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Abstract— We examine the uplink spectral efficiency of a
massive MIMO base station employing a one-bit Sigma-Delta
(ΣΔ) sampling scheme implemented in the spatial rather
than the temporal domain. Using spatial rather than temporal
oversampling, and feedback of the quantization error between
adjacent antennas, the method shapes the spatial spectrum of the
quantization noise away from an angular sector where the signals
of interest are assumed to lie. It is shown that, while a direct
Bussgang analysis of the ΣΔ approach is not suitable, an alter-
native equivalent linear model can be formulated to facilitate an
analysis of the system performance. The theoretical properties
of the spatial quantization noise power spectrum are derived for
the ΣΔ array, as well as an expression for the spectral efficiency
of maximum ratio combining (MRC). Simulations verify the
theoretical results and illustrate the significant performance gains
offered by the ΣΔ approach for both MRC and zero-forcing
receivers.

Index Terms— Massive MIMO, one-bit ADCs, sigma-delta,
spectral efficiency.

I. INTRODUCTION

TO REDUCE complexity and energy consumption in
large-scale MIMO systems, researchers and system

designers have recently considered implementations with
low-resolution analog-to-digital and digital-to-analog con-
verters (ADCs, DACs). Compared to hybrid analog/digital
approaches, fully digital architectures, even with low-
resolution sampling, provide increased flexibility and fully
exploit the potentially large array gain promised by massive
MIMO systems. The case of one-bit quantization has received
the most attention, both for the uplink [1]–[9] and down-
link [10]–[20] scenarios.
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While one-bit ADCs and DACs offer the greatest simplicity
and power savings, they also suffer the greatest performance
loss compared to systems with higher resolution sampling,
particularly for moderate to high signal-to-noise ratios (SNRs),
and in situations with strong interference. Besides simply
increasing the ADC/DAC resolution, mixed-ADC architec-
tures [21]–[24] and temporal oversampling [25]–[29] have
been proposed to bridge the performance gap, with a corre-
sponding increase in complexity and power consumption.

Oversampled one-bit quantization has a long history in
digital signal processing, particularly using the so-called
Sigma-Delta (ΣΔ) approach, which quantizes the differ-
ence (Δ) between the signal and its previously quantized
value, and then integrates (Σ) the resulting output [30]–[32].
This has the effect of shaping the quantization noise to higher
frequencies, while the signal occupies the low end of the
spectrum due to the oversampling. Higher-order ΣΔ modula-
tors can be constructed that provide increased shaping of the
quantization noise from low to high frequencies. Compared
with a standard one-bit ADC, a ΣΔ ADC requires additional
digital circuitry to implement the integration, but very little
additional RF hardware. ΣΔ ADCs have been commonly used
in process control and instrumentation applications, and more
recently in the implementation of multi-channel beamformers
for ultrasound imaging systems.

The concept of ΣΔ modulation can also be applied in
the spatial as well as the temporal domain. In a spatial ΣΔ
implementation, the difference signal is formed by subtracting
the quantized output of one antenna’s RF chain from the signal
at an adjacent antenna. Coupled with spatial oversampling
(e.g., a uniform linear array with elements separated by less
than one half wavelength), the quantization noise is shaped
to higher spatial frequencies, and significantly reduced for
signals arriving in a sector around broadside (0◦). Applying
a phase shift to the feedback signal allows one to move the
band of low quantization error to different angular regions.

Relatively little research has focused on the spatial ΣΔ
architecture. Prior related work has dealt with phased-array
beamforming [33], [34], generalized structures for interfer-
ence cancellation [35], and circuit implementations [36], [37].
Applications of the idea to massive MIMO were first presented
in [38], [39], and more recently algorithms have been devel-
oped for channel estimation [40] and transmit precoding using
ΣΔ DACs [41].
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In this paper, we study the uplink spectral efficiency (SE)
of a massive MIMO base station (BS) that employs one-bit
spatial ΣΔ quantization, and compare it with the performance
achievable by systems with infinite resolution and standard
one-bit quantization for maximum ratio combining (MRC)
and zero-forcing (ZF) receivers. Past work on quantifying
the SE for standard one-bit quantization (e.g., [5], [12]) has
relied on a vectorized version of the well-known Bussgang
decomposition [43], which formulates an equivalent linear
vector model for the array of non-linear quantizers assuming
that the inputs to the quantizers are (at least approximately)
jointly Gaussian. However, the vector Bussgang solution is
not appropriate for the more complicated ΣΔ architecture,
since it leads to a linear model that is inconsistent with the
corresponding hardware implementation. Thus, we are led
to derive an alternative linear model in which we apply a
scalar version of the Bussgang approach to each quanitizer
individually. This model is then used in turn to determine the
overall sum SE.

The results of the analysis indicate the significant gain of
the ΣΔ approach compared with standard one-bit quantization
for users that lie in the angular sector where the shaped
quantization error spectrum is low. For MRC, the one-bit ΣΔ
array performs essentially the same for such users as a BS
with infinite resolution ADCs. The angular sectorization of
users in the spatial domain is not necessarily a drawback
in cellular implementations, where cells are typically split
into 120◦ regions using different arrays on the BS tower.
In addition, there are many small-cell scenarios both indoors
and outdoors where the targeted users are confined to relatively
narrow angular sectors (auditoriums, plazas, arenas, etc.). Such
situations will become even more prevalent as frequencies
move to the millimeter wave band. However, the size of the
sector of good performance for ΣΔ arrays depends on the
amount of spatial oversampling. Unlike the temporal case,
where oversampling factors of 10 or higher are not uncommon,
the physical dimensions of the antenna and the loss due to
increased mutual coupling for closely-spaced antennas places
a limit on the amount of spatial oversampling that is possible in
massive MIMO. Fortunately, our results indicate that spatial
oversampling by factors of only 2-4 is sufficient to achieve
good performance for angular sectors ranging from 80◦−150◦.
Furthermore, the ability of the ΣΔ array to electronically steer
the desired angular sector by means of the feedback phase shift
provides desirable flexibility. For example, multiple sectors
could be serviced in parallel with a single antenna array by
deploying a bank of ΣΔ receivers tuned to different spatial
frequencies, in order to cover a wider angular region.

In the next section we outline the basic system model,
and provide some background on temporal ΣΔ modulation.
In Section III, we introduce the spatial ΣΔ architecture.
We develop an equivalent linear model and characterize this
architecture in Section IV. The model is then applied to analyze
the spectral efficiency of the ΣΔ array in Section V. While
the analysis is conducted assuming that perfect channel state
information (CSI) is available, we also discuss the impact of
imperfect CSI in Section VI. Several simulation results are
presented in Section VI, followed by our conclusions.

Notation: We use boldface letters to denote vectors, and
capitals to denote matrices. The symbols (.)∗, (.)T , (.)H , and
(.)† represent conjugate, transpose, conjugate transpose, and
pseudo-inverse, respectively. A circularly-symmetric complex
Gaussian (CSCG) random vector with zero mean and covari-
ance matrix R is denoted n ∼ CN (0, R). The symbol ‖.‖
represents the Euclidean norm. The identity matrix is denoted
by I , vector of all ones by 1, and the expectation operator
by E [.]. We use diag (C), diag (x), and diag (x1, · · · , xM )
as the diagonal matrix formed from the diagonal entries
of the square matrix C, elements of vector x, and scalars
x1, · · · , xM , respectively. For a complex value, x = xr + jxi,
we define xr = Re [x] and xi = Im [x].

II. SYSTEM MODEL

Consider the uplink of a single-cell multi-user MIMO
system consisting of K single-antenna users that send their
signals simultaneously to a BS equipped with a uniform linear
array (ULA) with M antennas. The M × 1 signal received at
the BS from the K users is given by

x = GP
1
2 s + n, (1)

where G = [g1, · · · , gK ] ∈ CM×K is the channel matrix
between the users and the BS and P is a diagonal matrix
whose kth diagonal element, pk, represents the transmitted
power of the kth user. The symbol vector transmitted by
the users is denoted by s ∈ CK×1 where E

{
ssH

}
=

IK and is drawn from a circularly symmetric complex
Gaussian (CSCG) codebook independent of the other users,
and, n ∼ CN (0, σ2

nIM

)
denotes additive CSCG receiver

noise at the BS.
We consider a physical channel model described in the

angular domain and comprised of L paths for each user with
azimuth angular spread Ε [42]. In particular, for the kth user,
the channel vector is modeled as

gk =

√
βk

L
Akhk, (2)

where Ak is an M ×L matrix whose �th column is the array
steering vector corresponding to the direction of arrival (DoA)
θk� ∈ θ0 +

[−Θ
2 , Θ

2

]
, βk models geometric attenuation and

shadow fading from the kth user to the BS, and the elements
of hk ∈ CL×1 are assumed to be distributed identically
and independently as CN (0, 1), and model the fast fading
propagation. For a ULA, the steering vector for a signal with
DoA θk� is expressed as

a (uk�) =
[
1, z−1

k� , · · · , z
−(M−1)
k�

]T
, (3)

where uk� = sin (θkl), zk� = ejωsk� , and thus ωsk�
= 2π d

λuk�

represents the spatial frequency assuming antenna spacing d
and wavelength λ.

In a standard implementation involving one-bit quantization,
each antenna element at the BS is connected to a one-bit
ADC. In such systems, the received baseband signal at the
mth antenna becomes

ym = Qm (xm) , (4)
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Fig. 1. (a) Block diagram for temporal ΣΔ modulator. (b) With equivalent
linear model for quantization.

where Qm (.) denotes the one-bit quantization operation which
is applied separately to the real and imaginary parts as

Qm (xm) = αm,rsign (Re (xm)) + jαm,isign (Im (xm)),
(5)

where αm,r and αm,i represent the output voltage levels of the
one-bit quantizer. We will allow these levels to be a function
of the antenna index m, unlike most prior work which assumes
that the output levels are the same for all antennas. The
necessity for this more general approach will become apparent
later.1 Finally, the received baseband signal at the BS is given
by

y = Q (x) =
[Q1 (x1) ,Q2 (x2) , · · · ,QM (xM )

]T
. (6)

III. ΣΔ ARCHITECTURE

A. Temporal ΣΔ Modulation

In this subsection, we elaborate on temporal ΣΔ modulation
to clarify the noise shaping characteristics of this technique.
Fig. 1(a) shows a block diagram representing the temporal
ΣΔ modulator. To shape the quantization noise, the output
signal is fed back and subtracted form the input (Δ-stage),
and then this error is integrated (Σ-stage). To characterize the
transfer function of this non-linear system, we substitute the
one-bit quantizer with the equivalent linear model depicted
in Fig. 1(b). In Fig. 1(b), the equivalent gain of the non-linear
device, γ, is a function of the quantizer’s output level and
is chosen to make the input of the quantizer uncorrelated
with the equivalent quantization noise, q[n]. This is a common
approach for modeling non-linear systems [43], [44]. There-
fore, the input-output relationship of the ΣΔ quantizer can

1While the one-bit ADC output levels will be optimized, this is a one-time
optimization and the values do not change as a function of the user scenario
or channel realization. Thus the ADCs are still truly “one-bit.”

Fig. 2. Spatial ΣΔ architecture.

then be written as

Y (z) =
γ

1 − (1 − γ) z−1
X (z) +

(
1 − z−1

)
1 − (1 − γ) z−1

Q (z) ,

(7)

where X (z) =
∑∞

n=0 x [n] z−n denotes the z-transform.
Simply stated, the objective of ΣΔ modulation is to pass
the signal through an all-pass filter and the quantization noise
through a high-pass filter. This objective can be realized by
selecting the output voltage level of the quantizer such that
γ ≈ 1. Since commercial quantizers are provided with a
built-in automatic gain control (AGC), the γ ≈ 1 condition
is inherently satisfied in implementations of temporal ΣΔ
modulators, and hence this issue is not generally discussed
in the literature. However, as we show in the next subsection,
the choice of the scaling factor is critical in the mathematical
modeling of spatial ΣΔ architectures, and we derive a criterion
for addressing this issue.

B. One-Bit Spatial ΣΔ Modulation

As mentioned earlier, the basic premise of temporal ΣΔ
modulation can be adopted in the angle domain, in order
to spatially shape the quantization noise in a desired way.
Instead of forming the Δ component using a delayed sample
of the quantized input as in the temporal case, we use the
quantization error signal from an adjacent antenna. A direct
transfer of the temporal ΣΔ idea to the angle domain as
in [38], [39] pushes the quantization noise to higher spatial
frequencies, which correspond to DoAs away from the array
broadside (|θ| � 0◦), while the oversampling (reduced d/λ)
pushes signals of interest near broadside closer to zero spatial
frequency. However, by phase-shifting the quantization error
in the feedback loop prior to the Δ stage, a ΣΔ frequency
response can be obtained in which the quantization error
is shaped away from a band of frequencies not centered at
zero. This bandpass approach has been proposed for both the
temporal (e.g., see [30]) and spatial [41] versions of the ΣΔ
architecture.

Fig. 2 shows the architecture of an angle-steered ΣΔ array.
Using Fig. 2 and equation (8) at the bottom of the next page,
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we can formulate a compact input-output description of the
spatial ΣΔ array by defining

U =

⎡
⎢⎢⎢⎣

1
e−jφ 1

...
. . .

. . .
e−j(M−1)φ · · · e−jφ 1

⎤
⎥⎥⎥⎦ (9)

V = U − IM , (10)

and expressing the input to the quantizers as

r = Ux − V y. (11)

The output of the angle-steered one-bit ΣΔ array is then
defined by

y = Q (r) . (12)

IV. CHARACTERIZING THE SPATIAL ΣΔ ARCHITECTURE

A. Linear Model

To analyze the performance of spatial ΣΔ processing,
analogous to temporal ΣΔ, we will represent the one-bit
quantization operation in (12) with an equivalent linear model
as follows:

y = Q (r) = Γr + q, (13)

where Γ is an M × M matrix and q denotes the effective
quantization noise. The value of Γ that makes the equivalent
quantization noise, q, uncorrelated with r is Γ 0 = RH

ryR−1
r .

For the case where the elements of r are all jointly Gaussian,
the computation of Rry is possible by resorting to the Buss-
gang theorem2 [43]. This was the approach used in [5], [12]
for a massive MIMO implementation with standard one-bit
quantization, and the resulting Γ 0 was a diagonal matrix.

For the case of the ΣΔ architecture, even if the matrix
Γ 0 could be computed, this decomposition would not be
of interest, for at least two reasons. First, the equivalent
quantization noise q that results from setting Γ = Γ 0 in (13)
bears no connection to the quantization error fed from one
antenna to the next as shown in Fig. 2. Setting Γ = Γ 0 would
produce a model in which rm and qm−1 are uncorrelated,
but it is clear from Fig. 2 that rm for the ΣΔ array directly
depends on the quantization error from the (m − 1)-th stage.
Second, Γ 0 cannot be a diagonal matrix,3 unlike the standard
one-bit quantization case considered in [5]. The presence of
off-diagonal elements in Γ 0 implies that the model in (13)
represents the output of each quantizer as a linear combination

2The result can also be extended to cases where r belongs to a limited class
of distributions, see [45] for details

3If Γ0 were diagonal, it could be made equal to the identity matrix by a
proper scaling of each ym. However, Γ0 can never be the identity matrix
because this implies that rm = xm − e−jφqm−1, while simultaneously rm

is uncorrelated with qm−1, which is impossible.

of the inputs to that quantizer as well as other quantizers in the
array. Such a model does not have an apparent connection with
the scheme in Fig. 2, where each quantizer produces its output
depending only on its input alone. These inconsistencies
between the mathematical model based on Γ = Γ 0 and the
physical block diagram of the ΣΔ array in Fig. 2 are the result
of attempting to force r and q to be uncorrelated, when the
architecture is actually propagating the quantization error from
one stage to the next.

Consequently, in order to derive an appropriate model for
the analysis of the ΣΔ architecture, we propose to apply
the Bussgang decomposition to each quantizer individually.
In particular, we formulate the model in (13) using a matrix
Γ = diag (γ1, . . . , γM ) that is forced to be diagonal. This
is equivalent to imposing a model in which r and q are
uncorrelated component-wise: E [rmq∗m] = 0, which is the
same criterion used to generate the model for the scalar case
in Section III-A. The elements of Γ are given by

γm =
E [rmy∗

m]

E

[
|rm|2

] = αm
E [|Re [rm]| + |Im [rm]|]

E

[
|rm|2

] , (14)

where in the last equality and from now on, we assume that
rm is circularly symmetric. This assumption implies that the
quantizer output levels are identical for the real and imaginary
parts, and thus we use αm to represent both αm,r and αm,i.

As we will see later on, since the elements of Γ depend only
on the signals at one stage of the ΣΔ architecture, they are
much easier to compute than the elements of Γ 0. Moreover,
the resulting decomposition is consistent with Fig. 2. Given
that no precondition is imposed on the correlation E [rmq∗l ]
for m �= l, the model is compatible with the fact that the
quantization noise of one stage appears in subsequent stages.

Plugging (13) into (11) and using some algebraic manipu-
lations, we obtain the following mathematical model for the
ΣΔ architecture:

y =
(
I + ΓV

)−1
ΓUx +

(
I + ΓV

)−1
q. (15)

Equation (15) is the spatial ΣΔ equivalent to the temporal
domain ΣΔ description in (7). Similar to the temporal case,
(15) indicates that Γ = I should hold for the spatial ΣΔ array
to work as desired, that is, to pass x and q through spatial
all-pass and high-pass filters, respectively. If Γ = I , then (15)
becomes

y = x + U−1q, (16)

and the m-th element of y is expressed as

ym = xm +
(
qm − e−jφqm−1

)
, (17)

which explicitly shows the quantization noise-shaping charac-
teristic of the spatial ΣΔ architecture. The only task remaining
to complete our proposed linear model is to calculate the
power of the equivalent quantization noise. The condition

ym =

{
Q1 (x1) m = 1
Qm

(
xm + e−jφ

(
xm−1 + e−jφ

(· · · (x2 + e−jφ (x1 − y1) − y2

) · · · )− ym−1

))
m > 1

(8)
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Γ = I for the adequate operation of the ΣΔ scheme deter-
mines the quantization levels that have to be set. Setting (14)
equal to 1, we obtain the optimum value of αm:

α�
m =

E

[
|rm|2

]
E [|Re [rm]| + |Im [rm]|] =

E

[
|Re [rm]|2

]
E [|Re [rm]|] . (18)

It is worth noting that (18) is different from

αm = E [|Re [rm]|] , (19)

which leads to the Lloyd-Max one-bit quantizer that minimizes
the mean-squared-error (MSE) between the input and the
output of the quantizer. However, the Lloyd-Max approach
makes the quantization error uncorrelated with the quantizer
output, but not with the input.

While the expression derived in (18) is useful, it is difficult
to analytically evaluate the expectations in closed form, and
it is not clear how the output level could be tuned using
analog processing in the RF chain (e.g., via an AGC or some
other type of calibration). To address this issue, we use the
assumption that rm is Gaussian inherent in the Bussgang
decomposition to find an approximation for α�

m that is easier
to deal with, both for the subsequent mathematical analysis
and from the viewpoint of a hardware implementation. The
validity of the approximation will be apparent in the numerical
examples presented later. If rm is Gaussian, we can write

α�
m =

√
πE

[
|rm|2

]
2

. (20)

In the discussion below, we show how to express (20) in
terms of the statistics of the array output x, which provides
an analytical solution and clarifies how the quantizer output
levels could be set in a practical setting.

B. Quantization Noise Power

In this section, we calculate the power of the effective
quantization noise and the power of the quantizers’ inputs,
which is needed to properly set the output levels using (20).
With Γ = I , (13) becomes

y = r + q. (21)

Since rm and qm are uncorrelated, and using (20), we obtain

E
[|qm|2] = E

[|ym|2]− E
[|rm|2] =

(π

2
− 1
)

E
[|rm|2] .

(22)

To determine E
[|rm|2], we substitute (21) into (11), so that

r = x − U−1V q. (23)

It can be shown that

U−1V = e−jφZ−1, (24)

where4

Z−1 =

⎡
⎢⎢⎢⎢⎣

0
1 0
...

. . .
. . .

0
. . . 1 0

⎤
⎥⎥⎥⎥⎦. (25)

4Note that Z−1 is the spatial domain equivalent of the delay operator z−1

for the z-transform in the time domain.

Moreover, following the same reasoning as in Appendix A
of [5], it can be shown that E [xm′q∗m] ≈ 0, ∀m, m ∈ M =
{1, · · · , M}. This results in Rqx ≈ 0. Therefore,

Rr = Rx + Z−1RqZH
−1. (26)

Eq. (26) implies that

E
[|rm|2] =

{
E
[|xm|2] m = 1

E
[|xm|2]+ E

[|qm−1|2
]

m > 1
(27)

Substituting (22) into (27) and noting that E
[|r1|2

]
=

E
[|x1|2

]
, we obtain the following recursive equality to calcu-

late E
[|rm|2] for m > 1:

E
[|rm|2] = E

[|xm|2]+
(π

2
− 1
)

E
[|rm−1|2

]
. (28)

Let

pχ =
[
E
[|χ1|2

]
, E
[|χ2|2

]
, · · · , E

[|χM |2]]T , (29)

where χ can be any element of the set χ ∈ {r, x, q}. Then,
using (22) and (28), we have

pr = Πpx (30)

pq =
(π

2
− 1
)
Πpx, (31)

where

Π =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0(
π
2 − 1

)
1

...
. . . 1(

π
2 − 1

)m . . .
. . .

. . .
...

. . .
. . .

. . .
. . .(

π
2 − 1

)M−1 · · · (π
2 − 1

)m · · · (π
2 − 1

)
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (32)

Equation (30) shows that the calculation of E

[
|rm|2

]
needed in (20) can be formulated in terms of the power of the
antenna outputs E

[
|xm|2

]
, for which simple expressions exist

from (1). This further implies that control of E

[
|xm|2

]
via an

AGC would allow the quantizer output levels to be set without
feedback from the digital baseband. In the following remark,
we show that, using the optimal quantizer output settings,
the power of the quantization noise does not grow with m
despite the fact that it is propagated from one antenna to the
next.

Remark 1: Eq. (31) implies that, by appropriately selecting
the quantizers’ output levels, the quantization noise power
does not increase without bound. In particular, consider the
case where the power of the received signal is constant over
the array elements, i.e., px = px1. Then,

E
[|qm|2] =

(π

2
− 1
) 1 − (π

2 − 1
)m

1 − (π
2 − 1

) px −−−−→
m→∞

π
2 − 1
2 − π

2

px,

(33)

which shows that, in the limit of a large number of antenna
elements, the quantization noise power converges to a constant
value of approximately 1.33 times the input power.
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C. Quantization Noise Power Density

In the time domain, it is well-known that sampling a
band-limited signal by a rate N times larger than the Nyquist
rate and down-sampling after quantization can reduce the
in-band quantization noise power by a factor of 1/N and 1/N3

for standard one-bit and ΣΔ modulation, respectively [46].
In this subsection, we look for a similar behaviour for quan-
tization across an array in space. More precisely, we want to
quantify how spatial oversampling, i.e., decreasing the antenna
spacing, d/λ, (or equivalently, increasing the number of anten-
nas for space-constrained arrays) can reduce the quantization
noise power for the in-band angular spectrum. To do so,
we define the quantization noise power density as

ρq (u) � 1
M

a (u)H R a (u), (34)

where R is the covariance matrix of the quantization noise.
To differentiate the two cases, we denote the covariance matrix
of the quantization noise for standard one-bit quantization
as Rq1

, and the covariance of the ΣΔ quantization noise
as RqΣΔ

. Expressions for these covariance matrices will be
derived later in this subsection. Hence, the normalized received
quantization noise power over some angular region, Ε, is given
by5

Pq =
1
2δ

∫ δ

−δ

ρq (u) du, (35)

where δ = sin
(

Θ
2

)
. Next we find Pq for standard one-bit and

ΣΔ quantization.
1) One-Bit Quantization: Unlike [5], for standard one-bit

quantization, we choose the quantizer output levels as αm =√
πE

[
|xm|2

]
/2 so that ym = Q (xm) = xm + qm. This

causes no loss of generality for standard one-bit quantization,
since the value of the quantizer output has no impact on the
performance of the resulting system. Therefore, the covariance
matrix of the quantization noise can be written as

Rq1
= Ry − Rx , (36)

where the arc-sine law [47], [48] is used to obtain

Ry = diag (Rx)
1
2 sin−1 (Υ) diag (Rx)

1
2 , (37)

and

Υ = diag (Rx)−
1
2 Re (Rx) diag (Rx)−

1
2

+ jdiag (Rx)−
1
2 Im (Rx) diag (Rx)−

1
2 . (38)

Note that the arc-sine in (37) is applied separately to each
element of the matrix argument, and also separately to the
real and imaginary parts of the matrix elements.

From [5], we have that diag (Ry) = π
2 diag (Rx). Since the

off-diagonal elements of Υ are small, we use the approxima-
tion sin−1 (x) ≈ ζx, where ζ > 1, to obtain

Rq1
≈ (ζ − 1)Rx +

(π

2
− ζ
)

diag (Rx) . (39)

5To simplify the calculation of the quantization noise power, we assume
without loss of generality that the ΣΔ array is steered to broadside (θ = 0).

Moreover, from (1), Rx becomes

Rx =
K∑

k=1

pkβk
1
L

L∑
�=1

a (uk�)a (uk�)
H + σ2

nI, (40)

where for L � 1, uk� can be taken as a random variable
uniformly distributed in [−δ, δ]. That is,

1
L

L∑
�=1

a (uk�) a (uk�)
H ≈ E

[
a (u)a (u)H

]

=
1
2δ

∫ δ

−δ

a (u)a (u)H du. (41)

Therefore,

Rx =
K∑

k=1

pkβk
1
2δ

∫ δ

−δ

a (u)a (u)H
du + σ2

nI. (42)

Now we are ready to calculate the standard one-bit quanti-
zation noise power, Pq1 .

Proposition 1: The normalized quantization noise power
for standard one-bit quantization is

Pq1

= (ζ − 1)

×
[
σ2

n+
1
M

K∑
k=1

pkβk

M−1∑
n=0

M−1∑
m=0

sinc2

(
2π

d

λ
(m−n) δ

)]

+
π
2 − ζ

M
Tr [Rx] , (43)

where sinc (x) � sin(x)
x .

Proof: Plugging (42) into (39) results in

Pq1 = (ζ − 1)

×
⎡
⎣σ2

n +
1

4δ2 M

K∑
k=1

pkβk

δ∫∫
−δ

∣∣∣a (v)H
a (u)

∣∣∣2 dudv

⎤
⎦

+
π
2 − ζ

M
Tr [Rx] . (44)

Using Eq. (10) in [49] yields

1
4δ2

δ∫∫
−δ

∣∣∣a (v)H
a (u)

∣∣∣2 dudv

= E

[∣∣∣a (v)H a (u)
∣∣∣2]

=
M−1∑
n=0

M−1∑
m=0

sinc2

(
2π

d

λ
(m − n) δ

)
, (45)

which completes the proof.
Remark 2: Consider the case that M � 1. Then, from (43)

Pq1

(a)≈ (ζ − 1)σ2
n

+ (ζ−1)

[
1
2δ

(
d

λ

)−1

− 1
4π2δ2

(
d

λ

)−2

f

(
d

λ

)] K∑
k=1

pkβk

+
(π

2
− ζ
) K∑

k=1

pkβk, (46)
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where f (x) � 2
M

∑M−1
n=1

sin2(2πxδn)
n and in (a) we have used

Eq. (14) of [49]. Equation (46) states that, for standard one-bit
quantization, increasing the spatial oversampling in a large
antenna array (d/λ → 0) increases the quantization noise
power proportional to (d/λ)−1.

Remark 3: Consider the fixed-aperture case where d0 =
M d

λ is a constant (i.e., the antenna spacing decreases pro-
portionally to the increase in the number of antennas). Then,
from (43)

Pq1−−−−→
M→∞

(ζ−1)

[
σ2

n+M

K∑
k=1

pkβk

]
+
(π

2
−ζ
) K∑

k=1

pkβk.

(47)

Equation (47) states that, for standard one-bit quantization,
increasing the number of antennas for an array with a fixed
aperture, d0, increases the quantization noise power linearly
with M .

2) ΣΔ Quantization: From (16), the covariance of the
quantization noise for the ΣΔ architecture is RqΣΔ

=
U−1RqU−H . We derive an expression for the normalized
quantization noise power of the ΣΔ array, PqΣΔ , in the next
proposition.

Proposition 2: The quantization noise power for spatial
ΣΔ quantization is

PqΣΔ =
2
M

(
Tr [Rq] − σ2

qM

) [
1 − sinc

(
2π

d

λ
δ

)]
+

σ2
qM

M
,

(48)

where σ2
qM

= E
[|qM |2].

Proof: Substituting RqΣΔ
= E

[
U−1qqHU−H

]
into (34)

leads to

PqΣΔ =
1
M

1
2δ

∫ δ

−δ

E

[∣∣∣a (u)H
U−1q

∣∣∣2] du. (49)

We set φ = 0 due to the assumption of u ∈ [−δ, δ] in the
definition of the quantization noise power, and we note that

U−1 = IM − Z−1 . (50)

Then

U−1q = (IM − Z−1) q =

⎡
⎢⎢⎢⎣

q1

q2 − q1

...
qM − qM−1

⎤
⎥⎥⎥⎦. (51)

In addition, from (23), and the fact that Rqx ≈ 0, it can
be readily shown that E

[
qmq∗m±1

] ≈ 0. Hence, for the sake
of analysis, we approximate E [qmq∗m′ ] ≈ 0, ∀m �= m� ∈ M,
and therefore Rq = diag

(
pq

)
. Consequently,

E

[∣∣∣a (u)H
U−1q

∣∣∣2]

=
∣∣∣1 − ej2π d

λ u
∣∣∣2 M−1∑

m=1

E

[
|qm|2

]
+ E

[
|qM |2

]

= 4
(
Tr [Rq] − σ2

qM

)
sin2

(
π

d

λ
u

)
+ σ2

qM
. (52)

By integrating (52) and using some algebraic manipulation,
we arrive at (48).

Remark 4: Consider the case that M � 1. Then, from (48)

PqΣΔ

(a)≈ 4
3

π
2 − 1
2 − π

2

π2δ2

(
d

λ

)2

px, (53)

where in (a) we have used sinc (x) ≈ 1 − x2

6 and

1
M

(
Tr [Rq] − σ2

qM

) ≈ π
2 − 1
2 − π

2

px (54)

for M � 1 and assuming px = px1. Equation (53) states
that, by increasing the spatial oversampling (d/λ → 0),
the quantization noise power for the ΣΔ array tends to zero
proportional to (d/λ)2. This result is in contrast to that for
the standard one-bit quantization power, which was shown
earlier to increase proportional to (d/λ)−1. Hence, the spatial
ΣΔ architecture brings about an oversampling gain of (d/λ)3

compared to the standard one-bit architecture. While this is a
promising result, as mentioned earlier the practical limitations
of placing antenna elements close to each other prevent us
from achieving a high degree of spatial oversampling.

Remark 5: Consider the case that d0 = M d
λ is a constant.

Then, from (48)

M2PqΣΔ−−−−→
M→∞

4
3

π
2 − 1
2 − π

2

π2δ2d2
0px. (55)

Equation (55) states that, for spatial ΣΔ quantization, increas-
ing the number of antennas for an array with a fixed aperture,
d0, decreases the quantization noise power proportional to
1/M2. Hence, the spatial ΣΔ architecture brings about an
oversampling gain of M3 compared to the standard one-bit
architecture.

In the next section, we study the spectral efficiency of
a massive MIMO system with spatial ΣΔ processing and
discuss the impact of the spatial ΣΔ architecture on the system
performance.

V. SPECTRAL EFFICIENCY

In this section, we study the SE of a massive MIMO system
with spatial ΣΔ processing. We consider maximum ratio
combining (MRC) and zero-forcing (ZF) receivers. We derive
here an approximation for the SE of the system with an MRC
receiver, and evaluate the SE for the ZF receiver in the next
section, numerically. We first present the case where perfect
channel state information (CSI) is assumed to be available at
the BS, and then we discuss the impact of imperfect CSI on
the system performance at the end of the section.

From (1) and (16), the received signal at a BS with a ΣΔ
architecture can be modeled as

y = GP
1
2 s + n + U−1q. (56)

Denoting the linear receiver by W , we have

ŝ = W HGP
1
2 s + W Hn + W HU−1q , (57)
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and the kth element of ŝ is given by

ŝk =
√

pkwH
k gksk +

K∑
i=1,i�=k

√
pkwH

k gisi

+ wH
k n + wH

k U−1q, (58)

where wk is the kth column of W . We assume the BS
treats wH

k gk as the desired channel and the other terms
of (58) as worst-case Gaussian noise when decoding the signal.
Consequently, a lower bound for the ergodic achievable SE at
the kth user can be written as [50]

Sk = E

[
log2

(
1 +

pk

∣∣wH
k gk

∣∣2
Ω

)]
, (59)

where

Ω =
K∑

i=1,i�=k

pk

∣∣wH
k gi

∣∣2 + σ2
n‖wk‖2

+ wH
k U−1RqU−Hwk. (60)

A. MRC Receiver

For the case of an MRC receiver, W = G. The following
proposition presents an approximation for the achievable SE
of a massive MIMO system with spatial ΣΔ processing and
an MRC receiver.

Proposition 3: For a massive MIMO system employing a
spatial ΣΔ architecture and an MRC receiver, the SE of the
kth user assuming perfect CSI is given by eq. (61) shown at
the bottom of this page, where Σik � 1

LAH
i Ak.

Proof: From [50], an approximation for (59) can be
calculated as

Sk ≈ log2

⎛
⎝1 +

pkE

[∣∣wH
k gk

∣∣2]
E [Ω]

⎞
⎠ . (62)

By setting wk = gk and using Lemma 2 of [51] and
Lemma 1 of [52], the expected values of the desired signal,
interference, and thermal noise can be readily calculated. For
the quantization noise term, note that

U−1 = IM − e−jφZ−1. (63)

Therefore,

U−1q =
(
IM − e−jφZ−1

)
q =

⎡
⎢⎢⎢⎣

q1

q2 − e−jφq1

...
qM − e−jφqM−1

⎤
⎥⎥⎥⎦.

(64)

In addition, the kth user channel vector can be written as

gk =

√
βk

L

L∑
l=1

hkla (θkl), (65)

where hkl is the lth element of hk. Hence,

E

[∣∣gH
k U−1q

∣∣2]

=
βk

L
E

⎡
⎣
∣∣∣∣∣

L∑
�=1

hkl

(
1−e−jφzkl

)M−1∑
m=1

qmzm−1
kl +qMzM−1

kl

∣∣∣∣∣
2
⎤
⎦,

(66)

which, after some algebraic manipulation, leads to (61) and
the proof is complete.

Remark 6: The noise shaping characteristic of the spatial
ΣΔ architecture is explicitly manifested in (61). A similar
characteristic is observed in [41] for ΣΔ precoding. It shows
the importance of the design parameter φ which should be
chosen to minimize G = 1

L

∑L
�=1 sin2

(
φ−2π d

λ sin(θk�)

2

)
for

all users. By writing the steering angle as φ = 2π d
λ sin (θ),

we have

G =
1
L

L∑
�=1

sin2

(
π

d

λ

(
sin (θ) − sin (θk�)

))
. (67)

Eq. (67) indicates that G could be made arbitrarily small
by decreasing the relative antenna spacing d/λ (the spatial
oversampling gain) or sin (θ) − sin (θk�) (the angle steering
gain). However, physical constraints on the antenna spacing
and larger angular spreads, Ε, limit the lower bound on G.
For the case that L � 1, sin (θk�) = uk� can be taken
as a random variable uniformly distributed in [δ1, δ2] where
δ1 = sin

(
θ0 − Θ

2

)
and δ2 = sin

(
θ0 + Θ

2

)
. Hence,

G ≈ 1
δ2 − δ1

∫ δ2

δ1

sin2

(
φ − 2π d

λu

2

)
du

=
1
2

+
1
4π

(
d

λ

)−1 1
δ2 − δ1

(b0sin (φ) − b1cos (φ)) ,

(68)

where

b0 = cos
(

2π
d

λ
δ2

)
− cos

(
2π

d

λ
δ1

)

b1 = sin
(

2π
d

λ
δ2

)
− sin

(
2π

d

λ
δ1

)
.

In this case, the optimal value of the steering angle that
minimizes G can be simply derived as

φ� =

⎧⎨
⎩

0 δ2 = −δ1

−tan−1

(
b0

b1

)
otherwise

(69)

Sk ≈ log2

⎛
⎝1 +

pkβk

(
|Tr [Σkk]|2 + Tr

[
Σ2

kk

])
∑K

i=1,i�=k piβiTr
[
ΣikΣH

ik

]
+ σ2

nTr [Σkk] + 4
L

(
Tr [Rq] − σ2

qM

)∑L
�=1 sin2

(
φ−2π d

λ sin(θk�)

2

)
+ σ2

qM

⎞
⎠

(61)
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Fig. 3. Spatial spectrum of the quantization noise for the ΣΔ and standard
one-bit architectures when L = 50, d = λ/4, and SNR = 0 dB.

which indicates that the optimal steering angle is dependent
on δ1, δ2, and the relative antenna spacing d/λ.

B. ZF Receiver

For the ZF receiver, W = G
(
GHG

)−1

. After substituting
this for W in (62), the SE achieved for the kth user with the
ΣΔ architecture and ZF receiver can be written as in (70)
at the bottom of this page. Although (70) does not provide
direct insight into the effect of the shaped quantization noise
on the SE, in Section VI we numerically evaluate this expres-
sion and show the superior performance of the ΣΔ architecture
compared with standard one-bit quantization.

VI. NUMERICAL RESULTS

In this section, we numerically evaluate the SE perfor-
mance of ΣΔ massive MIMO systems in various scenarios.
We assume static-aware power control in the network [53]
so that pk = p0/βk. In all of the cases considered, unless
otherwise noted, we assume M = 100 antennas, K = 10
users, and an angular spread of Ε = 40◦ centered at θ0 = 30◦.
We assume the same DoAs for all users, i.e., Ak = A, ∀k,
drawn uniformly from the interval [10◦, 50◦], which corre-
sponds to u = sin(θ) ∈ [0.17, 0.77], and the steering angle of
the ΣΔ array is set to φ = 2π d

λ sin (θ0). The SNR is defined
to be SNR � p0

σ2
n

. We further assume CSCG symbols and
104 Monte Carlo trials for the simulations.

Fig. 3 shows the simulated and analytically derived quanti-
zation noise power density, i.e., ρq (u) , u ∈ [−1, 1], for ΣΔ

Fig. 4. Spatial spectrum of the quantization noise for the ΣΔ and standard
one-bit architectures for different antenna spacings when L = 50 and
SNR = 0 dB.

and standard one-bit quantization when the relative antenna
spacing is d = λ/4. We see that the quantization noise power
for the ΣΔ array is substantially lower over the angles where
the users are present, while the effect is the opposite for
standard one-bit quantization – the quantization noise is higher
for angles where the amplitude of the received signals is larger.
We also observe that there is excellent agreement between the
simulations and our theoretically derived expressions for both
cases. Note that the careful design of the quantizer output
levels is a critical aspect for achieving the desired ΣΔ noise
shaping characteristic shown here.

The impact of spatial oversampling on the shape of the
quantization noise spectrum is illustrated in Fig. 4. We see
from the figure that, as discussed in Remarks 2, the quan-
tization noise power for the standard one-bit ADC architec-
ture grows as d/λ decreases. Analogously to temporal ΣΔ
modulation where increasing the sampling rate helps to push
the quantization noise to higher frequencies and widen the
quantization-noise-free band, we can reduce the quantization
noise power over wider angular regions by placing the antenna
elements of the array closer together. For example, when
d = λ/2, the ΣΔ quantization noise power is below that
of the standard one-bit quantizer over a beamwidth of 40◦.
This beamwidth increases to about 80◦, 150◦, and 180◦ for
d = λ/4, d = λ/8, and d = λ/16, respectively. Mutual
coupling will impact these results as d decreases, but both

Sk = E

⎡
⎢⎢⎣log2

⎛
⎜⎜⎝1 +

pk

‖wk‖2σ2
n +

[(
GHG

)−1

GHU−1RqU−HG
(
GHG

)−1
]

kk

⎞
⎟⎟⎠
⎤
⎥⎥⎦ (70)
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Fig. 5. SE versus SNR for MRC receiver with perfect CSI, L = 50, and
d = λ/4.

the standard one-bit and ΣΔ approaches would be expected
to degrade.

In Fig. 5, we compare the SE performance of ΣΔ and stan-
dard one-bit quantization for the case of an MRC receiver. It is
clear that the derived theoretical SE expression in (61) very
closely matches the simulated value of the expression in (59).
The one-bit ΣΔ implementation achieves a significantly
increased SE compared with standard one-bit quantization, and
performs nearly identically to an MRC receiver with infinite
resolution ADCs. It should be emphasized that this perfor-
mance gain is achieved without paying a significant penalty
in terms of power consumption (as with mixed-ADC archi-
tectures) or complicated processing (as required by non-linear
receivers).

In Fig. 6 and 7, we numerically evaluate the SE when the
ZF receiver is employed, using Eq. (70). The SE improvement
of ΣΔ processing is much greater than for the case of MRC.
For example, at SNR = 0 dB, about a 50% improvement in
SE can be achieved by the spatial ΣΔ architecture compared
with standard one-bit quantization, which confirms its ability
to provide high SE with a simple architecture and low power
consumption.

The effect of channel estimation error on the performance of
the algorithms is also shown in Fig. 6 for the ZF receiver. For
these results, we used a least squares (LS) channel estimator
for each of the algorithms. In this approach, the channel
estimate, Ĝ, becomes

Ĝ =
1

η
√

p0
P AY Φ∗, (71)

where η is the training length, P A = AA† is the orthog-
onal projection onto A, Y ∈ CM×η is the received data
during the channel estimation phase, and Φ ∈ Cη×K is
the orthogonal pilot matrix satisfying ΦHΦ = ηI . We set
η = K and choose Φ from among the columns of the discrete
Fourier transform (DFT) matrix. Note that for the case of

Fig. 6. SE versus SNR for ZF receiver with and without channel estimation
error. L = 20, d = λ/4.

Fig. 7. SE versus M for ZF receiver with and without channel estimation
error. L = 15, d = λ/4, SNR = 10 dB.

high-resolution quantization, Y =
√

p0GΦT + N , where the
elements of N are independent CN (0, 1) random variables.
For standard one-bit and ΣΔ quantization, we pass Y through
the corresponding quantization, and plug the output into (71)
for channel estimation. Fig. 7 shows the performance of the
ZF receiver with and without perfect CSI versus the number of
antennas. The presence of imperfect CSI obviously degrades
all of the algorithms, but we see that the ΣΔ architecture
provides a way to successfully bridge the performance gap
between standard one-bit and high-resolution quantization
with only a minimal increase in hardware complexity.

VII. CONCLUSION

In this paper, we studied the performance of massive MIMO
systems employing spatial one-bit ΣΔ quantization. Using an
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element-wise Bussgang approach, we derived an equivalent
linear model in order to analytically characterize the spectral
efficiency of a massive MIMO base station with a ΣΔ array,
and we compared the results with the performance achieved
by an array that employs standard one-bit quantization. Our
results demonstrated that the spatial ΣΔ architecture can scale
down the quantization noise power proportional to the square
of the spatial oversampling rate. This can be interpreted as
scaling down the quantization noise power proportional to
the inverse square of the number of antennas at the BS for
space-constrained arrays. This result gains more importance
by noting that in standard one-bit quantization, the quanti-
zation noise power grows proportional to the inverse of the
spatial oversampling rate, or equivalently, proportional to the
number of antennas at the BS in space-constrained arrays.
Furthermore, it was shown how this capability allows the
spatial ΣΔ architecture to bridge the SE gap between infinite
resolution and standard one-bit quantized systems. For the ZF
receiver, the spatial ΣΔ architecture can outperform standard
one-bit quantization by about 50%, and achieve almost the
same performance as an infinite resolution system for the MRC
receiver. While these results were obtained by assuming the
availability of perfect CSI at the BS, we also showed that the
spatial ΣΔ architecture is able to alleviate the adverse impact
of quantization noise in the presence of channel estimation
error.
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