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Abstract— In this paper, we propose two estimators based on
correlation parameters for the two key steps of a practical distrib-
uted source coding (DSC) scheme, namely: 1) the computation of
the side-information at the receiver side and 2) the estimation of
the required number of bits to compress the readings in order to
guarantee a certain symbol error probability. We show that using
the proposed estimators, the DSC algorithm performs better in
terms of the compression rate and the symbol error rate. In
particular, this improvement is especially significant when the
number of snapshots used in the training phase is only slightly
larger than the observation vector. However, when the number
of snapshots is much higher than the observation dimension, our
proposed estimators perform similarly to the classical estimators.

Index Terms— Distributed source coding (DSC), energy
efficiency, generalized statistical analysis (GSA), random matrix
theory (RMT), wireless sensor networks (WSN).

I. INTRODUCTION

SAMPLE estimators are widely used in statistical signal
processing and it is well-known that their performance

is highly conditioned to the number of samples considered
[1]. In particular, sample correlation estimators perform the
best when the number of samples is sufficiently large in
comparison with the dimension of the observation vector.
However, when both magnitudes are similar, the performance
may be severely degraded and other techniques should be
addressed.

In this paper, we propose two enhanced correlation esti-
mators derived from Generalized Statistical Analysis (GSA)
(introduced by V. L. Girko [2] and extended in [3]). This
discipline comes from Random Matrix Theory (RMT) [4]
and provides consistent estimators when both the number
of snapshots of the training phase N and the observa-
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tion dimension M are arbitrarily large and comparable in
magnitude.

Following this approach, the main motivation is to include
such derived estimators for Distributed Source Coding (DSC)
applied to a large Wireless Sensor Network (WSN) framework,
which typically are formed by a large number of high space-
time correlated sources (e.g. fire control in forests monitoring
the temperature or humidity levels, or tracking the location
of the products in large stores), where DSC may be used to
remove the inherent redundancy in such a correlated readings
[5], [6] and hence send compressed messages with the subse-
quent energy savings.

Surprisingly, existing results from information theory
(precisely, from the work of Slepian and Wolf [7]) show that
this compression can be executed in a fully blind manner,
i.e., only with the knowledge of the local data. It means
that sensors compress the data without the knowledge of
the signals of the other sensors, and interestingly, without
any loss of performance in comparison with the centralized
approach. Theoretically, the DSC achieves the maximum sum
rate, however, practical algorithms still perform far from the
theoretical limits [6].

However, practical (and suboptimal) solutions can be found
in the literature. For a star-topology WSN, the authors in [8]
propose a DSC scheme divided in two phases: the training
phase and the compression phase. During the training phase,
the correlation parameters are estimated. Hence, the duration
of this phase depends on the network configuration and the
requirements of the application. In particular, they consider a
network composed only of two source nodes and one sink. For
higher number of sources, the number of snapshots used in the
correlation estimation notably increases. The authors extend
their results in [9] to a cluster-based WSN, where each cluster
manages a total of four nodes and acts separately to the rest
of the clusters. However, in both [8] and [9], the estimation
of the correlation parameters is not detailed.

For a relay WSN scenario, the authors in [10] also present
a two-phase DSC algorithm. As in [8] and [9], they assume
that the training phase is large enough to achieve the desired
accuracy in the correlation estimation for an arbitrary number
of source nodes. Even so, the sources are managed into smaller
groups or clusters. Following this grouping approach, the DSC
algorithm cannot fully exploit all the spatial correlations within
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the network, since only the correlations among the sensors of
a cluster are used. Therefore, a lot of useful information is
missed.

For a multi-hop WSNs, the scheme proposed in [11] exploits
the “redundancy free” nature of the DSC to optimize jointly
the DSC and the routing paths in order to increase the lifetime
of the network. More recent results in [12] extend the DSC
algorithm for a multistage scheme. The authors particularize
the results for two sources and two layers.

Many other interesting DSC algorithms are also being
actively studied, with new alternatives that continuously
improve many aspects of DSC. In this paper, we extend
the work in [13], where the authors propose a simple DSC
algorithm in order to compress the signal from multiple
space-time correlated sources. Although their analysis is for
an arbitrarily large number of nodes, they particularize for
the case of two nodes.

In the literature of DSC, there exists a lack of study
regarding the performance drop in the correlation estimation
due to a large number of correlated sources.

In order to overcome this limitation, we address the case of
a DSC algorithm applied to a large WSN scenario, where the
observation dimension M is typically large (since it depends
on the number of sensors that composes the network) and
classical sample estimators may fail unless a very long training
phase is considered (becoming in most cases unpractical). On
the contrary, our proposed estimators improve the trade-off
between the training phase duration N and the accuracy of the
estimation of the correlation parameters. Our contributions are
listed as follows:

1) We analyze the performance of the DSC algorithm for
large WSNs, and in particular, we study the correlation
estimation problem in such a scenario.

2) We propose two enhanced estimators to mitigate the
performance drop of DSC algorithm when the number of
sources is arbitrarily large and conventional estimators
are used.

3) We numerically compare the performance of conven-
tional sample estimators with our enhanced estimators.
Our enhanced DSC algorithm turns out to decrease
largely the training phase duration and allows us to
reduce the number of transmitted bits in comparison
with the conventional approach.

Furthermore, this paper completes a preliminary work
started in [14] with:

1) an expanded background section;
2) improved derivations for the proposed correlation

estimators by dropping many assumptions, making them
simpler and rigorous;

3) improved simulation results that present a complete
study of the behavior of the DSC algorithm in terms
of MSE and SER;

4) a comparison between the performance of our proposed
estimators with some of the most popular estimation
techniques (like diagonal loading or principal compo-
nent analysis) providing the corresponding details of the
results.

Fig. 1. Illustrative example of a correlation dominated large WSN field,
composed of a set S of S sensing nodes (black dots) measuring a certain scalar
magnitude and transmitting their readings to one fusion center (white dot).

The rest of the paper is organized as follows: In Section II
we describe the system model. The DSC algorithm is pre-
sented in Section III. The derivation of the enhanced estimators
is detailed in Section IV. Simulation results are given in
Section V, and conclusions are drawn in Section VI.

II. SYSTEM MODEL

We assume a large and dense WSN scenario that measures a
certain physical phenomena such as temperature or humidity.
For large WSN we mean that the number of sensing nodes
may be arbitrarily large, i.e. of hundreds or thousands of
nodes, and for dense WSN we mean that the sensing nodes are
close enough to present spatial correlations in their measured
data. This scenario is graphically summarized in Fig. 1. The
final interest of this paper is to study the impact when the
fusion center receives the information from a large number of
sensing nodes. Thus, although we assume a WSN configured
in star topology for simplicity, our proposed algorithm is also
compatible with multi-hop techniques or with other network
configurations.

Therefore, the network is composed of two types of nodes:
1) a set S of S sensing nodes that transmit the measurements
when they are requested and 2) one fusion center that manages
the sensing nodes, and gathers and processes their measured
data. We assume that the limitations in terms of computing
power and energy consumption are in the sensing nodes,
instead we assume no constraints for the fusion center.

Let1 xs(n) ∈ R denote the scalar reading from the sth
sensor in discrete time n. It is modeled as xs(n) ∼ N (0, σ 2

xs
).

Moreover, XT ∈ R
S×T assembles the time sequence of the

1Notation: Boldface upper-case letters denote matrices, boldface lower-
case letters denote column vectors, and italics denote scalars. (·)T , (·)∗, (·)H

denote transpose, complex conjugate, and conjugate transpose (Hermitian)
respectively. [X]i, j , [x]i is the (ith, j th) element of matrix X, and ith position
of vector x, respectively. [X]i denotes the ith column of X. (·)� denotes the
optimal value. X1/2 denotes the Hermitian square root of the Hermitian matrix
X, i.e., X1/2X1/2 = X. Function Tr(X) means the trace of X. Function
�·� denotes the ceil function. E[·] is the statistical expectation. Function
erfc(·) represents the complementary error function. Function I(a ≤ b) is the
indicator function for the condition a ≤ b. N (μ, σ 2) is a Gaussian distribution
with mean μ and variance σ 2, σ 2

x is the variance of x. The notation x̂ denotes
the estimation of the scalar x . Symbol � means almost sure convergence.
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Fig. 2. Graphical representation of the sub-codebooks using a tree-based
scheme. In this example, the alphabet A contains 16 symbols, and a 4th level
of sub-codebooks is shown.

measurements for each sensing node (where T names the
length of the time monitoring window), namely

XT =

⎡
⎢⎢⎢⎣

x1(1) x1(2) · · · x1(T )
x2(1) x2(2) · · · x2(T )

...
...

...
xS(1) xS(2) · · · xS(T )

⎤
⎥⎥⎥⎦. (1)

The covariance matrix of the spatial observation vector
[x1(n) x2(n) · · · xS(n)]T is given by Rs , while Rt denotes
the covariance matrix of the time sequence of length T , i.e.,
[xs(1) xs(2) · · · xs(T )]T .

III. DISTRIBUTED SOURCE CODING ALGORITHM

Since there are no practical techniques to achieve the
theoretical limits of [7] and [15], suboptimal algorithms are
used instead. In this paper, we follow the approach in [13],
where the authors propose the construction of a codebook
based on the decomposition of a given finite alphabet A in
several sub-codebooks. Fig. 2 gives a graphical intuition on
how the codebook can be decomposed in several sublevels.

In general, the DSC algorithm is divided in two phases
that involve both the sensing nodes and the fusion center
(see Algorith 1 and Algorithm 2 respectively):

1) The training phase of length N , where the sensing node
maps its l-bit reading xs(n) according to the alphabet
A = {ai}i=1,2...,2l , with a quantization step of |ai+1 −
ai | = �, and sends an uncompressed version of its data
coded in l-bits. After collecting the N snapshots of the
training phase, the fusion center estimates the correlation
parameters for each sensor.

2) The coding phase, where a given side-information y(n)
is available at the fusion center and the sensing node
can encode its reading using only b(n) ≤ l bits. Hence,
the sensor transmits only the index B of a sub-codebook
AB ⊆ A (B is codified in b(n) bits) that contains the
mapped reading xs(n). Thus, the fusion center receives
the sub-codebook identifier B , and selects the symbol in
AB closer to the side-information y(n),

xs(n) = arg min
ai∈AB

|y(n) − ai |. (2)

Let us concentrate on the following two steps of the coding
phase.

Algorithm 1 Sensing Node
1. Training phase
Get l-bit reading from A/D converter
Transmit l-bit symbol.
2. coding phase
Get l-bit reading from A/D converter
Encode and transmit b(n)-bit codeword.

Step A. Compute the Side-Information y(n): First, let us
define the observation vector x(n) ∈ R

M with covari-
ance matrix R ∈ R

M×M as the information available at
the fusion center and rx is the cross-correlation vector,
rx = E[x(n)xs(n)]. The vector x(n) collects: 1) the K past
readings of the sensor and 2) the readings of the set S ′
of already-decoded sensors in time slot n (where S ′ ⊂ S
with cardinality S′), hence M = K + S′. Note also that the
covariance matrix R will be constructed from the correspond-
ing entries of Rs and Rt . Then, the side-information y(n) is
a linear prediction of xs(n) and it is computed as a linear
combination of the entries of x(n)

y(n) = wH x(n) (3)

following the Linear Wiener Filter (LWF) solution. The LWF
solution, w� = R−1rx , is known to be optimal in the Mean
Square Error (MSE) sense [1]. Mathematically

MSE(w) = σ 2
xs

− 2 Re[wH rx ] + wH Rw (4)
∂MSE(w)

∂wH
= −rx + wH R = 0

w� = R−1rx (5)

and then, the MSE achieved is minimum and is given by

MSE(w�) = σ 2
xs

− rH
x R−1rx . (6)

However, to compute w� the perfect knowledge of R−1 and
rx is necessary but not available. Classical methods replace
R−1 and rx directly by their sample estimators denoted by R̂−1

and r̂x , respectively. Although when N � M this classical
approach provides good results, better estimators can be used
instead when N has the same order of magnitude as M , but
still N > M .

Step B. Compute the Number of Bits in Transmission b(n):
In order to determine the number of bits b(n) to encode
xs(n) without decoding error, one must guarantee that |xs(n)−
y(n)| < 2b(n)−1�. However, since the reading xs(n) is not yet
available at the fusion center, we compute the number of bits
to encode xs(n) in order to guarantee a given Symbol Error
Rate threshold, SERt.

Assuming xs(n) − y(n) ∼ N (0, MSE(w)), the SER can be
expressed as

SER = erfc

(
2b(n)−1�√
2MSE(w)

)
. (7)

We have focused on the particular case of Gaussian predic-
tion errors. For a general case, other approaches can be used,
as e.g., the Chebychev’s inequality in [13].
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Algorithm 2 Fusion Center
1. Training phase
for n = 1 to N do

for s = 1 to S do
Request sth sensor for a l-bit reading (i.e., uncoded).

end for
end for
Estimate the correlation parameters for each sensor, i.e., R
and rx and compute ŵ and M̂SE(ŵ) as in (19) and (29),
respectively.
2. Coding phase
for n > N to end do

for s = 1 to S do
Step A. Compute side-information as y(n) = ŵH x(n).
Step B. Compute b(n) following (8).
Request sth sensor for a b(n)-bit reading (i.e., encoded).
Decode xs(n) using (2).

end for
end for.

Solving for b(n) in (7) for a given SERt, we get

b(n) ≥
⌈

log2

(√
2MSE(w)

�
erfc−1(SERt)

)
+ 1

⌉
. (8)

It should be iteratively repeated for every sensing node as
it is represented in Algorithm 2.

In large WSNs, the number of already-decoded sensors S′
(and hence M) is typically large. Therefore, maintaining a
training phase such that N � M may become inefficient in
most cases. On the other hand, eq. (8) requires an accurate
estimation of MSE(w) in order to obtain the smallest b(n)
possible, while SERt is guaranteed. Thus, our aim is to look for
enhanced estimators for both w and MSE(w) that improve the
classical estimators when N and M are large and comparable
in magnitude.

IV. ENHANCED CORRELATION ESTIMATORS

First, let us consider a collection of N random observations
of a certain M-dimensional stochastic process, denoted by
XN = [x(1) x(2) . . . x(N)]. We assume, without loss of gen-
erality, that these observations have zero mean E[x(n)] = 0,
and E[‖x(n)|2] = 1, and covariance matrix R.

The Sample Covariance Matrix (SCM), here denoted by R̂,
is constructed from the observations as in [16]

R̂ = 1

N

N∑
n=1

x(n)x(n)H

= 1

N
XN XH

N = 1

N
R1/2�H�R1/2 (9)

where � defines a N × M random matrix with i.i.d. complex
entries, zero mean and unit variance. Moreover, let r̂x be
the sample cross-correlation vector between the observation
vector x(n) and the desired response xs(n), defined as

r̂x = 1

N

N∑
n=1

x(n)xs(n). (10)

The classical estimator ŵclass for the solution of the LWF
(5) is given by

ŵclass = R̂−1r̂x . (11)

A. Enhanced Estimator for the LWF

It is well-known that the classical LWF estimator (11) is
a N-consistent estimator of the LWF solution, i.e., |ŵclass −
w| → 0, as N → ∞.

In practice, ŵclass provides good estimates when the training
phase N is sufficiently large compared to the observation
dimension M . However, when M → ∞, while M/N →
c ∈ (0, 1), it does not necessary provide N, M-consistency
(indeed, [17] shows that (11) is not N, M-consistent), and
better estimators can be derived. Mathematically

|ŵclass − w| � 0, as N, M → ∞; M/N → c. (12)

In practice, it may occur when the training phase is short
and comparable in magnitude with the dimension of the
observation vector.

In the literature of consistent estimation, structures of the
type of (5) are usually addressed assuming that the vector
rx is a non-random deterministic vector [18]. Thus, from the
best of the author’s knowledge, the estimation of (5) where
both R and rx are random and statistically dependent is still
an open problem. However we have checked using numerical
simulations that the results for the random case addressed here
behaves similarly to what is expected for the case where rx is
deterministic. The deterministic case is already solved in the
RMT literature, e.g., [3]. Considering this, we can improve the
classical estimator in (11) and propose an enhanced estimator
for the LWF.

First, let the function FR(x) be an instance of the empirical
distribution of the eigenvalues (denoted as λm ) and eigenvec-
tors of R (denoted as νm ) as in [19]

FR(x) =
M∑

m=1

aH νmνH
m b I(λm ≤ x) (13)

whose Stieltjes transform is defined by (for both the continu-
ous and the finite size cases)

mR(z) =
∫

1

λ − z
d FR(λ)

=
M∑

m=1

aHνmνH
m b

λm − z

= aH (R − zIM )−1 b, z ∈ C (14)

where vectors a and b are two generic and deterministic
vectors.

Hence, from the results in [17, Th. 1], we can write the
Stieltjes transform of R̂ as

mR̂(z) �
∫

d FR(λ)

w(z)λ − z
= 1

M

M∑
m=1

aHνmνH
m b

w(z)λm − z

= aH (w(z)R − zI)−1 b (15)
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where w(z) = 1 − c − czsR̂(z), where sR̂(z) is defined in
[17] as the unique solution to the following equation in the
set {sR̂(z) ∈ C : −(1 − c)/z + csR̂(z) ∈ C

+}

sR̂(z) = 1

M

M∑
m=1

1

w(z)λm − z
. (16)

Evaluating mR̂(z) for the case of z = 0 one can easily
observe that

(1 − c) aH R̂−1b � aH R−1b. (17)

In our case, the vector a is selected as an all-zero vector
with a one at the i th position (usually represented as ei ) and
b = r̂x , then

[w�]i � (1 − c)eH
i R̂−1r̂x . (18)

Hence, an enhanced estimator of the LWF solution is given
by

ŵ = (1 − c)R̂−1r̂x . (19)

The estimator in (19) can be seen as a scaled version of the
classical LWF estimator as

ŵ = α�ŵclass (20)

where α is a scaling factor and α� is its optimal value in terms
of MSE and computed as

α� = argmin
α

{MSE(αŵclass)}. (21)

We test by simulation that the minimum MSE is obtained when
α is actually α� = (1 − c) (see Fig. 3).

The intuition behind the estimator in (19) can be seen as
follows: The parameter α ∈ (0, 1) represents the confidence
in the classical estimator. If ŵclass has been estimated with a
large number of samples in comparison with M , the degree
of confidence will be high and ŵ � ŵclass for i = 1, . . . , M .
Otherwise, when N > M but comparable in magnitude, ŵclass
is not expected to be the best weighting vector. In order to
mitigate the performance reduction due to the missadjustment
in ŵclass, the vector is attenuated.

B. Enhanced Estimator for the MSE

A traditional approach to estimate the MSE is by simply
replacing the true correlations by their sample estimators.
From (4), one can derive an estimator of the MSE given ŵclass
as

M̂SEclass(ŵclass) = σ̂ 2
xs

− r̂H
x R̂−1r̂x . (22)

When ŵ is given, the theoretical expression of the MSE is

MSE(ŵ) = σ 2
xs

− 2 Re[ŵH rx ] + ŵH Rŵ. (23)

Using the classical approach, one can estimate MSE(ŵ) as

M̂SEclass(ŵ) = σ̂ 2
xs

− 2(1 − c)r̂H
x R̂−1r̂x

+ (1 − c)2r̂H
x R̂−1r̂x (24)

where σ̂ 2
xs

is the sample estimator of the signal variance σ 2
xs

,
defined as

σ̂ 2
xs

= 1

N

N∑
n=1

xs(n)2. (25)

The estimator M̂SEclass(ŵ) is proved to be N-consistent
(one can directly check the case when c → 0), but indeed it
is not consistent when the observation dimension M increases
without bound and at the same rate as N .

In order to overcome this problem, we proposed an
enhanced estimator of (23). The first two terms of MSE(ŵ)
are directly estimated by their sample estimators, i.e., σ̂ 2

xs
−

2 Re[ŵH r̂x ], since they do not involve unknown matrices in
the estimation. Hence, the critical part resides in the estimation
of the last term (1 − c)2r̂H

x R̂−1RR̂−1r̂x which is a function
of the true covariance matrix. Hence we define the function

β(z) = hH
1 (R̂ − zI)−1Rh2 (26)

where h1 = r̂x , and h2 = R̂−1r̂x . Using the result in (15) we
can rewrite β(z) as

β(z) � hH
1 (w(z)R − zI)−1Rh2 (27)

and evaluating β(z) for z = 0, one can estimate β(0) as

β̂ = (1 − c)−1hH
1 h2. (28)

Once we have the enhanced estimator β̂ = r̂H
x R̂−1r̂x for the

term β(0) = r̂H
x R̂−1RR̂−1r̂x , we substitute each term of (21)

for its estimate. Hence, an enhanced estimator of MSE(ŵ) is
given by

M̂SE(ŵ) = σ̂ 2
xs

− (1 − c)r̂H
x R̂−1r̂x . (29)

Note that the approach taken in this paper is slightly
different to the MSE estimator in [16], where the authors
give an N, M-consistent estimator for the optimal MMSE.
Otherwise, in this paper we are interested in estimating the
practical MSE obtained by using a certain weighting vector
(in our case ŵ in (19)), which not necessarily provides the
MMSE lower bound.
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TABLE I

SIMULATION PARAMETERS

Parameter Value

Number of fusion centers: F = 1

Already-decoded sensing nodes: S′ = 200

Number of past samples: K = 200, hence M = 400

Length of the training phase: N = 1000

Aspect ratio (M/N ): c = 0.4

Correlation model,

[Rs ]i,i+k = [Rt ]i,i+k = ρ|k| : ρ = 0.9

SER threshold: SERt = 10−2

A/D converter depth: l = 12 bits

V. NUMERICAL RESULTS

The simulated scenario is composed of 200 sensing nodes
and one fusion center configured in star topology. Their mea-
surements are assumed to be space-time correlated following
the correlation model [Rs]i,i+k = [Rt ]i,i+k = ρ|k|, where
ρ = 0.9. Although any real application measurement will
be corrupted by at least a small amount of noise, we have
considered noise-free communication paths in order to better
evaluate the system performance.

In particular, we study the behavior of the following figures
as a function of c and how they affect to the SER performance.

1) MSE(w): the MSE for a given filter w in (4).
2) M̂SEclass(ŵclass): the classical MSE estimator in (22).
3) M̂SEclass(ŵ): the classical MSE estimator in (24).
4) M̂SE(ŵ): the proposed MSE estimator in (29).

The 2–4) have been computed using the corresponding
mathematical expressions. On the other hand, the MSE(w)
has been computed experimentally. We have developed a WSN
simulation environment in Matlab and we have implemented
in it our proposed DSC algorithm.

Table I summarizes the parameters that configure the basic
setup of the simulation environment.

A. Performance of the Proposed LWF Estimator, ŵ

In this subsection, we evaluate the MSE performance
obtained by simulation of the proposed LWF estimator
involved in the side-information y(n).

Following the approach exposed in Subsection IV-A, Fig. 3
draws the simulation results for the MSE obtained with the
LWF as a function of the parameter α and for different
configurations of M and N . From this simulation experiment,
we can compute the optimal α as in (21), which is represented
in Fig. 3 as solid line with markers +. Moreover, we show that
α� actually fits with the theoretical limit α� = 1 − c (dashed
line), as predicted in Section IV. However, there is still a gap
between the MSE obtained with the proposed method and the
one obtained assuming full correlation knowledge of R and rx .

Fig. 4 compares the performance in terms of MSE of our
proposed estimator with some of the most popular estimation
techniques, i.e., the classical sample estimator (11), the sample
estimator with diagonal loading (DL), and three instances of
the Principal Component Analysis (PCA) method.

1) Classical Sample Estimator: The behavior is clear; for
low values of c−1, the proposed LWF estimator outperforms
the classical method. On the other hand, when we let c−1

increase, both estimators perform similarly.
2) DL Estimator: Namely

ŵDL = (R̂ + γ I)−1r̂x . (30)

Although for low values of c−1 DL presents lower MSE,
our proposed method shows two important advantages; 1) DL
is not consistent when c−1 → ∞ and 2) the optimum loading
factor γ � that minimizes the MSE may vary according to the
scenario, and in the literature there is not a clear expression
to obtain γ � analytically but only iteratively or by simulation.
We use γ = 0.8, which gives the minimum MSE for c = 0.4.

3) PCA Estimator: Keeping only the M ′ < M largest
eigenvalues of R̂ (because the smallest are more difficult to
be estimated and hence they may introduce higher errors),
the MSE can be improved [20]. Therefore, R̂PCA is a lower
rank projection onto the subspace generated by the M ′ larger
eigenvalues of R̂. Thus

ŵPCA = R̂−1
PCAr̂x . (31)

PCA presents the same limitations as DL but with the
difference that this trade-off is balanced changing M ′. In
addition, when M, N → ∞, the eigendecomposition may
become hard to handle by practical small sensors.

In order to analyze the impact of the proposed estimator
ŵ on the system performance, we compare in Fig. 5 the
experimental SER for each of the LWF estimators as a function
of the compression level b(n)/ l.

One can observe that for large values of b(n)/ l, e.g.,
b(n)/ l = 0.75, the SER obtained is eight times smaller
for ŵ than for ŵclass. Even so, one may make the follow-
ing argument: If we want to achieve a certain SERt (e.g.
SERt = 10−2), we can compress up to 0.75 using the classical
estimator, and 0.72 using the proposed. At first glance, it seems
that the gain is quite moderate. However, we show next in
Example 1 that it has an important impact on the total system
performance when both the proposed estimators are combined.

B. Performance of the Proposed MSE Estimator, M̂SE(ŵ)

The MSE is involved in the computation of b(n) in (8).
Hence, a good estimation of the MSE is required in order
to not overestimate (getting a too conservative result) or
underestimate (inducing potential errors) the parameter b(n),
and thus maintain the system requirements, such as the SERt.

Fig. 6 plots the MSE curve obtained experimentally (solid
line). It is compared with our proposed MSE estimator (29)
and the classical approach of (24). It is easy to see that
our proposed estimator fits considerably better with the ex-
perimental results, while the classical estimator is clearly
underestimating, especially for low values of c−1. In fact, the
classical approach is underestimating the MSE. Following (8),
the DSC algorithm will be stingy with the number of bits
used, and almost certainly, the SER requirements will not be
achieved.

From a user point of view, the experimental SER curves
of Fig. 5 are not available a priori, so the user should use a
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Fig. 4. MSE performance of the classical, DL, PCA, and the proposed
estimators as a function of the inverse of the aspect ratio c−1.
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Fig. 5. Performance of the experimental SER using the classical ŵclass and
the proposed ŵ estimators as a function of the compression rate for c = 0.4.

predicted version of the SER instead to determine which is
the maximum compression rate that one can apply in order to
guarantee a given SERt.

In Fig. 7 we compare the experimental SER with the
following:

1) Predicted SER when the classical MSE estimator is used
and ŵ is given, i.e., M̂SEclass(ŵ).

2) Predicted SER when the proposed MSE estimator is
used and ŵ is given, i.e., M̂SE(ŵ).

3) Predicted SER when the classical MSE estimator is used
and ŵclass is given, i.e., M̂SEclass(ŵclass).

They are calculated using the formula (7) replacing the
MSE(w) of the denominator by their respective estimators.

In Fig. 7 we observe that the proposed estimator curve fits
the best with the experimental SER (which is also shown
in Fig. 5). However, all the estimators are indeed underes-
timating. The consequences of this fact are illustrated in the
following example.

Example 1: Let us take as a system requirement SERt =
10−2. Observing the predicted SER curves in Fig. 7, we may
decide to compress our messages with a ratio of 0.66 if we
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MSE (ŵ)

Fig. 6. Performance of the classical M̂SEclass(ŵ) and the proposed M̂SE(ŵ)
estimators compared to the experimental reference MSE(ŵ) (solid line) as a
function of the inverse of the aspect ratio c−1.
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Fig. 7. Performance of the predicted SER using different MSE estimators.
It is compared to the experimental SER for c = 0.4.

are using M̂SEclass(ŵclass), 0.68 if M̂SEclass(ŵ), and 0.71 if
M̂SE(ŵ). Now, we map these three points to their respective
experimental curves, i.e., M̂SEclass(ŵclass) to MSE(ŵclass), and
M̂SEclass(ŵ) and M̂SE(ŵ) to MSE(ŵ). The real output SER of
the system would be 2 · 10−1 and about 10−1 for the first and
second option respectively, which is one order of magnitude
larger than the expected SER. On the other hand, we get 1.2 ·
10−2 (instead of 10−2, so it is still slightly underestimated),
obtaining a more accurate solution.

Hence, using the proposed estimators the gain in front
of the classical methods is twofold; on the one hand we
can obtain higher compression (thus higher energy savings)
since MSE(ŵ) < MSE(ŵclass), and on the other hand the
proposed estimators adjust substantially better to the system
requirements than the classical estimators do. Moreover, the
more stringent the SERt the higher the gain.

VI. CONCLUSION

This paper has proposed two enhanced correlation estima-
tors for the Linear Wiener Filter and the Mean Square Error to
operate when the number of snapshots N and the observation
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dimension M are large and comparable in magnitude, or equiv-
alently for short training phases. This scenario is very suitable
for large WSNs due to its large number of sensors. Concretely,
the enhanced estimators have been designed to carry out the
two key steps in a Distributed Source Coding algorithm, i.e.,
the computation of the side-information y(n) based on the
exisiting space-time correlations, and the computation of the
minimum number of bits to encode the readings in order to
guarantee a certain Symbol Error Rate. Numerical results show
that our proposed estimators perform far better for values of
the aspect ratio M/N close to one. Furthermore, they perform
as the corresponding sample estimators when M/N → 0
(i.e., for very long training phases). In practice, it allows us
to reduce the number of transmitted bits (and hence reduce
the energy consumption) at the same time that it allows us
to decrease largely the training phase in Distributed Source
Coding schemes.
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