
www.insidegnss.com M A Y / J U N E 2 0 1 8 InsideGNSS 53

I
n recent years, modern society has
moved towards the use of emerg-
ing technologies in order to facili-

tate day-to-day decisions while opti-
mizing resources in an automatic way.
This is the case of the Internet of Things
(IoT), where physical objects such as
bikes, wearables, urban furniture, etc.,
are connected within a network with
the mission of providing some kind of
information (e.g., temperature, humid-
ity, lighting, etc.) that can later be used
in different applications and services
(see Additional Resources, D. Singh et

alia). As an example, a smart city uses
the information gathered by multiple
IoT sensors distributed in an urban area

to optimize the efficiency of city opera-
tions: waste management, smart light-
ing, traffic congestion, etc. The goal is to
make cities more sustainable places and
to manage them in a more effective, effi-
cient, and social manner. In this context,
positioning information remains a key
component for a wide range of applica-
tions that use multi-sensor data for real
time sensing or crowd-sourcing, among
others (M. Batty et alia).

In general, IoT sensors must cope
with many key challenges: identifica-
tion, information privacy, security,
interoperability, low-cost, etc. (R. Khan
et alia). More importantly, even though
semiconductor technologies are evolv-
ing by leaps and bounds, one of the main
challenges IoT positioning sensors must
face is power consumption. The battery
life of a sensor is expected to last as long
as possible (on the order of 10 years) in
order to minimize human maintenance
and hence reduce costs. To achieve a
longer battery lifetime, IoT sensors
usually work with short duty cycles:
they remain in sleep mode, where the
power consumption is significantly low
(on the order of µA), and only swap to
active mode (power consumption on the
order of mA) when they sense data and
communicate it to a central node. IoT
positioning sensors often use the Global

The advent of the Internet of Things (IoT) has considerably increased the number
of services and applications that require positioning information. In this sense,
IoT positioning sensors usually obtain and deliver their position to a central node
where it is further managed and analyzed by a user or scheduler. Nonetheless,
the stringent requirements of low-cost IoT sensors in terms of low power
consumption to achieve larger battery lifetime are pushing current technologies
to their limits. In this context, we propose a cloud-based Global Navigation
Satellite System (GNSS) solution to deal with the typical constraints faced by IoT
sensors by migrating the signal processing tasks from the sensor to cloud servers.
Theoretical and experimental results demonstrate the feasibility of a cloud-
based GNSS approach in energy efficiency, performance, and economic terms.

VICENTE LUCAS-SABOLA

IEEC-CERES, UNIVERSITAT AUTÒNOMA DE
BARCELONA

GONZALO SECO-GRANADOS

IEEC-CERES, UNIVERSITAT AUTÒNOMA DE
BARCELONA

JOSÉ A. LÓPEZ-SALCEDO

IEEC-CERES, UNIVERSITAT AUTÒNOMA DE
BARCELONA

JOSÉ A. GARCÍA-MOLINA

EUROPEAN SPACE AGENCY, ESA/ESTEC

WORKING PAPERS

GNSS IoT Positioning
From Conventional Sensors to a

Cloud-Based Solution

E
S
A

http://www.insidegnss.com

 54 InsideGNSS M A Y / J U N E 2 0 1 8 www.insidegnss.com

WORKING PAPERS

Navigation Satellite System (GNSS) due
to its coverage and its ease of use, i.e.,
the user is not required to install any
kind of infrastructure. However, GNSS
chipsets are power hungry devices,
incurring a considerable decrease of the
IoT sensor battery lifetime, an aspect
that vendors are trying to tackle with
the development of low-powered GNSS
chipsets. Furthermore, as we will see
in the next section, the performance of
GNSS receivers is jeopardized in chal-
lenging environments such as indoor,
light-indoor, or urban scenarios (G.
Seco-Granados et alia).

Current GNSS IoT positioning solu-
tions compute the so-called Position,
Velocity, and Time (PVT) on the sensor
itself, hence requiring a certain amount
of computational resources (i.e., CPU
and RAM) and thus consuming a cer-
tain amount of power. This is further
aggravated by the increase of data (e.g.,
signals from multiple GNSS constella-
tions) to be processed and the complex-
ity of the GNSS signal processing tech-
niques to be applied. This article sheds
some light on the challenges of current
IoT positioning sensors and proposes the
use of a cloud-based GNSS positioning
approach, in which the computational
tasks typically carried out on-chip are
migrated to a cloud server with the
objective of enhancing the sensor’s bat-
tery lifetime without compromising the
performance (V. Lucas-Sabola et alia,
2016). The processing of GNSS signals in
remote servers was initially proposed in
the 1990s to reduce power consumption

and economic cost of positioning sen-
sors (A. Brown and R. Silva). Nowadays,
the high-scalability and low-cost offered
by cloud computing services make them
the perfect choice for implementation of
remote GNSS signal processing. These
services require less energy than GNSS
modules (J. Liu et alia; V. Lucas-Sabola
et alia, 2017).

IoT Positioning Sensors
IoT positioning solutions can be divided
into three main groups: those based on
GNSS, those based on non-GNSS, and
those combining both GNSS and non-
GNSS technologies in a hybrid manner.
Outdoor IoT positioning typically relies
on the use of GNSS modules that are
in charge of capturing the GNSS sig-
nal transmitted by the satellites from
one or multiple constellations such as
Global Positioning System (GPS), Gali-
leo, GLONASS, or BeiDou and applying
the necessary signal processing tech-
niques in order to obtain the PVT. Even
though GNSS were originally designed
for outdoor environments, novel tech-
niques are designed to boost the perfor-
mance in indoor scenarios, including
the exploitation of distributed Receivers
of Opportunity (RoO) located in close-
by locations in a cloud-based GNSS
framework (J. A. García-Molina et alia)
and the implementation of advanced
GNSS signal processing techniques. On
the other hand, indoor IoT positioning
usually relies on non-GNSS technologies
namely 4G/Long Term Evolution (LTE),
Wireless Local Area Network (WLAN),

Low-Power Wide-Area Net work
(LPWAN), Ultra-Wide-Band (UWF),
or Inertial Navigation Systems (INS).
Eventually, IoT positioning sensors
may perform on-chip hybrid position-
ing using a combination of GNSS and
non-GNSS technologies at the expense
of higher power consumption and cost
(G. De Angelis et alia).

An IoT positioning sensor is typi-
cally composed of a MicroController
Unit (MCU), a reception/transmis-
sion Radio-Frequency (RF) front-end
(so-called communication module),
an antenna, the respective positioning
module, memory and the power sup-
ply (i.e., battery). The MCU is the brain
of the sensor, an integrated circuit that
includes one or more CPUs and a low
capacity RAM able to perform basic
computational tasks. The communica-
tion module (includes reception and
transmission front-end) receives the
requests and transfers the data or infor-
mation to a central node. The position-
ing module varies depending on the
technology used (e.g., GNSS, INS, LTE).
In this article we only focus on GNSS-
based solutions.

The positioning module of a GNSS-
based IoT positioning sensor is a GNSS
module, as depicted in Figure 1(a), which
is in charge of capturing and condition-
ing the GNSS signals of interest with its
own RF front-end (usually included in
the GNSS module) and processing them
to compute the position. Positioning
data is often delivered by means of the
National Marine Electronics Association

FIGURE 1 (a) Conventional GNSS IoT positioning sensor; (b) Cloud GNSS IoT sensor

http://www.insidegnss.com

www.insidegnss.com M A Y / J U N E 2 0 1 8 InsideGNSS 55

(NMEA) protocol, producing a file that
contains information regarding the posi-
tion of the sensor, visible satellites, mea-
surements, pseudoranges, etc., whose
size is in the range from 1 to 5 kilobytes
(kB). In order to reduce the amount of
data to be transferred from the IoT sen-
sor to the central node (uplink transmis-
sion), the NMEA is processed on-board
and just the location of the sensor is
delivered in the end, hence reducing the
output to a few bytes. During the time
the GNSS module is in active mode, it
essentially switches between acquisi-
tion and tracking state. In the acquisi-
tion state, the GNSS module is search-
ing and acquiring GNSS signals until
it is capable of providing a position fix.
This is the maximum power-consuming
state of the GNSS module. Afterwards,
it switches to a tracking state that pro-
vides position fixes with the already
acquired satellite signals and searches
for signals of new visible satellites. The
tracking state is considerably less power-
consuming than the acquisition state.
Nevertheless, it is difficult to measure
the power consumption of a GNSS mod-
ule as it varies depending on the work-
ing conditions. For instance, a satellite
with low Carrier-to-Noise ratio (C/N0)
would require a longer coherent or non-
coherent integration at the acquisition
stage, thus needing a larger amount of
computational resources which implies
an increase in the power consumption.

Hence, one of the goals most Mass-
Market (MM) GNSS chipset vendors
have (in addition to achieving lower
power consumptions) is to reduce the
active time until providing a reliable
position fix, also known as Time-To-
First-Fix (TTFF). The TTFF depends on
the starting mode at which the GNSS
module initiates when it is switched
from sleep to active mode. There are four
different starting modes: cold, warm,
assisted, and hot (F. Van Diggelen). In a
cold start, all the possible frequency and
code delays are searched and the ephem-
eris and broadcast time are decoded.
In a warm start, only the broadcast
time and ephemeris are decoded, as
the frequency and code delays are held
as prior information. In a hot start,
frequency and code delays, broadcast

time, and ephemeris data are already
known. Novel GNSS modules include
assisted start, which allows download-
ing ephemeris and broadcast time infor-
mation from private servers or GNSS
Data Centers (GDC) in order to achieve
a faster TTFF, but requires a downlink
internet connection. After downloading
the assistance data, the GNSS module is
able to perform an assisted start. The
TTFF estimates of a GNSS module for
cold, warm, assisted, and hot starts (GPS
L1 C/A only) are approximately 44.34,
20.52, 2 and 0.51 seconds, respectively
(M. Anghileri et alia). However, larger
TTFF may be achieved in harsh environ-
ments due to the difficulties in decod-
ing the broadcast message or ephemeris,
larger acquisition times, etc.

The emergence of IoT positioning
applications has sparked the interest
of several MM GNSS vendors. Indeed,
one manufacturer provides Assisted
GNSS (A-GNSS) services to their GNSS
modules at system start-up to minimize
the TTFF. Similarly, another operates a
worldwide reference network to provide
A-GNSS data to its users, thus boosting
the TTFF speed and accuracy. Fur-
thermore, novel GNSS modules from
another vendor includes two Power
Save Modes (PSMs) to reduce the aver-
age power consumption: Cyclic Tracking
(PSMCT) for short update periods (1-10
seconds) and On/Off (PSMOO) for long
update periods (larger than 10 seconds).
Of particular interest is the PSMOO
which is suitable for IoT applications
with long update periods (typically from
hours to days). Nonetheless, the use of
the PSMOO may provide significant
error in the position fix. Similar power
modes are available in one company’s
GNSS modules: the GNSS Low Power
(GLP) and the periodic mode, analogue
to the PSMCT and PSMOO modes pro-
vided by another MM GNSS vendor,
respectively, with the latter being the
most suitable for IoT applications. See
Additional Resources for more informa-
tion on all of these vendors.

To sum up, MM GNSS chipsets offer
power saving configurations oriented to
IoT applications. However, a tradeoff is
faced between accuracy and power con-
sumption, which varies depending on

the application or use. Additionally, the
use of power save modes leads to a deg-
radation in the accuracy performance of
GNSS chipsets. Together with a reduc-
tion in power consumption, diminish-
ing the TTFF becomes mandatory in
order to minimize the amount of time
the GNSS chipset is in active mode. To
do so, vendors provide A-GNSS ser-
vices so the GNSS module can imple-
ment an assisted start. Therefore, the
IoT positioning sensor would require
a downlink channel for downloading
the GNSS assistance data, whose size is
in the range of 1 to 3 kB per constella-
tion. Note that IoT sensors do not typi-
cally use the downlink channel as they
are already pre-configured to switch
between states beforehand, and hence
this feature is only occasionally used.

Cloud GNSS Receiver

In the previous section we discussed
power-hungry GNSS modules and how
their accuracy performance is jeopar-
dized as power consumption is reduced.
We now propose a cloud GNSS receiver
that performs the GNSS signal process-
ing tasks in a cloud server instead of on
the sensor itself, thus facilitating the
computational resources required by
the IoT positioning sensor and hence
reducing its power consumption without
compromising the accuracy. In addition,
the cloud GNSS receiver paves the way
for innovative and more advanced appli-
cations due to the amount of available
computational resources in the cloud
servers: secure and authenticated GNSS
positioning, crowdsourcing GNSS signal
processing, pay-per-use insurance, etc.

The cloud GNSS receiver is consid-
ered a Software as a Service (SaaS), a
remote application that can be used by
any user or machine while it is complete-
ly transparent to him. That is to say, its
services can be used without having any
kind of knowledge of the software, algo-
rithms, and computing resources used
in the back-end. In this work, the cloud
computing resources and services used
are provided by Amazon Web Services
(AWS) due to their wide range of cloud
solutions, functionalities, and configura-
tion options, along with their openness,
flexibility, and low cost.

http://www.insidegnss.com

 56 InsideGNSS M A Y / J U N E 2 0 1 8 www.insidegnss.com

Architecture

The architecture of the cloud GNSS
receiver is composed of three main ele-
ments (Figure 2): the cloud GNSS sensor,
the cloud front-end in charge of inter-
acting with the user, and the back-end
module where a High-Sensitivity (HS)
GNSS Software Receiver (SwRx) is run-
ning and where all the computational
tasks, reporting, and delivery of results
are carried out. The cloud GNSS sensor
is the IoT hardware element in charge of
gathering the raw GNSS samples at the
user side, and sending them to the cloud
GNSS receiver for subsequent process-
ing. It is composed of an RF front-end
tuned to the GNSS band of interest that
includes an Analog-to-Digital Converter
(ADC) for digitizing the GNSS signals,
memory, and a communication mod-
ule for interacting with the cloud GNSS
receiver.

The cloud front-end is the interface
through which a user or a machine,
Human-to-Machine (H2M) a nd
Machine-to-Machine (M2M), respec-
tively, interacts with the cloud GNSS
receiver. In the H2M approach, the user
can access the cloud GNSS through an
HTTP web service, where users can log
in and enter into a private desktop. Then,
new executions or jobs can be launched
using an online graphic user interface
that allows for configuration of the HS-
GNSS SwRx. Notwithstanding, H2M
interfacing is not a scalable approach
and it is not suitable for large cloud GNSS
sensor networks. It is for this reason that

a M2M interface becomes mandatory. In
this sense, an Application Programming
Interface (API) has been built to allow
sensors to automatically connect with
the cloud GNSS receiver. Afterwards,
the output results, PVT being an exam-
ple, are stored in a database and can be
retrieved at any time by the user. Both
API and webpage are used to generate a
new job with a raw GNSS sample file and
a JavaScript Object Notation (JSON) file
as inputs. The JSON is used to configure
the HS-GNSS SwRx to the specific needs
of the analysis to be done, and to the
working conditions where the samples
were gathered with parameters such as
the number of snapshots, the GNSS band
to be processed, the coherent and non-
coherent integration time, etc. The flex-
ibility offered by the cloud GNSS receiv-
er allows the choice of some advanced
features including using long integration
times for processing weak GNSS signals,
implementing signal-level analysis, etc.
Metadata associated with the capture
of raw GNSS samples including RF and
Intermediate Frequency (IF), sampling
rate, quantization, encoding, etc., can
be included in the JSON or by using the
Institute of Navigation (ION) Software-
Defined Radio (SDR) metadata standard
(J. Curran et alia). Likewise, assistance
information regarding the list of satel-
lites to be searched together with their
Doppler frequency can also be attached
to decrease the execution time (like a hot
start in an MM GNSS receiver). Assis-
tance information can be automatically

generated by the cloud GNSS receiver
by attaching an approximate location
and the timestamp. Finally, a Receiver
Independent Exchange Format (RINEX)
navigation file must be attached in order
to calculate the PVT of the sensor. In
this context, the cloud GNSS receiver
also procures the capability of down-
loading RINEX navigation files from
servers of the International GNSS Ser-
vice (IGS). This is mainly to avoid the
need for capturing GNSS signals during
a long interval of time (i.e., at least 30
seconds in GPS L1 C/A are required to
read and decode the ephemeris embed-
ded into the navigation message) and
hence reduce the amount of data to be
captured and transferred to the cloud
to a few milliseconds of signal. Lastly,
the files and job instructions generated
by the cloud front-end (i.e., raw GNSS
sample file, JSON, API commands) are
transferred and communicated to the
cloud back-end.

Each new job generated by a user
or IoT positioning sensor is received
and managed by a resource manager
in charge of allocating cloud comput-
ing resources to the job. The back-end
of the cloud GNSS receiver is where the
bulk of the processing tasks are carried
out. This comprises reading, decoding,
and processing the raw GNSS sample
file given the configuration param-
eters included in the JSON file to finally
obtain the desired output such as PVT.
This process is implemented by means of
an HS-GNSS software receiver, a snap-

WORKING PAPERS

FIGURE 2 Cloud GNSS receiver architecture

http://www.insidegnss.com

 58 InsideGNSS M A Y / J U N E 2 0 1 8 www.insidegnss.com

shot-based GNSS receiver with a C/N
0
 sensitivity down to 15

dBHz (J. Lopez-Salcedo et alia). The HS-GNSS SwRx core is
based on the extensive use of FFT processors and implements
long integration times up to several seconds using advanced
non-coherent integrations.

In addition, different AWS solutions are used to build the
back-end: Elastic Cloud Computing (EC2), Simple Queue Ser-
vice (SQS), Batch, Relational Database Service (RDS), Elastic
Container Service (ECS), and Simple Storage Service (S3). EC2
provides re-sizable and scalable computing resources (i.e.,
RAM, CPU, storage, etc.) in the cloud as instances (virtual
machines) that act as a physical computing machine. There is
a wide range of available virtual machine types, each of them
suitable for different uses. SQS is a message queuing service to
communicate different modules and systems within the cloud
infrastructure. Batch enables us to optimally compute jobs on
AWS resources (i.e., EC2) based on its computing requirements
(e.g., CPU, RAM). RDS is used to store and manage the data-
base of the cloud infrastructure which includes information
such as users, PVT results, job configurations, etc. ECS allows
for the launch and scale of Docker containers on AWS when
a job is received. A Docker container includes the HS-GNSS
SwRx and all the necessary software for the processing of the
raw GNSS sample file. S3 provides secure, durable and highly-
scalable object storage and is used to store the data uploaded
from the sensor, which is then downloaded in an EC2 virtual
machine in order to be processed.

Thus, when a cloud GNSS IoT sensor (Figure 1(b)) launches
a request, it first has to upload the raw GNSS sample file and
the configuration data (i.e., JSON) to the S3 repository and
send a request by means of a message to the SQS queue. When
the SQS message is read by the resource manager, a new job is
generated, inserted into the database by its identification num-
ber, and then managed by Batch, which will start a given EC2
instance type depending on the computing resources required
by the job, and launch a Docker container from the ECS service.
Once the container is launched, it automatically downloads the
data regarding to the identification number of the job (i.e., raw
GNSS sample file, JSON) from S3 and the HS-GNSS SwRx is
launched. Finally, the output results are stored in the database
from which it can be retrieved through the API or web page.
This workflow is depicted in Figure 2.

Energy Consumption
As we have previously seen, instead of locally processing the
GNSS data, the cloud GNSS IoT sensor (Figure 1(b)) only has
to transfer it to a cloud server. This simple process is expected
to be more energy efficient than conventional IoT positioning
approaches where the PVT is computed on-chip. Nevertheless,
it is known that data transmission is one of the most energy
consuming stages of an IoT sensor. Depending on the appli-
cation, it is even higher than performing the computational
tasks locally in the device itself. In the cloud GNSS receiver,
the size of the data (i.e., raw GNSS sample file) to be transmit-
ted from the sensor to the cloud is directly proportional to the
signal length (in time), the sampling frequency of the reception

RF front-end, and the quantization of its ADC. Therefore, a
trade-off is met between the size of the data to be transmit-
ted and the energy consumed by the cloud GNSS IoT sensor
(Figure 1(b)). Furthermore, the signal length is also related to
the sensitivity of the GNSS receiver, as increasing the coherent
or non-coherent integration time allows for the detection and
acquisition of weaker GNSS signals. Hence, another trade-off
is met between the sensitivity of the GNSS receiver and the size
of the data to be transferred.

In order to properly compare the expected energy consump-
tion of both the conventional and cloud GNSS IoT sensors (Fig-
ure 1), we have to address the energy consumed by each of the
components they comprise (V. Lucas-Sabola et alia, 2017). First,
the energy consumption of a conventional GNSS IoT sensor
(Figure 1(a)) performing a position fix is discussed. Basically,
the required energy by a component can be obtained by its
current consumption in active mode, the amount of time in
active mode, and the supply voltage. For this study case, the
supply voltage is set to 3.3 V. The current consumption has
been obtained from datasheets of state-of-the-art components
(Table 1). Regarding the current consumption of the compo-
nents, the reader should note that the communication mod-
ule also consumes an additional amount of energy due to the
release of power from the antenna during transmission, and
the GNSS module current consumption may vary depending
on the working conditions of the sensor (e.g., open, mild, or
obstructed environment).

The active time of the different components have been
obtained as follows: the MCU is active from the time the sen-
sor is switched on and begins capturing the GNSS signal until
the PVT is sent; the active time of the memory and communi-
cation module is directly dependent on the size of the packet
to be stored and transmitted, respectively (a few bytes in this
study case); and the GNSS module active time is equal to the
TTFF for each of the four different starts: 44.34, 20.52, 2, 0.5
seconds for cold, warm, assisted, and hot, respectively (TTFF
for assisted depends on the downlink latency). Note that the
acquisition time may vary depending on the working condi-
tions, i.e., larger in harsh environments and hence increasing
the energy consumption.

In Figure 3 the expected energy consumption of the dif-
ferent components of a conventional GNSS IoT positioning

WORKING PAPERS

Component Manufacturer Model
Current

consumption

GNSS module u-blox MAX-M8W 32 mA
(Acquisition)

[20]

GNSS module u-blox MAX-M8W 8.9 (Tracking)
[20]

MCU module Texas
Instruments

CC1310 1.9-2.5 mA [18]

Communication
module

Texas
Instruments

CC1310 11.2 mA [18]

Memory module Atmel AT25M02 5 mA [2]

Table 1 Current concumption of the components of a conventional GNSS IoT sensor
(Figure 1a)

http://www.insidegnss.com

www.insidegnss.com M A Y / J U N E 2 0 1 8 InsideGNSS 59

coordinates are sent is approximately
1-2 bytes, 1 kB for a small NMEA, and
5 kB for a large NMEA. We can clearly
see that the GNSS module typically is
the largest consumer of a conventional
GNSS IoT sensor (Figure 1(a)), even
for hot and assisted starts by an order
of magnitude in comparison with the
MCU and up to four orders of magni-
tude in contrast with the communica-
tion and memory modules.

For the cloud GNSS IoT sensor (Fig-
ure 1(b)), the same procedure has been
applied, but the GNSS module has been
substituted with only a GNSS RF front-
end, also including an ADC. In this
sense, the GNSS RF front-end must be
carefully chosen to avoid compromis-
ing the energy-efficiency of the cloud
GNSS IoT sensor (Figure 1(b)), as it will
not only contribute to its own energy
consumption, but also in the energy
consumed by the other components
as they are directly dependent on the
packet size. Indeed, the size of the data
to be transferred to the cloud can be
expressed as L = T

sl
bFs

rx
, where L is the

packet size in bits, T
sl
 is the captured

GNSS signal length in seconds, b is the
quantization bits of the ADC, and Fs

rx
 is

the sampling frequency of the RF front-
end. Therefore, there are three alterna-
tives in order to work with small-sized
packets: reduce the sampling frequency,
work with a low quantization level, or
capture a signal of short length. In this
study case, with the objective of achiev-
ing low energy consumption, the RF
bandwidth is set to 2 megahertz, enough
to capture the main lobe of the GPS L1
C/A signal, and the sampling frequency
is set to 4 megahertz. On the other hand,
the ADC uses 1 bit to digitize the GNSS
signal. According to state-of-the-art
components, the current consumption
of a GNSS RF front-end with such char-
acteristics is approximately 5 mA.

A comparison between the energy
consumed by the cloud and the conven-
tional GNSS IoT sensor (Figure 1) with
different starts is addressed in Figure

4. In order to implement a fair com-
parison, the energy consumption of the
conventional GNSS IoT sensor (Figure
1(a)) for different starting modes has
been obtained for a packet with size 2

FIGURE 3 Expected energy consumption of each of the components of a conventional GNSS
IoT sensor (see Figure 1(a)) with regard to the size of the data packet transmitted through the
communication module; TTFF for hot, assisted, warm, and cold starts of 44.34, 20.52, 2, and
0.5 seconds, respectively

C
oordinates

Sm
all N

M
EA

Large N
M

EA

E
n

e
rg

y
 (

J
)

10-5

10-4

10-3

10-2

10-1

100

101

GNSS receiver - Hot start

GNSS receiver - Assisted start

GNSS receiver - Warm start

GNSS receiver - Cold start

Communication module

MCU

Memory

sensor (Figure 1(a)) is shown. It can
be seen that the energy consumption
of the GNSS module depends on the
operation mode (i.e., hot, assisted,
warm, cold), and hence depends on
the TTFF. In contrast, the rest of the
sensor components such as the MCU,
memory, and communication modules

have an energy consumption directly
dependent on the packet to be handled
and transmitted to the cloud. Indeed,
the MCU must stay in active time until
the data (i.e., PVT output) is sent to, for
example, a central node. The size of the
packet to be transmitted through the
communication module when only the

FIGURE 4 Expected energy consumption of a cloud and a conventional GNSS IoT sensor with
respect to the signal length; TTFF for hot, assisted, warm, and cold start of 44.34, 20.52, 2,
and 0.5 seconds, respectively

Signal length (ms)

100 101 102 103

E
n

e
rg

y
 (

J
)

10-3

10-2

10-1

100

101

Cloud GNSS IoT sensor

Conventional GNSS IoT sensor - Hot start

Conventional GNSS IoT sensor - Assisted start

Conventional GNSS IoT sensor - Warm start

Conventional GNSS IoT sensor - Cold start

24 ms

46 ms

http://www.insidegnss.com

 60 InsideGNSS M A Y / J U N E 2 0 1 8 www.insidegnss.com

bytes (see Figure 3). It can be seen how
as the signal length to be captured by
the cloud GNSS IoT sensor (Figure 1(b))
is moderately small, the cloud GNSS
receiver offers a more energy efficient
positioning solution than conventional
approaches. For instance, compared to
a conventional sensor with hot start,
the cloud sensor provides energy sav-
ings up to one order of magnitude for
small signal lengths (i.e., a few ms) and
is more energy efficient by using a signal
length up to 24 ms (bear in mind that a
PVT can be obtained with just 1 or 2 ms
of signal). Notwithstanding, the GNSS
module cannot implement a hot start
every time it provides a position fix, as
the stored information expires (range
from 30 minutes to 4 hours). MM GNSS
chipsets usually download or try to
decode ephemeris data (as in cold start)
every 30 minutes with the objective of
having recent ephemeris and navigation
data and then provide a higher position
accuracy. Likewise, in contrast with an
assisted start, the cloud GNSS IoT sensor
(Figure 1(b)) can capture and transfer
up to 46 ms of GNSS data and still con-
tinue to be more energetically efficient.
Finally, in comparison with the warm
and cold starts, whose TTFF and hence
the amount of time in active mode is
significantly high (i.e., 30-40 seconds),
the cloud GNSS IoT sensor (Figure 1(b))
remains active for some milliseconds (up
to 600 and 800 ms, respectively), and
thus energy efficiency can reach up to
2.5 orders of magnitude.

Performance of the
Cloud GNSS Receiver
In this section we will brief ly discuss
the accuracy performance of the cloud
GNSS receiver by means of an experi-
mental test. To do so, a synthetic signal
was generated with a GPS/Galileo sig-
nal generator simulating a static out-
doors open-sky scenario at the School of
Engineering of Universitat Autònoma de
Barcelona (UAB). A low-cost RTL-SDR
V3 USB front-end was used to capture
the GPS L1 C/A signal with a sampling
frequency of 2.048 MHz and generate
the raw GNSS sample file, which is then
transferred to the cloud GNSS receiver
together with the required JSON con-
figuration file. The visible satellites have
been configured with a C/N

0
 of roughly

46 dBHz.
The obtained results for GPS L1 C/A

with different coherent integration times
are provided in Figure 5. For a small sig-
nal length (i.e., 1 to 4 ms) a position
error of tens of meters is obtained. How-
ever, as the coherent integration time is
increased (i.e., 10 and 20 ms), and hence
the amount of signal captured and sent
to the cloud GNSS receiver is also larger,
the positioning accuracy is enhanced to
a few meters. In contrast to conventional
GNSS IoT positioning approaches where
the sensor must be in active mode for
a long period of time to calculate the
PVT (from a few seconds up to minutes,
depending on the working conditions),
in a cloud-based approach the sensor
must be in active mode for just a few
milliseconds, enough time to capture

the desired GNSS signal and forward
it to the cloud servers. Therefore, it is
shown that the cloud GNSS receiver
becomes an energy-efficient IoT posi-
tioning solution without compromis-
ing the obtained accuracy, particularly
for those IoT applications that do not
require precise positioning.

Economic Cost of GNSS Signal
Processing in the Cloud
Processing the raw GNSS sample file
in cloud servers instead of in the sen-
sor itself as in conventional approaches
implies the added cost of hiring cloud
computing resources. Among the dif-
ferent AWS services used in the cloud
GNSS receiver infrastructure, the service
that implies a significant cost is the EC2
service. AWS offers three ways to pay for
its services: on-demand, reserved, and
spot. On-demand services are paid per
hour use as they are opened and closed
with a fixed cost. Reserved services,
which are paid in advance, are suited
for applications with predictable usage
and offer discounts up to 75% in contrast
with on-demand services. Moreover, we
can bid for EC2 spot services whose cost
may decrease up to 90% in comparison
with on-demand (their fluctuating price
varies depending on the supply and
demand of EC2). Additionally, the price
of different services may vary depend-
ing on the selected region of use, i.e., the
geographic area where the EC2 servers
are hosted.

For this test set-up, c3.xlarge (Table 2)
have been selected to compose the cloud
back-end for processing the raw GNSS
sample files with signal length between

FIGURE 5 Accuracy performance of the cloud GNSS receiver in a static outdoor clear-sky sce-
nario with different coherent integration times

Instance type c3.xlarge

vCPUs 4

RAM 7.5 GB

SSD 2x40 GB

Region Frankfurt (EU)

On-demand price
(taxes excluded)

$0.258 per hour

Reserved price
(taxes excluded)

$0.11 per hour

Spot price (taxes
excluded)

$0.0472 per hour

Table 2 Experimental set-up for the economic cost of
cloud services: EC2 characteristics

WORKING PAPERS

http://www.insidegnss.com

www.insidegnss.com M A Y / J U N E 2 0 1 8 InsideGNSS 61

1 and 5 ms. The allocation of the jobs
generated by the requests of a network
of cloud GNSS IoT sensors (Figure 1(b))
is assumed to be optimum in terms of
usage time: the computational tasks of a
given amount of sensors are sequentially
performed in the same EC2 instance,
hence reducing the cost per position fix.
The monthly cost of the necessary cloud
resources (i.e., EC2) for an IoT application
that requires one position fix per hour is
presented in Table 3: for $0.51, $0.23 and
$0.1 per month, a cloud GNSS IoT sensor
(Figure 1(b)) position can be calculated
once per hour for on-demand, reserved
and spot services, respectively. Notice
that in typical IoT positioning applica-
tions, a position fix is usually requested
from hours up to days. Hence, the cost
of the cloud services used by a network
of cloud GNSS IoT sensors (Figure 1(b))
should not be a showstopper as it has been
demonstrated to be considerably low.

Conclusions
This article discusses the conventional
solutions for IoT positioning, with
GNSS-based solutions being the most
widespread in positioning IoT sensor
networks. The architecture of a con-
ventional GNSS IoT positioning sensor
(Figure 1(a)) has been addressed, togeth-
er with the energy consumption of its
different components, showing that the
GNSS module is the largest consumer if
the data to be transferred is not large.
To tackle the dilemma of energy con-
sumption in IoT positioning sensors, we
propose the use of a cloud-based GNSS
approach, in which the purpose of sen-
sors is just to capture the GNSS signal
and send it to a cloud server where it will
then be processed.

The energy consumption of the
proposed cloud GNSS IoT sensor (Fig-
ure 1(b)) has also been addressed and
compared with state-of-the-art GNSS

IoT positioning sensors. Under the con-
straint of working with a relatively small
signal length, the use of the cloud GNSS
receiver achieves a significant savings in
the sensor’s consumed energy, up to one
order of magnitude compared with hot
and assisted starts, and up to roughly
2.5 orders of magnitude in contrast with
warm and cold starts.

Finally, the economic cost implied
by the use of cloud services to process
the GNSS data and obtain the position
of the sensor has been shown to be low,
thus ensuring the cloud GNSS receiver
as a low-energy and low-cost solution for
IoT positioning.

Acknowledgements
The views presented in this article rep-
resent solely the opinion of the authors
and not necessarily the view of ESA.
This work was partly supported by the
European Space Agency (ESA) under
contract No. 4000119070/16/NL/GLC
and by the Spanish Government under
grant TEC2017-89925-R.

Manufacturers
When the authors address the emer-
gence of IoT positioning applications
sparking the interest of MM GNSS ven-
dors, they note u-blox, Thalwil, Switzer-
land, Telit, London, UK, and Broadcom

Corp., Irvine, CA, as examples.
In the section discussing the accu-

racy performance of the cloud GNSS
receiver’s experimental test, a synthetic
signal was generated using a Spirent
(West Sussex, UK) GPS/Galileo signal
generator. Furthermore, the cloud GNSS
receiver was using the baseline broadcast
ephemeris from the IGS service.

Additional Resources
[1] Anghileri, M., M. Paonni, S. Wallner, J.-Á
Ávila-Rodríguez, and B. Eissfeller, “Ready to
Navigate! A Methodology for the Estimation
of the Time-to-First-Fix,” Inside GNSS, Volume:
5, Issue: 2, 2010
[2] Atmel, “SPI Serial EEPROM - ATM25M02,”
Data Sheet, 2017
[3] Batty, M., K. W. Axhausen, F. Giannotti, A.
Pozdnoukhov, A. Bazzani, M. Wachowicz, G.
Ouzounis, and Y. Portugali, “Smart Cities of
the Future,” European Physical Journal Special
Topics, Volume: 214, Issue: 1, 2012
[4] Bousquet, F. and u-blox, “Portables: The
Challenge of Low Power and Good GNSS Per-
formance,” White Paper, 2017

[5] Broadcom Corporation, “Top Ten Advan-
tages: AGPS Server and Worldwide Reference
Network,” 2007
[6] Brown, A. and R. Silva, “TIDGET Mayday Sys-
tem for Motorists,” IEEE Position Location and
Navigation Symposium (PLANS), 1994
[7] Curran, J., M. Arizabaleta, T. Pany, and S.
Gunawardena, “The Institute of Navigation’s
GNSS SDR Metadata Standard,” Inside GNSS,
Volume: 12, Issue: 6, 2017
[8] De Angelis, G., A. De Angelis, V. Pasku, A.
Moschitta, and P. Carbone, “A Hybrid Outdoor/
Indoor Positioning System for IoT Applica-
tions,” Proceedings of the 1st IEEE International
Symposium on Systems Engineering (ISSE 2015),
2015
[9] García-Molina, J. A. and J. M. Parro-Jiménez,
“Cloud-based GNSS Processing of Distributed
Receivers of Opportunity: Techniques, Appli-
cations and Data-Collection Strategies,” 6th
International Colloquium - Scientific Funda-
mental Aspects of GNSS/Galileo, 2017
[10] Khan, R., S. U. Khan, R. Zaheer, and S.
Khan, “Future Internet: The Internet of Things
Architecture, Possible Applications and Key
Challenges,” Proceedings of the IEEE 10th Inter-
national Conference on Frontiers of Information
Technology (FIT 2012), 2012
[11] Liu, J., B. Priyantha, T. Hart, Y. Jin, W. Lee,
V. Raghunathan, H. S. Ramos, and Q. Wang,
“CO-GPS: Energy Efficient GPS Sensing with
Cloud Offloading,” IEEE Transactions on Mobile
Computing, Volume: 15, Issue: 6, 2016
[12] López-Salcedo, J., Y. Capelle, M. Toledo, G.
Seco, J. López Vicario, D. Kubrak, M. Monnerat,
A. Mark, and D. Jiménez, “DINGPOS: A Hybrid
Indoor Navigation Platform for GPS and GALI-
LEO,” 21st International Technical Meeting of the
Satellite Division of The Institute of Navigation
(ION GNSS 2008), 2008
[13] Lucas-Sabola, V., G. Seco-Granados, J. A.
López-Salcedo, J. A. García-Molina, and M.
Crisci, “Cloud GNSS Receivers: New Advanced
Applications Made Possible,” Proceedings of
the International Conference on Localization
and GNSS (ICL-GNSS), 2016
[14] Lucas-Sabola, V., G. Seco-Granados, J. A.
López-Salcedo, J. A. García-Molina, and M.
Crisci, “Efficiency Analysis of Cloud GNSS Sig-
nal Processing for IoT Applications,” Proceed-
ings of ION GNSS (ION GNSS 2017+), 2017
[15] Seco-Granados, G., J. A. López-Salcedo, D.
Jiménez-Baños, and G. López-Risueño, “Chal-
lenges in Indoor Global Navigation Satellite
Systems,” IEEE Signal Processing Magazine,
February 2012
[16] Singh, D., G. Tripathi, and A. J. Jara, “A
Survey of Internet-of-Things: Future Vision,
Architecture, Challenges and Services,” 2014
IEEE World Forum Internet of Things (WF-IoT
2014), 2014
[17] Telit, “K3 Series Power Modes,” Application
Note, 2017
[18] Texas Instruments, “CC1310 SimpleLink
Ultra-Low-Power Sub-1 GHz Wireless MCU,”
Data Sheet, 2016
[19] u-blox, “Power Management Consider-
ations for u-blox 7 and M8 GNSS Receivers,”
Application Note, 2014

Payment type Monthly cost

On-demand instances $0.51

Reserved instances $0.23

Spot instances $0.10

Table 3 Monthly cost (taxes excluded) of cloud ser-
vices (c3.xlarge EC2) employed by an IoT application
that requires one position fix per hour; signal length
set from 1 to 5 m

http://www.insidegnss.com

 62 InsideGNSS M A Y / J U N E 2 0 1 8 www.insidegnss.com

[20] u-blox, “u-blox M8 Concurrent GNSS Modules,” Data Sheet, 2016
[21] Van Diggelen, F., A-GPS: Assisted GPS, GNSS, and SBAS, Artech House,
2009

Authors
Vicente Lucas-Sabola received a B.Sc. in telecommu-
nication systems engineering in 2015 and a M.Sc. in
telecommunication engineering in 2017, both from
Universitat Autònoma de Barcelona (UAB). Since
2015 he has been involved in the development of a
Cloud GNSS receiver. Since 2017 he has also been
pursuing a PhD at the SPCOMNAV group at the
Department of telecommunication and systems

engineering, IEEC-CERES, UAB, dealing with topics related to Cloud
GNSS signal processing for Internet of Things (IoT) applications.

Gonzalo Seco-Granados received a Ph.D. degree in
telecommunications engineering from Universidad
Politècnica de Catalunya and an MBA from IESE, the
graduate business school of the University of Navar-
ra. From 2002 to 2005, he was with the European
Space Agency, Netherlands. Since 2006, he has been
an associate professor at the Universidad Autònoma
de Barcelona, where he coordinates the SPCOMNAV

(Signal Processing for communications and Navigation) group, IEEC-
CERES. His research interests include signal-processing techniques for
advanced features of GNSS receivers and localization using next-gen-
eration wireless communications networks.

José A. López-Salcedo received his Ph.D. degree in
telecommunications engineering from Universitat
Politècnica de Catalunya (UPC), Barcelona, Spain, in
2007. He is Associate Professor at the Department of
Telecommunications and Systems Engineering, IEEC-
CERES, Universitat Autònoma de Barcelona (UAB). He
has held several visiting appointments at the Univer-
sity of California Irvine, University of Illinois at Cham-

paign-Urbana and the European Commission, Joint Research Centre in
Ispra, Italy. His research interests lie in the field of signal processing for
communications and navigation, with emphasis on cloud and IoT GNSS
signal processing and the convergence of 5G/GNSS systems.

José A. García-Molina is a Radio Navigation engineer
at ESA/ESTEC in Noordwijk, The Netherlands, where
he leads several R&D projects and internal research
activities on GNSS receiver technology and signal
processing techniques for ground and space applica-
tions in the context of different ESA programs
(including Galileo). His main research interests
include signal processing and estimation theory,

GNSS/Galileo receivers and signals, unambiguous estimation of high-
order BOC signals, Cloud GNSS receivers, techniques and applications,
collaborative positioning, and MIMO-GNSS signal processing.

Em. Univ.-Prof. Dr.-Ing. habil. Dr. h.c. Guenter W. Hein

is Professor Emeritus of Excellence at the University
FAF Munich. He was ESA Head of EGNOS & GNSS Evo-
lution Programme Dept. between 2008 and 2014, in
charge of development of the 2nd generation of
EGNOS and Galileo. Prof. Hein is still organising the
ESA/JRC International Summerschool on GNSS. He is
the founder of the annual Munich Satellite Navigation

Summit. Prof. Hein has more than 300 scientific and technical papers
published, carried out more than 200 research projects and educated
more than 70 Ph. D.´s. He received 2002 the prestigious Johannes Kepler
Award for “sustained and significant contributions to satellite navigation”
of the US Institute of Navigation, the highest worldwide award in naviga-
tion given only to one individual each year. G. Hein became 2011 a Fellow
of the US ION. The Technical University of Prague honoured his achieve-
ments in satellite navigation with a Doctor honoris causa in Jan. 2013.
He is a member of the Executive Board of Munich Aerospace since 2016.

2
0

1
8 JOINT

NAVIGATION

CONFERENCE

www.ion.org/jnc

Military
Navigation

Technology

July 9–12, 2018
Tutorials: July 9
Show Dates: July 10–11

Hyatt Regency
Long Beach, California
Classified Session: July 12
 The Aerospace Corporation

Sponsored by the Military Division
of the Institute of Navigation

The Foundation
for Military Ops

WORKING PAPERS

http://www.insidegnss.com
http://www.ion.org/jnc

	IGM_1.pdf
	IGM_2.pdf
	IGM_3.pdf
	IGM_4.pdf
	IGM_5.pdf
	IGM_6.pdf
	IGM_7.pdf
	IGM_8.pdf
	IGM_9.pdf
	IGM_10.pdf
	IGM_11.pdf
	IGM_12.pdf
	IGM_13.pdf
	IGM_14.pdf
	IGM_15.pdf
	IGM_16.pdf
	IGM_17.pdf
	IGM_18.pdf
	IGM_19.pdf
	IGM_20.pdf
	IGM_21.pdf
	IGM_22.pdf
	IGM_23.pdf
	IGM_24.pdf
	IGM_25.pdf
	IGM_26.pdf
	IGM_27.pdf
	IGM_28.pdf
	IGM_29.pdf
	IGM_30.pdf
	IGM_31.pdf
	IGM_32.pdf
	IGM_33.pdf
	IGM_34.pdf
	IGM_35.pdf
	IGM_36.pdf
	IGM_37.pdf
	IGM_38.pdf
	IGM_39.pdf
	IGM_40.pdf
	IGM_41.pdf
	IGM_42.pdf
	IGM_43.pdf
	IGM_44.pdf
	IGM_45.pdf
	IGM_46.pdf
	IGM_47.pdf
	IGM_48.pdf
	IGM_49.pdf
	IGM_50.pdf
	IGM_51.pdf
	IGM_52.pdf
	IGM_53.pdf
	IGM_54.pdf
	IGM_55.pdf
	IGM_56.pdf
	IGM_57.pdf
	IGM_58.pdf
	IGM_59.pdf
	IGM_60.pdf
	IGM_61.pdf
	IGM_62.pdf
	IGM_63.pdf
	IGM_64.pdf
	IGM_65.pdf
	IGM_66.pdf
	IGM_67.pdf
	IGM_68.pdf

