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a b s t r a c t

It is customary to look over deterministic beamforming techniques as designs that offer a
trade-off between mainlobe width and sidelobe level. In this work, we take into
consideration that noise reduction and interference rejection are actually more useful
metrics for the design of practical systems, and we present a novel analysis as a first step
to understand the behavior and limitations of the deterministic beamformers from this
system level perspective. The obtained results show that a trade-off between both metrics
exists, and they illustrate some misconceptions about the traditionally assumed optimal
designs. Finally, a method to approximately calculate the best attainable performance of
any deterministic beamformer is presented.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Beamforming is an array signal processing technique
that provides a versatile form of spatial filtering. The
existing beamforming techniques can be mainly classified
into two groups [1]: deterministic beamforming and data-
dependent beamforming. In the former, the designs aim to
generate a fixed response for all possible scenarios, where
sidelobe level and mainlobe width are typical performance
metrics. In the latter, the designs depend on the statistics
of the incoming data, where output signal-to-interference
plus noise ratio (SINR) is a common performance metric.

Currently, the application requirements at a system
level are usually present in terms of interference power
and noise power at the output of the beamformer [2–4],
and normally they cannot be understood simply as a single
requirement on the interference-plus-noise power. These
requirements can be alternatively expressed in terms of
the beamformer's ability to mitigate the noise (array gain)
and reject the interferences (attenuation), and they can be
represented in a curve that relates both metrics. On the
All rights reserved.
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other hand, each beamforming technique is inherently
characterized by a performance curve containing the array
gain and attenuation values that it can offer, each point
corresponding to a specific design. A natural concern is
then to accurately quantify the performance curves, since
they allow us to know which designs can be eligible for the
application of interest. Fig. 1a depicts this idea. This clearly
casts doubts on the optimality of some commonly used
beamforming performance metrics, and it shows that
array gain and attenuation may be better metrics.

Recently, the authors of [4] studied the trade-off between
array gain and attenuation of some data-dependent beam-
formers, and they proposed a new beamformer that allows
the control of this trade-off. However, a similar study about
deterministic beamformers is also necessary since unfortu-
nately most data-dependent beamformers do not allow this
control and they fail in some scenarios [1,5–7]. In contrast,
deterministic beamformers constitute a robust [1,8,9] and
simpler option to be implemented. Moreover, they offer
adequate solutions when the desired signal and the inter-
ferences are known to be confined in different spatial
regions, as in GNSS reference stations [3], radio telescopes
for interferometry and the over-the-horizon radar.

In this work we shed some light on the relation
between attenuation and array gain of the most relevant
deterministic techniques. We compare their behavior and
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Fig. 1. (a) Example of the requirements and performance curves in terms of array gain (ag) versus attenuation ðγÞ. (b) Scenario of interest and example of a
possible beam pattern.
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limitations in a realistic scenario, and we show that the
Dolph–Chebychev beamformer, which is usually adopted
as the optimal solution to reject the signals coming from a
given spatial sector, is not the best design from a system
level perspective. In order to obtain a benchmark to
evaluate the performance of any beamformer, we also
present a method to approximately calculate the optimal
performance curve.
2. Problem statement

Let us consider that an N-element uniform linear array
receives s(t), m1ðtÞ;…;mMðtÞ and n(t), which are the base-
band representations of the desired signal, M interferences
and additive white noise respectively. Assuming that the
array narrow-band condition is fulfilled [1], the baseband
equivalent of the beamformer output signal is

yðtÞ ¼wHvðθ0ÞsðtÞ þ ∑
M

k ¼ 1
wHvðθkÞmkðtÞ þwHnðtÞ ð1Þ

where w∈CN contains the beamforming weights, H
denotes the conjugate transpose operation, vðθÞ∈CN is
the steering vector at a given direction-of-arrival (DOA) θ,
and θ0; θ1;…θM are the DOAs of the desired signal and
interferences respectively, defined as the arrival angles
with respect to the array axis. Finally, nðtÞ∈CN contains the
received noise at each element of the array.

In the applications of interest we cannot assume that
the DOAs of the interferences are known. Instead, the
interferences are assumed to arrive from elevations lower
than a value φf , and we call this region forbidden sector. On
the other hand, the desired signal arrives from an eleva-
tion higher than a value φd4φf , and we call this region
desired sector. The remaining area is the transition sector.
The elevations belonging to the forbidden sector corre-
spond to θ∈½0;φf �∪½π−φf ; π�, and for the desired one
θ∈½φd; π−φd�.

The aim of the beamformer is to find the weights w
that verify a particular requirements on the array response
or beam pattern wHvðθÞ. Fig. 1b shows a scheme of the
described scenario and an example of a possible beam
pattern. From all existing metrics related to w, we are
interested in the attenuation γ and the array gain ag of the
corresponding beam pattern, defined as

γ−1≔maxfjwHvðθÞj2=jwHvðθ0Þj2 : θ∈½0;φf �∪½π−φf ; π�g ð2Þ

ag≔jwHvðθ0Þj2=jwHwj ð3Þ
Note that the attenuation definition is consistent with the
worst-case requirements of the considered applications,
and the noise definition considers the special case of
spatial white noise and identical noise spectra at each
sensor [1].

The goal of the paper is then to study the relation
between γ and ag of the current deterministic beamfor-
mers for linear arrays and find an optimal performance
curve to obtain a benchmark that let us evaluate their
performance. The inter-element spacing of the array is
chosen to be half wavelength through all the paper since
the corresponding beam pattern presents the best resolu-
tion without ambiguity.

3. Array gain versus attenuation trade-off

3.1. Deterministic beamforming techniques

We discuss here how to adapt the existing determinis-
tic techniques to our scenario. The first step is to select
those methods in which either ag or γ can be modified
deliberately by the designer. This is only the case of the
Main Response Axis (MRA) methods [1], which assure an
accurate control of the sidelobe level.

The MRA methods mainly comprise the Spectral
Weighting (SW) and the Minimum Beamwidth for Speci-
fied Sidelobe Level (MBSSL) approaches, which present a
well known trade-off between sidelobe level and mainlobe
width or beamwidth. Concretely, the MBSSL methods
optimize the beamwidth for a given maximum level of
sidelobes, and the Dolph–Chebychev is the best known
representative because it has constant level of sidelobes.
Furthermore, both approaches are characterized by having
non-increasing sidelobes. This leads to a methodology of
design based on building a spatial filter with pass-band
given by the mainlobe and stop-band given by the side-
lobes. In our scenario, the pass-band is located in the
desired sector and the stop-band corresponds to the
forbidden sector. The mainlobe is placed in the desired



Fig. 2. Minimum number of antennas Nmin for achieving an attenuation ϵ.
Scenario with φf ¼ 101 and φd ¼ 201.

M. Mañosas-Caballú et al. / Signal Processing 94 (2014) 158–162160
direction θ0 by means of array steering [1] since the
mainlobe of all the MRA methods is located at θ0 ¼ π=2
by default, and the first sidelobe level is meant to deter-
mine a lower-bound on the attainable attenuation.

Finally, note that this methodology of design may imply
that a portion of the mainlobe is present in the forbidden
sector because the closer to the endfire (θ¼ 0 or π) the
mainlobe is, the wider the beamwitdh. Then, as γ is
determined by the maximum value of sidelobes and
mainlobe inside the forbidden sector, the mainlobe can
reduce the attainable attenuation if it exceeds the sidelobe
level. As a result, and being consistent with the considered
worst case requirements, it is mandatory to focus on the
designs where the DOA of s(t) is close to the forbidden
sector. Other cases are not so restrictive.

3.2. Trade-off analysis

We start by noting that the value of γ is generally
improved by decreasing the sidelobes level. However, this
generally widens the mainlobe. Thus, a situation may be
attained where the mainlobe is present in the forbidden
sector with a value that exceeds the sidelobes. As a result,
each MRA technique has a maximum value of attenuation
ϵ that is not possible to exceed, i.e. ϵ¼max γ. We call it
maximum-attenuation design, and it is achieved when the
first sidelobe level equals the maximum mainlobe value
inside the forbidden sector.

Without loss of generality, we can consider that our
beam patterns are normalized with respect to the LOSS
response, so ϵ corresponds to a minimum sidelobe level
1=

ffiffiffi

ϵ
p

. In the case of the Dolph–Chebychev approach, it is
possible to analytically deduce a formula for ϵ through
simple algebraic manipulations on the beam pattern of the
Dolph–Chebychev beamformer, whose basic formulation
can be obtained from [1]

ϵ¼ cosh2ððN−1Þ sech−1 cos ðπρ=2ÞÞ N≥2 ð4Þ
where ρ¼ cos ðφf Þ− cos ðφdÞ. In the case of the SWmethods,
the value of ϵ corresponds to the largest solution of
ffiffiffi

ϵ
p −1 ¼ jwðϵÞHv ð cos −1ρÞj ϵ40 ð5Þ
where we use wðϵÞ to emphasize that w depends on the
designed sidelobe level 1=

ffiffiffi

ϵ
p

through a MRA design para-
meter. Eq. (5) imposes that the value of the mainlobe at φf

is equal to the first sidelobe level. Then, in practice one can
obtain an approximate solution via beam pattern plots:
increasing/decreasing the first sidelobe level until it equals
the mainlobe value at φf . Analogously, an accurate solution
of ϵ can be easily obtained from (5) via the bisection
method.

As shown in (4) and (5), ϵ does not only depend on the
particular designw, but also on the value of N. Fig. 2 shows
the minimum number of antennas Nmin needed to obtain a
given value of ϵ. We can see that Nmin is a monotonically
increasing function of ϵ. The reason is that an increase of ϵ
requires a decrease of the beamwidth, which is achieved
by increasing N. Note that the plot also shows that the SW
methods can be classified into two groups [1]. On one
hand, Hamming and Blackman-Harris, do not allow
us to vary the sidelobe level deliberately, and they are
represented as fixed attenuation points. On the other hand,
Dolph–Chebychev, Raised Cosine, Cosinem and Discrete
Prolate Spheroidal Sequences (DPSS), allow us to increase
or decrease the sidelobe level through a design parameter.

Finally, we analyze the points ðag ; γÞ that an MRA
method offers when varying the design parameter for a
given value of N. This gives a curve for each value of N.
Note first that if the designed sidelobes are higher or equal
than 1=

ffiffiffi

ϵ
p

, then γ is determined by the sidelobes level.
However, when the designed sidelobes are lower than
1=

ffiffiffi

ϵ
p

, then γ is determined by the mainlobe. Thus, two
different designs may exist that produce the same γ. As
each design corresponds to a different beamformer, a
priori it has different values of ag. The result is that some
values of γ can be paired with two different values of ag,
except when γ ¼ ϵ. In fact, all simulated methods present
an upper and lower curves ending at a common point with
attenuation ϵ. In order to show only the most meaningful
designs, we do not represent here the lower curve. Fig. 3
shows the upper curves obtained for the DPSS and Dolph–
Chebychev methods.

3.3. Discussion

First note that, as the SW methods have decreasing
sidelobes, there are sidelobes that are lower than the first
sidelobe. But, as some of them are outside the forbidden
region, they are not effectively used to attenuate infer-
ences. In contrast, the Dolph–Chebychev approach offers a
constant level of sidelobes, which is a less restrictive way
of using the degrees of freedom of w to increase γ, as
corroborated by the results in Fig. 2. This advantage
partially clarifies why the Dolph–Chebychev is usually
adopted as the optimal solution to attenuate the signals
coming from a given spatial sector. However, the Dolph–
Chebychev method does not enjoy the same advantage in
terms of ag. For instance, Fig. 3 shows that for N¼40 the
SW techniques present the best values of ag.

Second note that Fig. 3 shows that there exists a clear
trade-off between ag and γ. The SWmethods present the best
ag when high sidelobes are used. This is due to both the
narrow mainlobe of the beam patterns and the high filtration



Fig. 3. Array gain versus attenuation for the DPSS and the Dolph–
Chebychev techniques. N¼40 (lower curves) and N¼70 (upper curves).
The maximum-attenuation design values are ϵd1≈15:3 dB, ϵd2≈31:5 dB,
ϵc1≈17:7 dB and ϵc2≈36 dB. Scenario with φf ¼ 101 and φd ¼ 201.

Fig. 4. Array gain versus attenuation for several MRA deterministic
techniques and the OPC. N¼30. Scenario with φf ¼ 101 and φd ¼ 201.
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of the noise for low elevations. Then, when the designed
sidelobes are lower, γ increases up to ϵ. But the mainlobe
width increases and the higher noise reduction for low
elevations does not compensate the incoming noise from
the mainlobe, so ag decreases. In contrast, in the case of the
Dolph–Chebychev, the noise is poorly mitigated in all the
visible region for high sidelobes since the same low attenua-
tion is applied for all the sidelobes, so ag is low. Then, ag is
improved when the sidelobes are decreased, although the
represented values are obtained once the sidelobes go under
1=

ffiffiffi

ϵ
p

, so the attenuation decreases.

4. Optimal performance curve

We work out the values of the Optimal Performance
Curve (OPC) from the solution of an iterative algorithm.
Our goal is to solve

max
w

jwHaj2=jwHwj

s:t: jwHvðθÞj=jwHaj≤β θ∈½0;φf �∪½π−φf ; π� ð6Þ

where a≔vðθ0Þ to abbreviate and, without loss of generality,
we can consider thatwHa¼ 1. Note that (6) maximizes ag for
a given attenuation γ ¼ β2, so its solution determines the
optimal trade-off between ag and γ. However, as this solution
is very difficult to obtain (if possible at all), we present below
an approximate solution by means of a modified version of
the iterative algorithm presented in [10]. Although an
analytical proof of the convergence of the proposed iterative
algorithm to the approximate solution is not available, the
results obtained in [10] and our extensive simulations have
shown that in practice this is always the case as long as the
constraint in (6) does not make the problem unfeasible. Note
that in the considered scenarios a mathematical proof of the
convergence is not really necessary since it can be just
checked through simulations before using the weights for
their final purpose.

The algorithm starts by creating a distortionless beam-
former with maximum array gain, i.e. w0 ¼ argmin wHw
subject to wHa¼ 1, whose solution is w0 ¼ ðaHaÞ−1a.
Second, the algorithm iteratively updates the weights as
wnþ1 ¼wn þ Δwn until the sidelobes do not exceed the
desired level β in the forbidden sector. For a given value of
n∈N, Δwn comes from

min
Δwn

ðwn þ ΔwnÞHðwn þ ΔwnÞ

s:t: ΔwH
n a¼ 0

ΔwH
n vðϕn;kÞ ¼ f n;k k¼ 1;…;Kn ð7Þ

where ϕn;k is the direction of the k-th sidelobe of wn that
exceeds β in the forbidden sector, Kn is the number of
sidelobes that exceed β and f n;k is the value that we assign
to the beam pattern of Δwn in the direction ϕn;k.

The goal of (7) is twofold. On one hand, using the new
objective function and the constraint ΔwH

n a¼ 0, the max-
imization of the array gain of wnþ1 and the constraint
wH

nþ1a¼ 1 are maintained. On the other hand, using
the second constraint with f n;k≔ðβ−jcn;kjÞcn;k=jcn;kj and
defining cn;k as the value of the beam pattern of wn at
ϕn;k, the level of the selected sidelobes that exceed β is
forced to be equal to β. In the case that Kn4N−1, only
the highest N−1 sidelobes are considered, hence prioritiz-
ing the directions that exceed the sidelobe threshold in a
greatest extent. Note that, assuming that convergence
holds, Kn≤N−1 must be verified from some iteration on.
The solution of (7) is Δwn ¼ CnðCH

n CnÞ−1gn−P⊥
Cn
wn, where

Cn ¼ ½a; vðϕn;1Þ;…; vðϕn;Kn
Þ�, gn ¼ ½0; f n;1;…; f n;Kn

�H and P⊥
Cn

is
the projection matrix onto the space orthogonal to the
column space of Cn.

Fig. 4 plots the OPC and the performance curves of the
most representative MRA methods for N¼30. As it is
clearly shown, the OPC outperforms these deterministic
designs, so it sets a reference to visualize how far they are
from the optimal one. In addition, an interesting feature is
observed when the OPC beam patterns are plotted: they
present decreasing sidelobes outside the forbidden sector
and approximately constant sidelobes in the forbidden
sector. This is an intermediate behavior between those of
the SW and the Dolph–Chebychev and coincides with the
fact that it may optimize the studied trade-off.
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5. Conclusion

In this work we have presented a novel performance
analysis of deterministic beamformers applied in a scenario
with interferences coming from low elevations. We have
argued that the well known trade-off between sidelobe level
and mainlobe width is not useful to carry out performance
assessment and design at system level. Therefore, we have
considered the attenuation and the array gain as a parameters
of interest, and we have analyzed the most outstanding
deterministic techniques showing that a trade-off between
both metrics exists. Finally, we have presented a method to
approximately calculate the perfomance that defines the best
possible trade-off and delimit the region of eligible designs.
The corresponding beam patterns strike a balance between
some aspects found in the Spectral Weighting techniques and
others found in the Dolph–Chebychev.
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