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NDA Waveform Estimation in the Low-SNR Regime
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Abstract—This correspondence addresses the problem of nondata-aided
waveform estimation for digital communications. Based on the uncondi-
tional maximum likelihood criterion, the main contribution of this corre-
spondence is the derivation of a closed-form solution to the waveform esti-
mation problem in the low signal-to-noise ratio regime. The proposed esti-
mation method is based on the second-order statistics of the received signal
and a clear link is established between maximum likelihood estimation and
correlation matching techniques. Compression with the signal-subspace is
also proposed to improve the robustness against the noise and to mitigate
the impact of abnormals or outliers.

Index Terms—Channel estimation, low signal-to-noise ratio (SNR), non-
data-aided, waveform estimation.

I. INTRODUCTION

Conventionally, most of the digital communication systems assume
that the shaping pulses or waveforms are a priori known by the re-
ceiver. In such cases, the transmitted waveforms are commonly de-
signed in such a way that an intersymbol interference free (ISI-free)
detection is possible for an ideal AWGN channel. When the communi-
cation channel turns frequency selective, channel estimation techniques
must be implemented because the detected information at either the
MAP or the ML optimal receiver is affected by the intersymbol inter-
ference introduced by the nonideal channel response. Channel estima-
tion techniques can either adopt a data-aided (DA) or nondata-aided
(NDA) approach depending on whether training symbols are available
or not. Whereas DA techniques offer the best possible performance,
an efficiency penalty is incurred by the transmission of training sym-
bols. Moreover, the receiver is required to be pre-aligned with the piece
of incoming data where the training symbols are located. In contrast,
flexibility is gained by using NDA techniques since only the statistical
characterization of the received signal is required. However, one of the
main problems of NDA channel estimation techniques is that a severe
degradation is experienced because of abnormals when operating in
low-SNR conditions. This is particularly true for traditional channel es-
timation techniques based on deterministic properties of the noise sub-
space. In order to circumvent this limitation, the main goal of this cor-
respondence is to formulate the optimal waveform estimation strategy
for operation under the low signal-to-noise ratio (SNR) regime. To this
end, the low-SNR approximation of the unconditional maximum like-
lihood criterion (UML) is adopted [1].
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In the derivation of the proposed estimator, a waveform estimation
approach is adopted. This is instead of the traditional channel estima-
tion approach that assumes the transmit and receive filters to be known
at the receiver. The reason is that for some modern wideband communi-
cation systems, knowing the actual shape of the transmitted waveform
is not possible. This is the case of ultrawideband (UWB) communi-
cation systems, also known as impulsive radio (IR) [2]. In these cir-
cumstances we cannot properly refer to a channel estimation problem
but rather to a waveform estimation problem. At this point, it is in-
teresting to remark that waveform estimation can indeed be avoided
by using transmitted-reference (TR) schemes. That is, by transmitting
an unmodulated pulse prior to data modulated pulses with the aim of
matched filtering at the receiver [3]. Unfortunately, the main drawback
here is the efficiency loss and the performance degradation in low-SNR
scenarios because of the correlation with a dirty template. The final
consideration to be made with respect to the proposed technique is
the one regarding the subspace-compressed approach. By compressing
the likelihood function with the signal-subspace of the received data, a
closed-form implementation is allowed and rank-reduction can be ap-
plied. Rank-reduction is interesting in NDA waveform estimation be-
cause it can be used to restrict the solution space and thus, to provide
a more robust performance in front of the noise and possible ill-condi-
tioning [4].

The structure of the correspondence is the following: Section II
defines the signal model for the problem under consideration. Next,
Section III presents the UML estimation framework and the resulting
low-SNR cost function. Based on the UML formulation, Section IV
introduces the subspace-compressed approach and presents the pro-
posed waveform estimation technique. Finally, simulation results are
shown in Section V and conclusions are drawn in Section VI.

II. SIGNAL MODEL

The signal model to be considered herein assumes pulse-amplitude
modulation (PAM), pulse-position modulation (PPM) and amplitude-
pulse-position modulation (APPM).1 Let us consider a burst transmis-
sion of L = 2K + 1 symbols, for some positive integer K . Assuming
oversampling of Nss samples per symbol, the observation interval re-
sults in a total ofN samples that are stacked in a (N�1) vector r. The
resulting signal model in matrix notation can be expressed as follows:

r =

P�1

p=0

Ap(g)xp +w (1)

where P parallel and independent linear modulations are represented.
For the case of PAM modulation, P = 1 whereas for M -ary PPM and
for (Ma � M) APPM (i.e., Ma amplitude modulating symbols and
M pulse position modulating symbols) we have P = log

2
(M). In (1),

wave shaping is carried out by the (N �L) matrixAp(g), transmitted
symbols are indicated by the (L�1) vector xp and the (N�1) vector
w stands for the additive white Gaussian noise samples with variance
�2w . The symbols are assumed to be zero mean, Ex[xp] = 0 for any
p, and with covariance matrix Ex[xpxHq ] = (1=P )IL�pq , where In is
the (n � n) identity matrix and �ij the Kronecker delta. Note that for
PPM modulation, the hypothesis of zero mean symbols implies that po-
larity randomization codes are adopted to avoid the existence of spec-
tral lines. Moreover, for the case of PPM or APPM, inactive pulse-posi-
tions are indicated by setting to zero the corresponding entry within xp
since just one pulse-position can be active for each symbol interval. Fi-
nally, the unknown waveform g is assumed to have a maximum length

1Notice that pulse position modulated signals can be expressed as the sum of
parallel independent PAM modulations [5].
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of Ng samples, and for Ng > Nss, Ng is assumed to be a multiple of
the number of samples per symbol Nss.

The columns of Ap(g) are Nss-samples time-shifted
replicas of the unknown waveform g. That is Ap(g)

:
=

[a
�K;p(g); a�K+1;p(g); . . . ; aK;p(g)], where the n-th column of

Ap(g) is given by an;p(g)
:
= Kn;pg. The set of (N �Ng)Nss-sam-

ples time-shift matrices Kn;p is defined as Kn;p
:
= JnN J

p
N ��� with

N� the PPM time-shift in samples, Jm an (N � N) m-samples
shift matrix and ��� an (N � Ng) zero-padding matrix. The
general expression for the set of m-samples shift matrices Jm, for
0 � m � N is given by

[Jm]i;j =
1 : (j � i) = m

0 : (j � i) 6= m
(2)

whereas the selection matrix is given by ���
:
=

[0T(N�N )=2�N ; IN ;0T(N�N )=2�N ]
T

.
From the above considerations, the signal model in (1) can alterna-

tively be expressed as

r =

P�1

p=0

K

n=�K

xn;pKn;pg+w: (3)

The advantage of the formulation in (3) is that it clearly shows the linear
dependence of the unknown waveform g with the received signal r.
This linear relationship through the set of matrices Kn;p will be the
basis for the derivation of the proposed waveform estimation technique.

III. LOW-SNR UML COST FUNCTION FOR WAVEFORM ESTIMATION

Maximum likelihood (ML) estimation is considered herein
for the formulation of the waveform estimation problem. Ac-
cording to the signal model in (1), the likelihood function is based
on the Gaussian noise probability density function as follows,
�(rjg;x) = C0 exp(�(1=�

2
w)kr�

P�1
p=0 Ap(g)xpk

2
) with C0

an irrelevant constant. Since a nondata-aided approach is considered,
the transmitted symbols xp become nuisance unknown parameters in
the ML formulation. By adopting the unconditional maximum like-
lihood (UML) criterion, we can consider the nuisances as unknown
parameters with a known statistical distribution and then obtain the
marginal ML function with respect to these unknowns [6]. In this
way, the estimate for the unknown waveform g can be obtained as
g = argmaxg Ex[�(rjg;x)], with Ex the expectation with respect
to the transmitted symbols x. However, this expectation poses insur-
mountable obstacles and there is usually no choice but to resort to grid
search or gradient-based methods to find the solution [7].

In order to circumvent this limitation, the low-SNR assumption al-
lows us to approximate the likelihood function by its Taylor series ex-
pansion, �(rjg;x) � C1[1 + (2=�2w)�(r;g;x)+(2=�4w)�

2(r;g;x)]
with

�(r;g;x)
:
=

P�1

p=0

Re x
H
p A

H
p r �

1

2

P�1

p=0

P�1

q=0

x
H
q A

H
q Apxp (4)

and C1
:
= C0 exp(�r

Hr=�2w). Note that the dependence of A on
g is omitted for the sake of simplicity. Then, the marginal with re-
spect to the unknown parameters, �(rjg) = Ex[�(rjg;x)] can be
evaluated. To this end, and after some straightforward manipulations,
we have that Ex[�(r;g;x)] = �Tr(M)=2P and Ex[�

2(r;g;x)] =
(1=2P )rHMr+(1=4P )kMk2F+(�=4)with � an asymptotically con-
stant term for a large observation interval and M

:
= P�1

p=0 ApA
H
p .

Alternatively, the log-likelihood function L(rjg)
:
= ln�(rjg) can de

adopted. This is just a formal consideration but it will allow us to relate
the maximum likelihood cost function with some information criteria
for determining the signal subspace dimension of the received data.

Then, by taking into consideration that ln(1 + x) � x when x ! 0,
we have

L(rjg)�C2+
1

�4wP
Tr M rr

H��2wIN +
1

2
kMk2F+

�

2
P (5)

with C2
:
= lnC1. The expression in (5) can be further simplified by

removing all the irrelevant constant terms. Let us denote this simplified
expression byL0(rjg). Next, the initial burst duration ofN samples can
be split into a set of shorter and truncated observation intervals of Nr

samples each,2 withNr = maxfNg; Nssg. By doing so, the simplified
UML cost function results in

L0(rjg) = Tr �M R� �2wIN +
1

2
k �Mk2F (6)

with �M the (Nr �Nr) truncated version of the (N �N) matrix M.
That is

�M
:
=

L �1

p=0

K

n=�K

�Kn;pgg
H �KH

n;p (7)

with 2Kr+1 the number ofNss-samples shifted replicas of g, andLp
the number of N�-samples shifted replicas of g, both within an obser-
vation interval ofNr samples. The matrix �Kn;p in (7) is the (Nr�Ng)
truncated version of the (N � Ng) matrix Kn;p. That is, in Matlab
notation, �Kn;p

:
= Kn;p(1 : Nr; :). Finally, R is the (Nr � Nr) syn-

chronous autocorrelation matrix of the received data defined as

R
:
= lim

L!1

1

L

L�1

n=0

rnr
H
n (8)

with rn
:
= [r(nNss); r(nNss + 1); . . . ; r(nNss +Nr � 1)]T .

From the observation of (6) two important remarks must be made.
First, the low-SNR UML cost function projects the synchronous auto-
correlation matrix of the received data onto the signal subspace spanned
by �M in (7). This is in contrast with most channel and waveform
estimation methods, where the noise subspace plays the central role.
Second, the constant term k �Mk2F in (6) is a second-order constraint that
allows the UML cost function to be thought as a least-squares problem
on the second-order statistics of the received signal. This issue will be
illustrated in more detail in Section IV.

IV. PROPOSED WAVEFORM ESTIMATION TECHNIQUE

A. Subspace-Compressed Approach

One of the major drawbacks of ML channel/waveform identification
methods is that a closed-form solution is often difficult to be obtained.
In addition, the solution is further complicated by the possible existence
of local minima. This is the case of (6), where a nonlinear optimization
with respect tog is required. However, a valuable help is given when the
information regarding the signal subspace is available. This allows the
ML estimator to restrict the solution space to a neighborhood around
the true waveform. Thus, a valid estimate is still possible even when
close to unindentifiable [8].

In this section, a subspace constraint is presented for the cost func-
tion derived in (6). To this end, note that the synchronous autocor-
relation matrix of the received data is asymptotically given by R =
�M + �2wIN . Then, the linear space spanned by �M is the signal sub-

space where the unknown waveform g is contained. Moreover, the
signal subspace dimension d turns out to be given by the number of
linearly independent columns in �M. Based on this remark, it can be

2Notice that this reduced observation interval could have been considered
right at the beginning of this correspondence. However, this would complicate
the formulation because transmitted symbols for adjacent intervals would be
correlated when N > N .
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TABLE I
DESCRIPTION OF THE PROPOSED LOW-SNR UML WAVEFORM ESTIMATION TECHNIQUE

stated that rangef �Mg = rangefUsg where Us is the (N � d) ma-
trix with the d signal subspace eigenvectors of R. Consequently, the
estimate for the unknown waveform g can be forced to be contained
within the signal subspace as follows:

g = Us��� (9)

for some (d� 1) vector ��� such that ���H��� = 1. Note that the (d� 1)
vector ��� contains the coordinates of the (Ng � 1) unknown waveform
g with respect to the basis of signal eigenvectors. The key point here is
that by sampling at a rate equal or greater than twice the symbol rate,
then d < Ng . As a result, projection onto the signal subspace com-
presses the number of unknowns from Ng to just d. This can be proved
by noting that d = 2dNr=Nsse � 1, with Nr

:
= maxfNg; Nssg, and

thus, d < Ng , Nss � 2. Since the number of subspace coordinates
d is smaller than the number of unknown waveform samples Ng , there
is an SNR gain and a more robust performance in front of the noise is
expected.

B. Application of the vec Operator to the Low-SNR UML Cost
Function

By adopting the vec operator, the low-SNR UML cost function in
(6) can be expressed as

L0(rjg) = ���Hv Q
H �

rv +
1

2
���Hv Q

H
Q���v (10)

where

�

rv
:
= vec R� �2wIN (11)

Q
:
=

K

n=�K

L �1

p=0

�Kn;pU
�

s 
 ( �Kn;pUs) (12)

���v
:
= vec(������H) (13)

being
�

rv a (N
2

r � 1) vector,Q a (N2

r � d2) matrix and ���v a (d2� 1)
vector resulting from the stacking of the (d� d) rank-1 matrix ������H .
The expression in (10) is indeed the core of the present manuscript and
the basis for the proposed waveform estimation technique. In fact, the
expression in (10) is a quadratic equation on the quadratic unknown���v
so that the optimization of (10) is equivalent to the optimization of a
least-squares problem

max
���

L0(rjg) = max
���

���Hv Q
H �

rv +
1

2
���Hv Q

H
Q���v

= min
���

k
�

rv �Q���vk
2: (14)

Therefore, the low-SNR UML criterion for the waveform estimation
problem is equivalent to a least-squares problem on the second-order
statistics of the received signal. This is because

�

rv in (11) contains
the samples of the synchronous autocorrelation matrix of the received
signal. Consequently, the low-SNR UML cost function can be under-
stood as a correlation matching (CM) method. CM methods have been

previously proposed in the literature for the channel/waveform estima-
tion problem. However, the nonlinear solution is usually obtained by
numerical evaluation or gradient-based search [7], [8]. In contrast, the
approach presented in this correspondence allows us to obtain an ana-
lytical formulation for the low-SNR UML criterion which results in a
simple CM problem with a closed-form solution.

C. Closed-Form Solution for the vec Low-SNR UML Cost Function

Based on the equivalence with the least-squares problem in (14),
and provided that Q is a full column rank matrix, the low-SNR UML
solution for this particular correlation matching problem is given by

���v = (QH
Q)�1QH�

rv (15)

with  an ambiguity constant inherent in the solution of any blind
channel/waveform estimator based on second-order statistics. The
closed-form solution in (15) has the same structure as a traditional
least-squares problem except for the fact that the unknown variables
are quadratic. Thus, once ���v is recovered, it is still required to per-
form another step to undo the vec operator and recover the vector
of signal subspace coordinates ���. However, when the vec operator
is undone, noise and possible signal model mismatches may cause
the matrix ������H to be degraded by a perturbation matrix ���. That
is, vec�1(���v) = ������H + ��� with vec�1 the inverse vec operation.
Therefore, an estimate for ��� must be obtained from the eigendecom-
position of vec�1(���v), and taking the eigenvector corresponding to
the maximum eigenvalue �max

vec�1(���v)��� = �max���: (16)

This is similar to what occurs in the channel estimation for CDMA
signals proposed in [9]. Finally, the waveform estimate is given by
g = Us���. For clarity, the required steps for the proposed technique
are summarized in Table I.

In summary, the proposed waveform estimation technique can be un-
derstood as a CM method because it performs a matching between the
synchronous autocorrelation of the received signal and the synchronous
autocorrelation of the signal model. Moreover, the proposed technique
is especially devoted to cope with low-SNR scenarios and robustness is
improved by compressing the likelihood function with the information
regarding the signal subspace. This compression is completely natural
since for low-SNR scenarios and finite observation intervals, it makes
sense to use the signal subspace rather than the noise subspace. By in-
troducing the signal subspace we are forcing the method to concentrate
on a neighborhood around the true waveform and thus, a more robust
performance is achieved in the presence of noise and ill conditioning.
Finally, an interesting property of the proposed technique is that, since
it can be understood as a CM method, it benefits from the well-known
asymptotic performance of CM methods in [10] and [11]. In particular,
the so-called asymptotic normalized mean square error (ANMSE) is
the lower bound for the performance of any CM method and it shows
the superior performance of moment-based estimators in comparison
with traditional eigen-based estimators.
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Fig. 1. NMSE as a function of the E =N with different criteria for estimating
the dimension of the signal subspace.

D. Discussion on the Identifiability of the Proposed Technique

The necessary condition for the waveform g to be uniquely recov-
ered is that the (N2

r �d
2) matrixQ in (12) must be a full column rank

matrix. In that case there exists a unique solution to the least-squares
problem J(���v) = k

�

rv �Q���vk
2. Once the solution to ���v is obtained

with (15), then the solution to ��� and thus, the solution to g, are all
unique because the relationship between ���v , ��� and g is linear. How-
ever, a formal proof that guarantees the full column rank condition of
matrix Q is still under investigation.

V. SIMULATION RESULTS

Computer simulations have been carried out to assess the perfor-
mance of the proposed technique. For all the simulation scenarios to be
considered herein, the unknown waveform is selected at random from
a Gaussian distribution with finite time support of Ng = 8 samples.
The received signal is oversampled with Nss = 2 and the observation
interval is split in segments of Nr = Ng samples. The modulation
format is 16-QAM except for the BER analysis that is set to BPSK for
the sake of simplicity. For comparison, the well-known subspace (SS)
approach in [12] is considered, which is also a closed-form solution
based on second-order statistics but exploiting deterministic properties
of the noise subspace.

Experiment 1: The results in Fig. 1 show the normalized mean
square error (NMSE) as a function of Es=N0 for an observation
interval with L = f250; 1000g symbols. The estimate of the
signal subspace dimension d is obtained with the MAP model
order detection rule [13]. For the problem at hand, this results in

dMAP = argminm k
�

rv �Q(m)���
(m)
v k

2
+ ln jQ(m) Q(m)j. The

results with dMAP are compared with the ones when adopting the
maximum dimension dMAX = 2dNr=Nsse � 1 and the optimal
dimension dopt that provides the minimum a posteriori NMSE in the
current simulation.

Experiment 2: The NMSE is evaluated in Fig. 2 as a function of
the number of symbols L in the received data record. Clearly, the most
remarkable difference can be observed in the right-hand side plot where
the NMSE is depicted for the case ofEs=N0 = 4 dB. It can be observed
that the gap in terms of NMSE between the proposed method and the SS
approach is almost 10 dB when more than 300 symbols are considered.

Experiment 3: Cumulative NMSE is depicted in Fig. 3 to assess the
robustness of the proposed technique in front of identifiability issues

Fig. 2. NMSE as a function of the observation interval with different criteria
for estimating the dimension of the signal subspace.

Fig. 3. Cumulative distribution function (CDF) of the NMSE for E =N =

f0; 4; 8g dB.

and possible ill-conditioning. The working points are set to Es=N0 =
f0; 4; 8g dB and a different unknown waveform is randomly selected
for each Monte Carlo run. In total, 20 000 different waveforms are gen-
erated for each Es=N0 working point. A significant gain is also expe-
rienced. For the case of Es=N0 = 4 dB, 20% of the estimated wave-
forms with the SS approach have a NMSE lower than �10 dB. For the
proposed technique, this percentage ranges from 55% up to 75% de-
pending on the way the signal subspace dimension is determined.

Experiment 4: Bit-error rate (BER) is evaluated in Fig. 4 for ran-
domly selected waveforms. The results have been obtained when the
estimated waveform is adopted for implementing an MMSE symbol
detector. As shown in Fig. 4, the BER significantly improves when in-
creasing the observation interval. This is because the proposed method
relies on the signal subspace of the synchronous autocorrelation ma-
trix of the received data, and a long enough observation interval is re-
quired to properly estimate this matrix. In terms of Es=N0, and under
the low-SNR regime with L = 100 symbols, there is a 4 or 5 dB loss
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Fig. 4. BER for the MMSE detector as a function of E =N .

when using the proposed method compared to the case with perfect
channel state information (CSI). However this Es=N0 loss reduces to
just 2 dB with L = 250 symbols. In that case, the proposed method
also provides a BER that is one order of magnitude lower than that pro-
vided by the SS scheme.

VI. CONCLUSION

A closed-form waveform estimation technique has been proposed
based on the low-SNR UML criterion. By introducing a signal subspace
constraint and the vec operator, the nonlinear optimization problem is
converted into a least-squares problem on the second-order statistics
of the received signal. The proposed subspace-compressed approach
can be seen as a principal component analysis, and thus, a reduction in
the computational burden is obtained through a tradeoff between bias
and variance. Moreover, the subspace constraint restricts the solution
space and hence, it avoids many of the effects of ill-conditioning and
local-maxima of traditional ML channel estimators. Simulation results
show the superior performance of the proposed technique with respect
to other closed-form methods based on second-order statistics.
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Outage and Diversity of Linear Receivers in
Flat-Fading MIMO Channels
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Abstract—This correspondence studies linear receivers for multiple-
input–multiple-output (MIMO) channels under frequency-nonselective
(flat) quasi-static Rayleigh fading. The outage probability and diversity
gain of minimum mean square error (MMSE) and zero forcing (ZF)
receivers are investigated. Assuming transmit and receive antennas,
the ZF receiver always has diversity + 1, unlike the MMSE
receiver which may exhibit a rate-dependent behavior. Under separate
spatial encoding, where the parallel data streams are not jointly encoded,
MMSE is no better than ZF in terms of diversity. Under joint spatial
encoding, the MMSE receiver achieves diversity at low spectral
efficiencies but has diversity only + 1 at high spectral efficien-
cies. These results are established via simulations and an outline for the
corresponding analysis is presented.

Index Terms—Diversity, equalization, minimum mean square error
(MMSE), multiple-input–multiple-output (MIMO), zero forcing (ZF).

I. INTRODUCTION

In rich scattering conditions, multiple-input–multiple-output
(MIMO) wireless channels can support high data rates through spatial
multiplexing. Optimal reception, when complexity is not a concern,
is through nonlinear nulling-and-cancelling [1]–[3], but when com-
plexity is an issue one may use linear receivers. In this correspondence,
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