existing literature are in-
deed particular cases of the more general result in (10).

For instance, the log-GLRT can be understood as a balanced
second-order matched filter. Let us denote the difference matrix

in (10) by , that is, . Thus, becomes
the correlation template for deciding between the hypotheses

and , similarly to what occurs for the binary symbol
detection problem with deterministic signals. In that case, the
correlation template has impulse response

[29] which is indeed the scalar version of the second-order
template .

Another important point to be highlighted is that no matrices
are required to be inverted in the test statistics in (10). This is in
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contrast with traditional detectors for random signals, where the
inverse of covariance matrices is usually required [16]. The key
point here is that the result in (10) is derived for the low-SNR
regime, where the main degradation is caused by the thermal
noise. As a result the optimal test statistics are found to rely on
the signal subspace of the received data rather than on the noise
subspace. Therefore a more robust performance is expected in
front of the noise at the expense of a limiting floor effect for the
high signal-to-noise scenarios. This floor effect phenomenon is
explained as the degradation resulting from the noise introduced
by the algorithm itself [30] and it is commonly exhibited by
most low-SNR techniques.

Apart from the above considerations, the result in (10) in-
cludes the energy-detector receiver [31], [32]. This is a subop-
timal receiver that can be obtained from (10) by forcing un-
correlated scattering with a constant power delay profile. The
eigen-based received in [33] can also be obtained from (10) and
it aims at finding the best deterministic template for the linear fil-
tering of random received data. Finally, (10) under the assump-
tion of uncorrelated scattering results in the receiver proposed
in [34].

V. OPTIMAL RECEIVER UNDER THE UNCORRELATED

SCATTERING (US) ASSUMPTION

In the presence of US the covariance matrix of the received
waveform becomes diagonal. That is

(12)

with the power-delay profile
(PDP) of the end-to-end channel response (i.e., the PDP of the
received waveforms). Consequently the frame-level covariance
matrices for the hypotheses become
and , respectively. Note that is the

zero-padded version of the PDP indicated
by in (12).

In the sequel, the log-GLRT will be particularized first for
the case of a priori known PDP. This will provide insightful re-
lationships with existing contributions in the literature. Second,
the conditional log-GLRT will be presented which considers the
nuisance PDP as a deterministic parameter to be estimated.

A. Log-GLRT Under the Assumption of Known Power-Delay
Profile

Let us assume the PDP to be known at the receiver. Then, the
conditioned log-GLRT results in

(13)

(14)

where the optimal correlation template is defined as
. The receiver implementation for the test statistics in

(14) is shown in Fig. 1.
The structure in (14) is similar to that of the MLRP receiver in

[34] where the received waveform was modeled as a continuous-

Fig. 1. Optimal detector for random binary-PPM signals with uncorrelated
scattering when the PDP is a priori known.

time filtered Gaussian process. However, the weighting function
for the MLRP receiver depends on the inverse of the noise

power and thus, it significantly degrades in the low-SNR regime.
On the contrary, the weighting function in (14) does not
depend on the noise power but just on the power-delay profile
and thus, a more robust performance is expected.

It is also interesting to point out that the PDP-receiver pro-
posed in (14) particularizes to the well-known energy-detector
receiver [31] when the power-delay profile is constant. In that
case, for some positive constant and an all ones

vector.2 Then the weighting function becomes the
difference of two noncoherent integrations of received samples.

B. Conditional Log-GLRT

When the power-delay profile is not a priori known, a pos-
sible approach is to consider it as an unknown deterministic nui-
sance parameter that has to be estimated. An estimate for the
zero-padded power-delay profile is proposed here based on
the least-squares cost function introduced in (8). For the case of
uncorrelated scattering the cost function in (8) simplifies to3

(15)

Therefore, the least-squares estimate for the zero-padded
power-delay profile is given by

(16)

with the mixture matrix representing the linear
mapping of the power-delay profile onto the synchronous au-
tocorrelation of the received data. Plugging (16) into the log-
GLRT in (10), and taking into consideration the diagonal struc-
ture of under the US assumption

(17)

(18)

with the separation matrix representing the
linear mapping of the power-delay profile onto the weighting
function in (13). Since the mixture matrix is full rank,

2When omitted, the dimensions of the all ones vector1 and the identity matrix
I are (N � 1) and (N �N ), respectively.

3The diag( � ) operator returns the main diagonal when the argument is a
matrix and it returns a diagonal matrix when the argument is a vector.
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then and the log-GLRT in (18) can
be recast as

(19)

Note that the log-GLRT in (19) can be understood as a two-
step procedure. First, the binary-PPM mixed data is separated
from the synchronous autocorrelation matrix by using the
inverse of the mixture matrix . Second, the hypothesis testing
template is built with the separation matrix and the result
is correlated with the data from the th symbol synchronous
autocorrelation matrix . Note that both and are a
priori known at the receiver since they only depend on the time-
shift . Thus, the matrix product in (19) can be
calculated offline.

VI. OPTIMAL RECEIVER UNDER THE CORRELATED

SCATTERING (CS) ASSUMPTION

In the presence of CS, the only assumption to be made is
that the covariance matrix is symmetric positive semidef-
inite with decreasing entries along diagonals.4 In the sequel, the
conditional decision statistics for the CS assumption are pro-
vided first based on the compression of the log-GLRT with the
full-rank estimation of . Later on, a simplification is pre-
sented based on selecting a single eigenmode of so as to
implement a low-complexity rank-one detector.

A. Conditional Log-GLRT

In order to evaluate the symbol decision rule, the log-GLRT
in (10) must be first compressed with the information regarding
the unknown channel response. To this end, let us first express
the log-GLRT explicitly as a function of . Using the signal
model in Section II we have that

(20)

(21)

In (21), we have used the properties
and for any

and matrices for which the product and
is defined.

Similarly to the US case, the separation matrix in (21) is
defined as . Substituting the covariance
matrix with the estimate in Section III, the log-GLRT
results in

(22)

Since the mixture matrix is a full-rank matrix, then
and the log-GLRT in (22) can be

equivalently expressed as

(23)

4Toeplitz structure does not apply to this covariance matrix since the path-loss
results in non-WSS random Gaussian waveforms.

Similarly to (19), the log-GLRT in (23) can also be under-
stood as a two-step procedure. First, the binary-PPM mixed data
is separated from the synchronous autocorrelation matrix by
using the inverse of the mixture matrix . Second, the hypoth-
esis testing template is built with the separation matrix and
the result is correlated with the data from the th symbol syn-
chronous autocorrelation matrix . Note that both and
are a priori known at the receiver since they only depend on the
time-shift . Thus, the matrix product can be cal-
culated offline.

B. Divergence Maximizing Rank-1 Approach

The major drawback of the full-rank approach in (23) is that a
relatively high computational burden is involved. Note that the

matrix is required and the number of samples
per frame may be a large number because of the extremely
fine time resolution of UWB signals. In order to reduce com-
plexity, a practical alternative is to adopt a rank-one approach.
The problem can be stated as that of finding the best determin-
istic receiver filter for the incoming random signal. Rank-one
approaches for UWB signals have been previously addressed in
the literature, for instance, in [33]. However, very specific con-
straints were imposed such as assuming the modulation format
to be orthogonal PPM and forcing the optimal receiver to max-
imize the SNR at the receiver output.

In this paper the difference with previous rank-one ap-
proaches is that the proposed criterion does not restrict PPM
modulation to be orthogonal. Thus the maximum delay spread
of the end-to-end channel response is allowed to be larger than
the PPM pulse spacing , but smaller than the frame duration
in order to avoid interframe interference. In addition, the sym-
metric Jeffreys divergence between the hypotheses and
is adopted here as a reference criterion for minimizing the bit
error rate (BER). The Jeffreys divergence or J-divergence is a
symmetric measure of the difficulty in discriminating between
two hypotheses [35]. Therefore a low-rank detector can be
optimally designed by selecting those eigendimensions from

that maximize the J-divergence.
Similarly to [36], let us denote the J-divergence by

. Then the substitution with the log-
GLRT test in (10) results in

(24)

(25)

(26)

The result in (26) indicates that the difficulty in discriminating
between and is given by the distance between the corre-
sponding signal covariance matrices . This is a very
important result since it can be used to evaluate the impact of the
pulse-spacing in the discrimination between and .
An example is shown in Fig. 2 for different channel models of
the IEEE 802.15.3a/4 standards.

The rank-one approach aims to provide the best deter-
ministic filter that maximizes the J-divergence in (26). To
this end, let us express the signal covariance matrix under

as , with the matrix
containing the eigenvectors of
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Fig. 2. Normalized J-divergence as a function of the PPM time-shift N for
different channel models. Sampling time 250 ps.

Fig. 3. Optimal rank-one detector for random binary-PPM signals with corre-
lated scattering.

and the diagonal matrix
containing the corresponding eigenvalues. In this way the
log-GLRT in (10) and the J-divergence in (26) can be equiv-
alently expressed as

(27)

(28)

with the dimension of the signal subspace, i.e., the number of
significant eigenvalues. For the case of , the rank-one test
statistics particularize to

(29)

(30)

(31)

where is the optimal receiver filter that maximizes the
rank-one J-divergence

(32)

The receiver implementation of the test statistics in (29) is
shown in Fig. 3. As for the rank-one J-divergence in (32),
the evolution as a function of the PPM time-shift is depicted

Fig. 4. Evolution of the rank-one J-divergence measure as a function of the
PPM time-shiftN for the IEEE802.15.3a channel model CM1 (line-of-sight).

Fig. 5. Evolution of the rank-one J-divergence measure as a function of the
PPM time-shiftN for the IEEE802.15.4a channel model CM8 (industrial non
line-of-sight).

in Fig. 4 and Fig. 5 for the CM1 and CM8 channel models,
respectively.

The rank-one J-divergence cost function in (32) is very
insightful. First, the structure of the cost function resembles
the well-known constant modulus algorithm (CMA) [37],
[38]. Second, for each of the eigenvectors of , both
the energy contribution for and the blocking capability
for are evaluated. This is done by the terms and

, respectively. Thus, the selection



2010 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 5, MAY 2008

criterion for the optimal receiver filter is not only the energy
it can extract from the incoming random signal but also the
autocorrelation properties it has to block the random signals
belonging to the opposite hypothesis.

C. Iterative Solution for the Divergence Maximizing Receiver
Filter

In this section an iterative procedure is proposed to circum-
vent the computationally demanding task of the complete eigen-
decompositon of . Apart from the computational savings,
the iterative approach provides a more flexible design criterion
where transitions between different propagation scenarios can
be optimally tracked. This can be done by properly updating the
estimated synchronous autocorrelation matrix and feeding
this information to the iterative criterion.

In the sequel the stochastic gradient descent method is
adopted for addressing the iterative optimization in (31)–(32).
The recursion is given by

(33)

(34)

with a fixed step size. Note that the gradient descent method in
(33) is applied to the logarithm of the rank-one divergence cost
function. By doing so, the optimal solution remains the same but
the expression for the gradient is simpler. Finally, the gradient
in (34) is evaluated assuming that the eigenvalue and the
autocorrelation are defined as

(35)

(36)

In practice, an estimate for can be obtained in a straight-
forward manner by properly zero-padding the estimate pro-
posed in (8). An example of the resulting waveform for the best
deterministic rank-one receiver filter is shown in Fig. 6 for the
case of the IEEE 802.15.4 CM8 channel model with a sampling
time of ns, a PPM time-shift of samples
and a frame-interval of samples. This figure shows
the exact optimal rank-one receiver filter and the one obtained
by using the gradient descent method in (33)–(34). The resulting
value of the rank-one J-divergence is also depicted as a function
of the number of iterations.

It is important to remark that the proposed iterative approach
resembles the well-known Rayleigh quotient iteration (RQI)
which provides the maximum eigenvalue and the corresponding
eigenvector of any symmetric matrix [39]. The resemblance
with the RQI is clear when orthogonal PPM is considered. In
that case, we have for all when as a
result of the orthogonal transmission. Thus, the gradient in (34)
simplifies to

(37)

which coincides with the gradient of the RQI [39]. Therefore,
the best deterministic receiver filter for orthogonal PPM corre-
sponds to the well-known result of being the maximum eigen-

Fig. 6. Best deterministic receiver filter for the IEEE 802.15.4 CM8 channel
model according to the proposed iterative optimization of the rank-one J-diver-
gence criterion.

vector of (i.e., ). This solution is also found to provide
the maximum SNR at the receiver output. For nonorthogonal
PPM, however, the solution is not evident and it must be deter-
mined based on the maximization of the rank-one J-divergence
cost function in (32).

Finally, the proposed rank-one receiver in Fig. 3 can be ex-
tended to the case where a set of eigendimensions
are considered. In this situation the receiver architecture can
be generalized to the rank- architecture depicted in Fig. 7.
The receiver filters in Fig. 7 are obtained in a sequential
manner starting from according to the iterative proce-
dure proposed in (33). Once is obtained the covariance
matrix must be updated as follows:

and the iterative procedure in (33) must be started
again with the new covariance matrix.

VII. SIMULATION RESULTS

In this section computer simulations are carried out in order to
evaluate the performance of the proposed binary-PPM detectors.
Two different simulation scenarios are considered:
A): Random Gaussian waveforms. The received waveforms

are assumed to be zero-mean random Gaussian processes
driven by a given covariance matrix . The processes are
non wide-sense stationary with an exponentially decaying
power delay profile as in [24]. Two distinctions are made
among US and CS depending on whether the covariance
matrix is diagonal or not.

B): IEEE 802.15.3a/4 waveforms. The received waveforms
are generated according to IEEE 802.15.3a and IEEE
802.15.4 channel models.

Regarding the receiver architecture, an all-digital front-end
with chip rate sampling is considered. Although it is out of the
scope of this manuscript, the adoption of chip-rate sampling
may involve a significant complexity from the analog-to-digital
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Fig. 7. Extension of the rank-one optimal detector in Fig. 3 to the case d = d with d > 1.

conversion (ADC) point of view. In that case, monobit ADCs
[40] or channelized ADCs [41] can be considered for a rea-
sonable complexity implementation. It is worth noting that
many contributions circumvent this complexity limitation by
implementing reduced sampling rates, either at frame-rate or
symbol-rate sampling. However, this involves an analog or
mixed analog-digital receiver since low sampling rates can only
be applied when matched filtering or energy detection has been
previously performed in the analog domain.

Similarly to [42], the sampling time is set here to
ns. The frame duration extends over sam-

ples and a total of frames are conveyed within a
symbol duration. The PPM time shift is set to sam-
ples unless otherwise specified. Finally, an observation interval
of symbols is used to estimate the synchronous auto-
correlation matrix . With this observation interval, there is no
performance degradation by using the estimate compared to
using the exact .

The performance results for the proposed receivers are com-
pared with the well-known energy-detector receiver (ED) [31],
[32]. The ED receiver is just a simple energy integration. Thus,
it can be considered as a simple receiver that assumes the power
delay profile to be flat and constant. The fundamentals of an ED
receiver are rather simple. For simplicity, let us consider the case

with an integration length of samples. Then, the
th received symbol is decided to be when the energy

integrated over the samples from to
is larger than the energy integrated over the samples

from to . Otherwise,
the symbol is decided to be . For the results to be pre-
sented herein, the . Then, since , this
strategy for ED can be thought as some kind of noise suppres-
sion [43]. Finally, independent frame-to-frame random wave-
forms are considered except for transmitted-reference (TR) sim-
ulations where the waveform remains constant during two frame
intervals.

Fig. 8. 1000 realizations of the Gaussian random received waveforms with un-
correlated samples (top) and correlated samples (bottom). The power delay pro-
file is exponentially decaying with average delay spread of 100 samples. For the
waveforms with correlated samples, the time-lags of the autocorrelation are also
exponentially decaying with an average spread of 200 samples.

A. Simulation Results for Random Gaussian Waveforms

Experiment 1: Random waveforms with US. In this ex-
periment the received waveforms are modeled as zero-mean
Gaussian random processes with uncorrelated samples. The
power-delay profile is exponentially decaying with an average
delay spread of 100 samples. A total of 1000 waveforms are
depicted at the top of Fig. 8 for illustrating the shape of the
received waveforms. For this simulation set-up, two different
PPM time-shifts are considered: and
samples. Notice that for the case of , interframe
interference (IFI) is being incurred. The receiver performance
is analyzed in terms of BER and it is shown in Fig. 9 as a
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Fig. 9. BER performance for random Gaussian UWB signals with uncorrelated
scattering.

function of the energy-per-symbol to noise spectral density
. Simulation results are also enclosed for the case of

coherent detection with perfect channel state information (CSI)
and for the case of transmitted-reference (TR) signaling. In TR
schemes, an unmodulated pulse is transmitted prior to each data
modulated pulse [44]. In that way the receiver can always take
the unmodulated pulse as a reference pulse for correlation, but
there is a penalty in power efficiency due to the transmission of
unmodulated pulses. This penalty of TR has been compensated
in the results of Fig. 9 for a fair comparison of the information
detection capability with the rest of the proposed schemes.

From the results in Fig. 9, the full-rank detector based on
(23) and the PDP detector based on (19) provide similar per-
formance. Note that the PDP detector just considers the main
diagonal of the covariance matrix whereas the full-rank de-
tector based on (23) estimates the whole covariance matrix .
However, the covariance matrix becomes diagonal in the
presence of US and the full-rank detector in (23) becomes the
PDP detector. As for the TR detector, the main degradation is
caused by the severe noise at the frame-level, making the refer-
ence pulse to become a very noisy template. Finally, the poor
performance of the rank-one detector is due to the spread of
eigendimensions in US. That is, a rank-one contribution is al-
most negligible due to the large amount of significant eigen-
values of .

Experiment 2: Random waveforms with correlated sam-
ples. In this experiment the received waveforms are modeled as
Gaussian random processes with correlated samples. The power
delay profile is exponentially decaying with an average delay
spread of 100 samples and the temporal lags of the autocorre-
lation are also set to be exponentially decaying with an average
delay spread of 200 samples. A total of 1000 waveforms are
depicted at the bottom of Fig. 8 for illustrating the shape of the
received waveforms.

The BER performance in terms of the energy-per-symbol to
noise spectral density is presented in Fig. 10. Again, the

Fig. 10. BER performance for random Gaussian UWB signals with correlated
scattering.

full-rank detector provides the best performance. The PDP de-
tector degrades because it just considers the main diagonal of

and ignores the rest of the entries, many of them being dif-
ferent from zero when the scattering is correlated. The second
best performance for the low-SNR regime is provided by the
low-complexity rank-one detector for both and

samples. The reason is that the correlatedness of the re-
ceived waveforms reduces the number of eigendimensions of

compared to the uncorrelated case. As a result, the contri-
bution of a rank-one approximation is now significant compared
with the total amount of eigenvalues.

For the case of very small time-shifts , the BER perfor-
mance changes when entering the high-SNR region. This can be
observed in the left-hand side of Fig. 10 for dB.
Beyond this value the performance of the rank-one and
full-rank detectors experiences a floor effect. This floor effect
is a common behavior of most low-SNR estimation and detec-
tion techniques when operating in the high-SNR regime, and it
can be explained as the noise introduced by the algorithm itself
[30]. For the high range, the PDP receiver outperforms
the full-rank detector because the PDP receiver just considers
the main diagonal of and thus, self-noise is reduced.

Experiment 3: Random waveforms in the presence of narrow-
band interferences. In this experiment the BER performance is
evaluated in the presence of interference from IEEE 802.11b
WLAN devices. The central frequency for this interference is
set to GHz with a bandwidth of MHz. The
simulation parameters are the same as for the previous experi-
ments except for the PPM time-shift that is set here to

samples. The signal and noise powers are fixed to result in
dB. In Fig. 11, the BER performance is evaluated

as a function of the interference-to-noise ratio . It is in-
teresting to note that, for the case of correlated scattering (right
hand side plot in Fig. 11), the rank-one detector becomes the op-
timal detector when increasing the interference power. This can
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Fig. 11. BER performance for random Gaussian UWB signals in the presence
of narrowband interference.

be seen for dB because the lower bound BER cor-
responding to the optimal full-rank detector coincides with the
BER provided by the low-complexity rank-one detector. This
means that the rank-one detector turns out to be the optimal
detector for interference dominating scenarios. Results are also
shown for the LRT in (9) which is indeed the exact detector. As
shown in Fig. 11, a tight match is observed between the exact de-
tector and the proposed full-rank and rank-one detectors in (10)
and (29). This is especially true for the high-interference region,
but a good performance is also obtained for the low-interference
region since the low-SNR at the frame-level still remains.

B. Simulation Results for the IEEE 802.15.3a/4a Channel
Models

In this section simulation results are provided for the channel
models considered in the IEEE 802.15.3a [25] (high data
rate) and the IEEE 802.15.4 (low data rate) standards [28].
The simulation set-up is the same as for the case of random
waveforms with the exception that only the PPM time-shift
of is considered. The selected channel models
include both line-of-sight (LOS) and non line-of-sight (NLOS)
scenarios. As for LOS scenarios, the channel model CM1 from
the IEEE 802.15.3a standard is considered. NLOS scenarios
are herein represented by the channel model CM3 from the
IEEE 802.15.3a standard and the channel model CM8 from
the IEEE 802.15.4a standard. Finally, the channel model for
body-area-networks (BAN) within the IEEE 802.15.4 is also
considered. The simulation parameters for the BAN channel
model assume a distance between transmitter and receiver of
0.1 meters, the floor material is concrete and the back position
of the body.

An important issue to be taken into consideration is the path-
dependent propagation of UWB signals. This path-dependent
distortion is not considered in the current channel simulation
software available from the IEEE 802.15.3a/4 working group.

Fig. 12. BER performance for the IEEE 802.15.3a CM1 channel model
(line-of-sight) and the IEEE 802.15.3a CM3 channel model (non line-of-sight).

Fig. 13. BER performance for the IEEE 802.15.4 CM8 channel model (indus-
trial non line-of-sight) and the IEEE 802.15.4a BAN channel model (body area
network).

However, and according to the IEEE 802.15.4a final report, the
path-dependent distortion can be incorporated by considering
the generated taps of the tapped delay line model to be the dis-
crete-time samples of a bandlimited random process (i.e., the
random received waveform) ([28, p. 35]). Following this rec-
ommendation, the generated samples of the received waveforms
are indeed the tap values generated by the standardized software
provided by the IEEE working group.

The BER results are presented in Figs. 12 and 13 for the
IEEE 802.15.3a and the IEEE 802.15.4a channel models, re-
spectively. For all the channel models the full-rank detector
based on (23) continues to provide the best performance. More-
over, the performance of the PDP receiver based on (19) is found
to coincide with the full-rank detector for all the tested channel
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models except for the CM8. This indicates that the US assump-
tion considered in the PDP detector applies to most of the tested
IEEE channel models. Related with this remark, the rank-one
detector usually provides the worst performance except for the
BAN channel. This is due to the fact that the rank-one detector
is devoted to propagation environments where the amplitudes
of the received samples (not the magnitudes) are correlated so
that the channel energy is only spread over a small number of
eigendimensions. This requirement for the amplitude of the re-
ceived samples is not fulfilled in most of the considered channel
models, where channel energy is spread over a large number of
eigendimensions [45]. In these circumstances the performance
of the rank-one detector seriously degrades. For a more de-
tailed analysis on the eigenvalue structure of UWB channels,
the reader is referred to [45], [46]. For the BAN channel, how-
ever, the reasonable performance of the rank-one detector is in
line with the correlated scattering results found in [47].

VIII. CONCLUSION

A framework for the symbol decision of binary-PPM UWB
signals in the absence of interframe interference has been pre-
sented. The optimal symbol decision statistics are provided and
the relationship with previous contributions in the current liter-
ature has been revised. Two different analyses for the symbol
decision problem have been presented depending on whether
the amplitudes of the received waveforms are correlated or not.
The correlated scenario is of special interest since it allows a
low cost implementation of the optimal symbol detector. To this
end, an iterative algorithm is proposed which is based on infor-
mation-theoretic criteria and allows us to minimize the bit error
probability.

APPENDIX A
DERIVATION OF THE LOW-SNR GLRT

The GLRT provides the optimal decision rule for deciding
between the hypothesis and
based on the probability density function of the received data
conditioned on the hypothesis to be tested. According to the
channel model in Section II, the conditioned probability density
function for the th received symbol under is given by the
multivariate Gaussian probability density function

(A.38)

with the covariance matrix for the signal re-
ceived under and the covariance matrix
for the Gaussian contribution of both the thermal noise and the
narrowband interference.

Similarly to (A.38), the conditioned probability density
function under the hypothesis is found by substituting

in (A.38) with . When both

and are available, the GLRT
results in

(A.39)

The GLRT in (A.39) can be significantly simplified when both
the noise and the interference are high-power sources compared
to the UWB transmitter. The following assumptions can be
done.

(AS1) Assumption 1:

(A.40)

Proof: Let us first expand the determinant
as follows:

(A.41)

(A.42)

Since the noise is considered a high-power source compared
to the UWB signal, it is reasonable to assume that

. Note that the same approximation cannot be applied to the
term since both the noise and the interference may have
powers on the same order. Consequently,

. The key point is to notice that this ap-
proximation does not depend on the signal covariance matrix

. The same conclusion applies when expanding the deter-
minant , which is also found to be independent
of . As a result, it can be stated that

which confirms the assumption in (A.40).
(AS2) Assumption 2:

(A.43)

(A.44)

Proof: Let us focus on the proof for (A.43), since
the same proof applies also to (A.44) by substituting

with . To proceed, the matrix inversion lemma is
considered which states that

, where is is
is is , and the required inverses

exist. When applied to (A.43), the inversion lemma results in

(A.45)

Since the noise and the interference sources are considered high-
power sources compared to the UWB transmitter, it is reason-
able to assume that in (A.45). Therefore, the
result in (A.45) can be simplified to

which concludes the proof.
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With the above assumptions the GLRT in (A.39) simplifies to

(A.46)

Alternatively, the log-GLRT can be adopted with
. In this way a more compact expression is ob-

tained as follows:

(A.47)

In (A.47), the matrix stands for the estimate
of the synchronous autocorrelation matrix for the th received
symbol. That is, . Finally, two
important remarks must be made. First, note that the syn-
chronous autocorrelation matrix is the sufficient statistics
for the symbol decision problem. Second, since the dimensions
of are , the symbol decision problem can
indeed be addressed on a frame-level basis.

APPENDIX B
IMPACT OF HIGH-POWER NARROWBAND INTERFERENCES

This Appendix presents some results on how interference sig-
nals affect the symbol decision statistics. This involves the eval-
uation of in (A.47), with the covariance matrix in-
cluding both the thermal noise and the interference statistics.
Let us assume that the frame duration of the UWB signal is
small compared to the coherence time of the interference, de-
fined as . Then the entries of the interference
covariance matrix in Section II-B can reasonably be ap-
proximated by . As a result, the
whole covariance matrix can be approximated by

with the phasor
.

For an asymptotically large observation interval, the covari-
ance matrix can be expressed in terms of the discrete-time
Fourier transform matrix as , where
the diagonal matrix has all its entries equal to zero except
for the th and the th diagonal entries that are equal to
1. The above expression for allows us to express the noise
plus interference covariance matrix as,

. Since the
covariance matrix is found to diagonalize with the discrete
Fourier transform matrix, the inverse of can be easily ob-
tained as

(B.48)

The approximation in (B.48) is due to the fact that the number of
nonzero entries in is negligible compared with the number
of elements in the diagonal of . Therefore, it is reasonable to
assume that . Consequently, the
log-GLRT in (A.47) simplifies to

(B.49)

where all the irrelevant constant terms have been omitted for the
sake of clarity.
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