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I
n recent years, modern society has 
moved towards the use of emerg-
ing technologies in order to facili-

tate day-to-day decisions while opti-
mizing resources in an automatic way. 
This is the case of the Internet of Things 
(IoT), where physical objects such as 
bikes, wearables, urban furniture, etc., 
are connected within a network with 
the mission of providing some kind of 
information (e.g., temperature, humid-
ity, lighting, etc.) that can later be used 
in different applications and services 
(see Additional Resources, D. Singh et 

alia). As an example, a smart city uses 
the information gathered by multiple 
IoT sensors distributed in an urban area 

to optimize the efficiency of city opera-
tions: waste management, smart light-
ing, traffic congestion, etc. The goal is to 
make cities more sustainable places and 
to manage them in a more effective, effi-
cient, and social manner. In this context, 
positioning information remains a key 
component for a wide range of applica-
tions that use multi-sensor data for real 
time sensing or crowd-sourcing, among 
others (M. Batty et alia). 

In general, IoT sensors must cope 
with many key challenges: identifica-
tion, information privacy, security, 
interoperability, low-cost, etc. (R. Khan 
et alia). More importantly, even though 
semiconductor technologies are evolv-
ing by leaps and bounds, one of the main 
challenges IoT positioning sensors must 
face is power consumption. The battery 
life of a sensor is expected to last as long 
as possible (on the order of 10 years) in 
order to minimize human maintenance 
and hence reduce costs. To achieve a 
longer battery lifetime, IoT sensors 
usually work with short duty cycles: 
they remain in sleep mode, where the 
power consumption is significantly low 
(on the order of µA), and only swap to 
active mode (power consumption on the 
order of mA) when they sense data and 
communicate it to a central node. IoT 
positioning sensors often use the Global 
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Navigation Satellite System (GNSS) due 
to its coverage and its ease of use, i.e., 
the user is not required to install any 
kind of infrastructure. However, GNSS 
chipsets are power hungry devices, 
incurring a considerable decrease of the 
IoT sensor battery lifetime, an aspect 
that vendors are trying to tackle with 
the development of low-powered GNSS 
chipsets. Furthermore, as we will see 
in the next section, the performance of 
GNSS receivers is jeopardized in chal-
lenging environments such as indoor, 
light-indoor, or urban scenarios (G. 
Seco-Granados et alia).

Current GNSS IoT positioning solu-
tions compute the so-called Position, 
Velocity, and Time (PVT) on the sensor 
itself, hence requiring a certain amount 
of computational resources (i.e., CPU 
and RAM) and thus consuming a cer-
tain amount of power. This is further 
aggravated by the increase of data (e.g., 
signals from multiple GNSS constella-
tions) to be processed and the complex-
ity of the GNSS signal processing tech-
niques to be applied. This article sheds 
some light on the challenges of current 
IoT positioning sensors and proposes the 
use of a cloud-based GNSS positioning 
approach, in which the computational 
tasks typically carried out on-chip are 
migrated to a cloud server with the 
objective of enhancing the sensor’s bat-
tery lifetime without compromising the 
performance (V. Lucas-Sabola et alia, 
2016). The processing of GNSS signals in 
remote servers was initially proposed in 
the 1990s to reduce power consumption 

and economic cost of positioning sen-
sors (A. Brown and R. Silva). Nowadays, 
the high-scalability and low-cost offered 
by cloud computing services make them 
the perfect choice for implementation of 
remote GNSS signal processing. These 
services require less energy than GNSS 
modules (J. Liu et alia; V. Lucas-Sabola 
et alia, 2017). 

IoT Positioning Sensors
IoT positioning solutions can be divided 
into three main groups: those based on 
GNSS, those based on non-GNSS, and 
those combining both GNSS and non-
GNSS technologies in a hybrid manner. 
Outdoor IoT positioning typically relies 
on the use of GNSS modules that are 
in charge of capturing the GNSS sig-
nal transmitted by the satellites from 
one or multiple constellations such as 
Global Positioning System (GPS), Gali-
leo, GLONASS, or BeiDou and applying 
the necessary signal processing tech-
niques in order to obtain the PVT. Even 
though GNSS were originally designed 
for outdoor environments, novel tech-
niques are designed to boost the perfor-
mance in indoor scenarios, including 
the exploitation of distributed Receivers 
of Opportunity (RoO) located in close-
by locations in a cloud-based GNSS 
framework (J. A. García-Molina et alia) 
and the implementation of advanced 
GNSS signal processing techniques. On 
the other hand, indoor IoT positioning 
usually relies on non-GNSS technologies 
namely 4G/Long Term Evolution (LTE), 
Wireless Local Area Network (WLAN), 

Low-Power Wide-Area Net work 
(LPWAN), Ultra-Wide-Band (UWF), 
or Inertial Navigation Systems (INS). 
Eventually, IoT positioning sensors 
may perform on-chip hybrid position-
ing using a combination of GNSS and 
non-GNSS technologies at the expense 
of higher power consumption and cost 
(G. De Angelis et alia). 

An IoT positioning sensor is typi-
cally composed of a MicroController 
Unit (MCU), a reception/transmis-
sion Radio-Frequency (RF) front-end 
(so-called communication module), 
an antenna, the respective positioning 
module, memory and the power sup-
ply (i.e., battery). The MCU is the brain 
of the sensor, an integrated circuit that 
includes one or more CPUs and a low 
capacity RAM able to perform basic 
computational tasks. The communica-
tion module (includes reception and 
transmission front-end) receives the 
requests and transfers the data or infor-
mation to a central node. The position-
ing module varies depending on the 
technology used (e.g., GNSS, INS, LTE). 
In this article we only focus on GNSS-
based solutions. 

The positioning module of a GNSS-
based IoT positioning sensor is a GNSS 
module, as depicted in Figure 1(a), which 
is in charge of capturing and condition-
ing the GNSS signals of interest with its 
own RF front-end (usually included in 
the GNSS module) and processing them 
to compute the position. Positioning 
data is often delivered by means of the 
National Marine Electronics Association 

FIGURE 1  (a) Conventional GNSS IoT positioning sensor; (b) Cloud GNSS IoT sensor
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(NMEA) protocol, producing a file that 
contains information regarding the posi-
tion of the sensor, visible satellites, mea-
surements, pseudoranges, etc., whose 
size is in the range from 1 to 5 kilobytes 
(kB). In order to reduce the amount of 
data to be transferred from the IoT sen-
sor to the central node (uplink transmis-
sion), the NMEA is processed on-board 
and just the location of the sensor is 
delivered in the end, hence reducing the 
output to a few bytes. During the time 
the GNSS module is in active mode, it 
essentially switches between acquisi-
tion and tracking state. In the acquisi-
tion state, the GNSS module is search-
ing and acquiring GNSS signals until 
it is capable of providing a position fix. 
This is the maximum power-consuming 
state of the GNSS module. Afterwards, 
it switches to a tracking state that pro-
vides position fixes with the already 
acquired satellite signals and searches 
for signals of new visible satellites. The 
tracking state is considerably less power-
consuming than the acquisition state. 
Nevertheless, it is difficult to measure 
the power consumption of a GNSS mod-
ule as it varies depending on the work-
ing conditions. For instance, a satellite 
with low Carrier-to-Noise ratio (C/N0) 
would require a longer coherent or non-
coherent integration at the acquisition 
stage, thus needing a larger amount of 
computational resources which implies 
an increase in the power consumption. 

Hence, one of the goals most Mass-
Market (MM) GNSS chipset vendors 
have (in addition to achieving lower 
power consumptions) is to reduce the 
active time until providing a reliable 
position fix, also known as Time-To-
First-Fix (TTFF). The TTFF depends on 
the starting mode at which the GNSS 
module initiates when it is switched 
from sleep to active mode. There are four 
different starting modes: cold, warm, 
assisted, and hot (F. Van Diggelen). In a 
cold start, all the possible frequency and 
code delays are searched and the ephem-
eris and broadcast time are decoded. 
In a warm start, only the broadcast 
time and ephemeris are decoded, as 
the frequency and code delays are held 
as prior information. In a hot start, 
frequency and code delays, broadcast 

time, and ephemeris data are already 
known. Novel GNSS modules include 
assisted start, which allows download-
ing ephemeris and broadcast time infor-
mation from private servers or GNSS 
Data Centers (GDC) in order to achieve 
a faster TTFF, but requires a downlink 
internet connection. After downloading 
the assistance data, the GNSS module is 
able to perform an assisted start. The 
TTFF estimates of a GNSS module for 
cold, warm, assisted, and hot starts (GPS 
L1 C/A only) are approximately 44.34, 
20.52, 2 and 0.51 seconds, respectively 
(M. Anghileri et alia). However, larger 
TTFF may be achieved in harsh environ-
ments due to the difficulties in decod-
ing the broadcast message or ephemeris, 
larger acquisition times, etc.  

The emergence of IoT positioning 
applications has sparked the interest 
of several MM GNSS vendors. Indeed, 
one manufacturer provides Assisted 
GNSS (A-GNSS) services to their GNSS 
modules at system start-up to minimize 
the TTFF. Similarly, another operates a 
worldwide reference network to provide 
A-GNSS data to its users, thus boosting 
the TTFF speed and accuracy. Fur-
thermore, novel GNSS modules from 
another vendor includes two Power 
Save Modes (PSMs) to reduce the aver-
age power consumption: Cyclic Tracking 
(PSMCT) for short update periods (1-10 
seconds) and On/Off (PSMOO) for long 
update periods (larger than 10 seconds). 
Of particular interest is the PSMOO 
which is suitable for IoT applications 
with long update periods (typically from 
hours to days). Nonetheless, the use of 
the PSMOO may provide significant 
error in the position fix. Similar power 
modes are available in one company’s 
GNSS modules: the GNSS Low Power 
(GLP) and the periodic mode, analogue 
to the PSMCT and PSMOO modes pro-
vided by another MM GNSS vendor, 
respectively, with the latter being the 
most suitable for IoT applications. See 
Additional Resources for more informa-
tion on all of these vendors.  

To sum up, MM GNSS chipsets offer 
power saving configurations oriented to 
IoT applications. However, a tradeoff is 
faced between accuracy and power con-
sumption, which varies depending on 

the application or use. Additionally, the 
use of power save modes leads to a deg-
radation in the accuracy performance of 
GNSS chipsets. Together with a reduc-
tion in power consumption, diminish-
ing the TTFF becomes mandatory in 
order to minimize the amount of time 
the GNSS chipset is in active mode. To 
do so, vendors provide A-GNSS ser-
vices so the GNSS module can imple-
ment an assisted start. Therefore, the 
IoT positioning sensor would require 
a downlink channel for downloading 
the GNSS assistance data, whose size is 
in the range of 1 to 3 kB per constella-
tion. Note that IoT sensors do not typi-
cally use the downlink channel as they 
are already pre-configured to switch 
between states beforehand, and hence 
this feature is only occasionally used.   

Cloud GNSS Receiver

In the previous section we discussed 
power-hungry GNSS modules and how 
their accuracy performance is jeopar-
dized as power consumption is reduced. 
We now propose a cloud GNSS receiver 
that performs the GNSS signal process-
ing tasks in a cloud server instead of on 
the sensor itself, thus facilitating the 
computational resources required by 
the IoT positioning sensor and hence 
reducing its power consumption without 
compromising the accuracy. In addition, 
the cloud GNSS receiver paves the way 
for innovative and more advanced appli-
cations due to the amount of available 
computational resources in the cloud 
servers: secure and authenticated GNSS 
positioning, crowdsourcing GNSS signal 
processing, pay-per-use insurance, etc. 

The cloud GNSS receiver is consid-
ered a Software as a Service (SaaS), a 
remote application that can be used by 
any user or machine while it is complete-
ly transparent to him. That is to say, its 
services can be used without having any 
kind of knowledge of the software, algo-
rithms, and computing resources used 
in the back-end. In this work, the cloud 
computing resources and services used 
are provided by Amazon Web Services 
(AWS) due to their wide range of cloud 
solutions, functionalities, and configura-
tion options, along with their openness, 
flexibility, and low cost. 
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Architecture 

The architecture of the cloud GNSS 
receiver is composed of three main ele-
ments (Figure 2): the cloud GNSS sensor, 
the cloud front-end in charge of inter-
acting with the user, and the back-end 
module where a High-Sensitivity (HS) 
GNSS Software Receiver (SwRx) is run-
ning and where all the computational 
tasks, reporting, and delivery of results 
are carried out. The cloud GNSS sensor 
is the IoT hardware element in charge of 
gathering the raw GNSS samples at the 
user side, and sending them to the cloud 
GNSS receiver for subsequent process-
ing. It is composed of an RF front-end 
tuned to the GNSS band of interest that 
includes an Analog-to-Digital Converter 
(ADC) for digitizing the GNSS signals, 
memory, and a communication mod-
ule for interacting with the cloud GNSS 
receiver. 

The cloud front-end is the interface 
through which a user or a machine, 
Human-to-Machine (H2M) a nd 
Machine-to-Machine (M2M), respec-
tively, interacts with the cloud GNSS 
receiver. In the H2M approach, the user 
can access the cloud GNSS through an 
HTTP web service, where users can log 
in and enter into a private desktop. Then, 
new executions or jobs can be launched 
using an online graphic user interface 
that allows for configuration of the HS-
GNSS SwRx. Notwithstanding, H2M 
interfacing is not a scalable approach 
and it is not suitable for large cloud GNSS 
sensor networks. It is for this reason that 

a M2M interface becomes mandatory. In 
this sense, an Application Programming 
Interface (API) has been built to allow 
sensors to automatically connect with 
the cloud GNSS receiver. Afterwards, 
the output results, PVT being an exam-
ple, are stored in a database and can be 
retrieved at any time by the user. Both 
API and webpage are used to generate a 
new job with a raw GNSS sample file and 
a JavaScript Object Notation (JSON) file 
as inputs. The JSON is used to configure 
the HS-GNSS SwRx to the specific needs 
of the analysis to be done, and to the 
working conditions where the samples 
were gathered with parameters such as 
the number of snapshots, the GNSS band 
to be processed, the coherent and non-
coherent integration time, etc. The flex-
ibility offered by the cloud GNSS receiv-
er allows the choice of some advanced 
features including using long integration 
times for processing weak GNSS signals, 
implementing signal-level analysis, etc. 
Metadata associated with the capture 
of raw GNSS samples including RF and 
Intermediate Frequency (IF), sampling 
rate, quantization, encoding, etc., can 
be included in the JSON or by using the 
Institute of Navigation (ION) Software-
Defined Radio (SDR) metadata standard 
(J. Curran et alia). Likewise, assistance 
information regarding the list of satel-
lites to be searched together with their 
Doppler frequency can also be attached 
to decrease the execution time (like a hot 
start in an MM GNSS receiver). Assis-
tance information can be automatically 

generated by the cloud GNSS receiver 
by attaching an approximate location 
and the timestamp. Finally, a Receiver 
Independent Exchange Format (RINEX) 
navigation file must be attached in order 
to calculate the PVT of the sensor. In 
this context, the cloud GNSS receiver 
also procures the capability of down-
loading RINEX navigation files from 
servers of the International GNSS Ser-
vice (IGS). This is mainly to avoid the 
need for capturing GNSS signals during 
a long interval of time (i.e., at least 30 
seconds in GPS L1 C/A are required to 
read and decode the ephemeris embed-
ded into the navigation message) and 
hence reduce the amount of data to be 
captured and transferred to the cloud 
to a few milliseconds of signal. Lastly, 
the files and job instructions generated 
by the cloud front-end (i.e., raw GNSS 
sample file, JSON, API commands) are 
transferred and communicated to the 
cloud back-end.

Each new job generated by a user 
or IoT positioning sensor is received 
and managed by a resource manager 
in charge of allocating cloud comput-
ing resources to the job. The back-end 
of the cloud GNSS receiver is where the 
bulk of the processing tasks are carried 
out. This comprises reading, decoding, 
and processing the raw GNSS sample 
file given the configuration param-
eters included in the JSON file to finally 
obtain the desired output such as PVT. 
This process is implemented by means of 
an HS-GNSS software receiver, a snap-

WORKING PAPERS

FIGURE 2  Cloud GNSS receiver architecture
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shot-based GNSS receiver with a C/N
0
 sensitivity down to 15 

dBHz (J. Lopez-Salcedo et alia). The HS-GNSS SwRx core is 
based on the extensive use of FFT processors and implements 
long integration times up to several seconds using advanced 
non-coherent integrations. 

In addition, different AWS solutions are used to build the 
back-end: Elastic Cloud Computing (EC2), Simple Queue Ser-
vice (SQS), Batch, Relational Database Service (RDS), Elastic 
Container Service (ECS), and Simple Storage Service (S3). EC2 
provides re-sizable and scalable computing resources (i.e., 
RAM, CPU, storage, etc.) in the cloud as instances (virtual 
machines) that act as a physical computing machine. There is 
a wide range of available virtual machine types, each of them 
suitable for different uses. SQS is a message queuing service to 
communicate different modules and systems within the cloud 
infrastructure. Batch enables us to optimally compute jobs on 
AWS resources (i.e., EC2) based on its computing requirements 
(e.g., CPU, RAM). RDS is used to store and manage the data-
base of the cloud infrastructure which includes information 
such as users, PVT results, job configurations, etc. ECS allows 
for the launch and scale of Docker containers on AWS when 
a job is received. A Docker container includes the HS-GNSS 
SwRx and all the necessary software for the processing of the 
raw GNSS sample file. S3 provides secure, durable and highly-
scalable object storage and is used to store the data uploaded 
from the sensor, which is then downloaded in an EC2 virtual 
machine in order to be processed. 

Thus, when a cloud GNSS IoT sensor (Figure 1(b)) launches 
a request, it first has to upload the raw GNSS sample file and 
the configuration data (i.e., JSON) to the S3 repository and 
send a request by means of a message to the SQS queue. When 
the SQS message is read by the resource manager, a new job is 
generated, inserted into the database by its identification num-
ber, and then managed by Batch, which will start a given EC2 
instance type depending on the computing resources required 
by the job, and launch a Docker container from the ECS service. 
Once the container is launched, it automatically downloads the 
data regarding to the identification number of the job (i.e., raw 
GNSS sample file, JSON) from S3 and the HS-GNSS SwRx is 
launched. Finally, the output results are stored in the database 
from which it can be retrieved through the API or web page. 
This workflow is depicted in Figure 2. 

Energy Consumption
As we have previously seen, instead of locally processing the 
GNSS data, the cloud GNSS IoT sensor (Figure 1(b)) only has 
to transfer it to a cloud server. This simple process is expected 
to be more energy efficient than conventional IoT positioning 
approaches where the PVT is computed on-chip. Nevertheless, 
it is known that data transmission is one of the most energy 
consuming stages of an IoT sensor. Depending on the appli-
cation, it is even higher than performing the computational 
tasks locally in the device itself. In the cloud GNSS receiver, 
the size of the data (i.e., raw GNSS sample file) to be transmit-
ted from the sensor to the cloud is directly proportional to the 
signal length (in time), the sampling frequency of the reception 

RF front-end, and the quantization of its ADC. Therefore, a 
trade-off is met between the size of the data to be transmit-
ted and the energy consumed by the cloud GNSS IoT sensor 
(Figure 1(b)). Furthermore, the signal length is also related to 
the sensitivity of the GNSS receiver, as increasing the coherent 
or non-coherent integration time allows for the detection and 
acquisition of weaker GNSS signals. Hence, another trade-off 
is met between the sensitivity of the GNSS receiver and the size 
of the data to be transferred. 

In order to properly compare the expected energy consump-
tion of both the conventional and cloud GNSS IoT sensors (Fig-
ure 1), we have to address the energy consumed by each of the 
components they comprise (V. Lucas-Sabola et alia, 2017). First, 
the energy consumption of a conventional GNSS IoT sensor 
(Figure 1(a)) performing a position fix is discussed. Basically, 
the required energy by a component can be obtained by its 
current consumption in active mode, the amount of time in 
active mode, and the supply voltage. For this study case, the 
supply voltage is set to 3.3 V. The current consumption has 
been obtained from datasheets of state-of-the-art components 
(Table 1). Regarding the current consumption of the compo-
nents, the reader should note that the communication mod-
ule also consumes an additional amount of energy due to the 
release of power from the antenna during transmission, and 
the GNSS module current consumption may vary depending 
on the working conditions of the sensor (e.g., open, mild, or 
obstructed environment). 

The active time of the different components have been 
obtained as follows: the MCU is active from the time the sen-
sor is switched on and begins capturing the GNSS signal until 
the PVT is sent; the active time of the memory and communi-
cation module is directly dependent on the size of the packet 
to be stored and transmitted, respectively (a few bytes in this 
study case); and the GNSS module active time is equal to the 
TTFF for each of the four different starts: 44.34, 20.52, 2, 0.5 
seconds for cold, warm, assisted, and hot, respectively (TTFF 
for assisted depends on the downlink latency). Note that the 
acquisition time may vary depending on the working condi-
tions, i.e., larger in harsh environments and hence increasing 
the energy consumption. 

In Figure 3 the expected energy consumption of the dif-
ferent components of a conventional GNSS IoT positioning 

WORKING PAPERS

Component Manufacturer Model
Current  

consumption

GNSS module u-blox MAX-M8W 32 mA  
(Acquisition) 

[20]

GNSS module u-blox MAX-M8W 8.9 (Tracking) 
[20]

MCU module Texas  
Instruments

CC1310 1.9-2.5 mA [18]

Communication 
module

Texas  
Instruments

CC1310 11.2 mA [18]

Memory module Atmel AT25M02 5 mA [2]

Table 1  Current concumption of the components of a conventional GNSS IoT sensor 
(Figure 1a)
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coordinates are sent is approximately 
1-2 bytes, 1 kB for a small NMEA, and 
5 kB for a large NMEA. We can clearly 
see that the GNSS module typically is 
the largest consumer of a conventional 
GNSS IoT sensor (Figure 1(a)), even 
for hot and assisted starts by an order 
of magnitude in comparison with the 
MCU and up to four orders of magni-
tude in contrast with the communica-
tion and memory modules. 

For the cloud GNSS IoT sensor (Fig-
ure 1(b)), the same procedure has been 
applied, but the GNSS module has been 
substituted with only a GNSS RF front-
end, also including an ADC. In this 
sense, the GNSS RF front-end must be 
carefully chosen to avoid compromis-
ing the energy-efficiency of the cloud 
GNSS IoT sensor (Figure 1(b)), as it will 
not only contribute to its own energy 
consumption, but also in the energy 
consumed by the other components 
as they are directly dependent on the 
packet size. Indeed, the size of the data 
to be transferred to the cloud can be 
expressed as L = T

sl
bFs

rx
, where L is the 

packet size in bits, T
sl
 is the captured 

GNSS signal length in seconds, b is the 
quantization bits of the ADC, and Fs

rx
 is 

the sampling frequency of the RF front-
end. Therefore, there are three alterna-
tives in order to work with small-sized 
packets: reduce the sampling frequency, 
work with a low quantization level, or 
capture a signal of short length. In this 
study case, with the objective of achiev-
ing low energy consumption, the RF 
bandwidth is set to 2 megahertz, enough 
to capture the main lobe of the GPS L1 
C/A signal, and the sampling frequency 
is set to 4 megahertz. On the other hand, 
the ADC uses 1 bit to digitize the GNSS 
signal. According to state-of-the-art 
components, the current consumption 
of a GNSS RF front-end with such char-
acteristics is approximately 5 mA. 

A comparison between the energy 
consumed by the cloud and the conven-
tional GNSS IoT sensor (Figure 1) with 
different starts is addressed in Figure 

4. In order to implement a fair com-
parison, the energy consumption of the 
conventional GNSS IoT sensor (Figure 
1(a)) for different starting modes has 
been obtained for a packet with size 2 

FIGURE 3  Expected energy consumption of each of the components of a conventional GNSS 
IoT sensor (see Figure 1(a)) with regard to the size of the data packet transmitted through the 
communication module; TTFF for hot, assisted, warm, and cold starts of 44.34, 20.52, 2, and 
0.5 seconds, respectively
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sensor (Figure 1(a)) is shown. It can 
be seen that the energy consumption 
of the GNSS module depends on the 
operation mode (i.e., hot, assisted, 
warm, cold), and hence depends on 
the TTFF. In contrast, the rest of the 
sensor components such as the MCU, 
memory, and communication modules 

have an energy consumption directly 
dependent on the packet to be handled 
and transmitted to the cloud. Indeed, 
the MCU must stay in active time until 
the data (i.e., PVT output) is sent to, for 
example, a central node. The size of the 
packet to be transmitted through the 
communication module when only the 

FIGURE 4  Expected energy consumption of a cloud and a conventional GNSS IoT sensor with 
respect to the signal length; TTFF for hot, assisted, warm, and cold start of 44.34, 20.52, 2, 
and 0.5 seconds, respectively
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bytes (see Figure 3). It can be seen how 
as the signal length to be captured by 
the cloud GNSS IoT sensor (Figure 1(b)) 
is moderately small, the cloud GNSS 
receiver offers a more energy efficient 
positioning solution than conventional 
approaches. For instance, compared to 
a conventional sensor with hot start, 
the cloud sensor provides energy sav-
ings up to one order of magnitude for 
small signal lengths (i.e., a few ms) and 
is more energy efficient by using a signal 
length up to 24 ms (bear in mind that a 
PVT can be obtained with just 1 or 2 ms 
of signal). Notwithstanding, the GNSS 
module cannot implement a hot start 
every time it provides a position fix, as 
the stored information expires (range 
from 30 minutes to 4 hours). MM GNSS 
chipsets usually download or try to 
decode ephemeris data (as in cold start) 
every 30 minutes with the objective of 
having recent ephemeris and navigation 
data and then provide a higher position 
accuracy. Likewise, in contrast with an 
assisted start, the cloud GNSS IoT sensor 
(Figure 1(b)) can capture and transfer 
up to 46 ms of GNSS data and still con-
tinue to be more energetically efficient. 
Finally, in comparison with the warm 
and cold starts, whose TTFF and hence 
the amount of time in active mode is 
significantly high (i.e., 30-40 seconds), 
the cloud GNSS IoT sensor (Figure 1(b)) 
remains active for some milliseconds (up 
to 600 and 800 ms, respectively), and 
thus energy efficiency can reach up to 
2.5 orders of magnitude. 

Performance of the  
Cloud GNSS Receiver
In this section we will brief ly discuss 
the accuracy performance of the cloud 
GNSS receiver by means of an experi-
mental test. To do so, a synthetic signal 
was generated with a GPS/Galileo sig-
nal generator simulating a static out-
doors open-sky scenario at the School of 
Engineering of Universitat Autònoma de 
Barcelona (UAB). A low-cost RTL-SDR 
V3 USB front-end was used to capture 
the GPS L1 C/A signal with a sampling 
frequency of 2.048 MHz and generate 
the raw GNSS sample file, which is then 
transferred to the cloud GNSS receiver 
together with the required JSON con-
figuration file. The visible satellites have 
been configured with a C/N

0
 of roughly 

46 dBHz.
The obtained results for GPS L1 C/A 

with different coherent integration times 
are provided in Figure 5. For a small sig-
nal length (i.e., 1 to 4 ms) a position 
error of tens of meters is obtained. How-
ever, as the coherent integration time is 
increased (i.e., 10 and 20 ms), and hence 
the amount of signal captured and sent 
to the cloud GNSS receiver is also larger, 
the positioning accuracy is enhanced to 
a few meters. In contrast to conventional 
GNSS IoT positioning approaches where 
the sensor must be in active mode for 
a long period of time to calculate the 
PVT (from a few seconds up to minutes, 
depending on the working conditions), 
in a cloud-based approach the sensor 
must be in active mode for just a few 
milliseconds, enough time to capture 

the desired GNSS signal and forward 
it to the cloud servers. Therefore, it is 
shown that the cloud GNSS receiver 
becomes an energy-efficient IoT posi-
tioning solution without compromis-
ing the obtained accuracy, particularly 
for those IoT applications that do not 
require precise positioning. 

Economic Cost of GNSS Signal 
Processing in the Cloud 
Processing the raw GNSS sample file 
in cloud servers instead of in the sen-
sor itself as in conventional approaches 
implies the added cost of hiring cloud 
computing resources. Among the dif-
ferent AWS services used in the cloud 
GNSS receiver infrastructure, the service 
that implies a significant cost is the EC2 
service. AWS offers three ways to pay for 
its services: on-demand, reserved, and 
spot. On-demand services are paid per 
hour use as they are opened and closed 
with a fixed cost. Reserved services, 
which are paid in advance, are suited 
for applications with predictable usage 
and offer discounts up to 75% in contrast 
with on-demand services. Moreover, we 
can bid for EC2 spot services whose cost 
may decrease up to 90% in comparison 
with on-demand (their fluctuating price 
varies depending on the supply and 
demand of EC2). Additionally, the price 
of different services may vary depend-
ing on the selected region of use, i.e., the 
geographic area where the EC2 servers 
are hosted. 

For this test set-up, c3.xlarge (Table 2) 
have been selected to compose the cloud 
back-end for processing the raw GNSS 
sample files with signal length between 

FIGURE 5  Accuracy performance of the cloud GNSS receiver in a static outdoor clear-sky sce-
nario with different coherent integration times

Instance type c3.xlarge

vCPUs 4

RAM 7.5 GB

SSD 2x40 GB

Region Frankfurt (EU)

On-demand price 
(taxes excluded)

$0.258 per hour

Reserved price 
(taxes excluded)

$0.11 per hour

Spot price (taxes 
excluded)

$0.0472 per hour

Table 2  Experimental set-up for the economic cost of 
cloud services: EC2 characteristics
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1 and 5 ms. The allocation of the jobs 
generated by the requests of a network 
of cloud GNSS IoT sensors (Figure 1(b)) 
is assumed to be optimum in terms of 
usage time: the computational tasks of a 
given amount of sensors are sequentially 
performed in the same EC2 instance, 
hence reducing the cost per position fix. 
The monthly cost of the necessary cloud 
resources (i.e., EC2) for an IoT application 
that requires one position fix per hour is 
presented in Table 3: for $0.51, $0.23 and 
$0.1 per month, a cloud GNSS IoT sensor 
(Figure 1(b)) position can be calculated 
once per hour for on-demand, reserved 
and spot services, respectively. Notice 
that in typical IoT positioning applica-
tions, a position fix is usually requested 
from hours up to days. Hence, the cost 
of the cloud services used by a network 
of cloud GNSS IoT sensors (Figure 1(b)) 
should not be a showstopper as it has been 
demonstrated to be considerably low. 

Conclusions
This article discusses the conventional 
solutions for IoT positioning, with 
GNSS-based solutions being the most 
widespread in positioning IoT sensor 
networks. The architecture of a con-
ventional GNSS IoT positioning sensor 
(Figure 1(a)) has been addressed, togeth-
er with the energy consumption of its 
different components, showing that the 
GNSS module is the largest consumer if 
the data to be transferred is not large. 
To tackle the dilemma of energy con-
sumption in IoT positioning sensors, we 
propose the use of a cloud-based GNSS 
approach, in which the purpose of sen-
sors is just to capture the GNSS signal 
and send it to a cloud server where it will 
then be processed. 

The energy consumption of the 
proposed cloud GNSS IoT sensor (Fig-
ure 1(b)) has also been addressed and 
compared with state-of-the-art GNSS 

IoT positioning sensors. Under the con-
straint of working with a relatively small 
signal length, the use of the cloud GNSS 
receiver achieves a significant savings in 
the sensor’s consumed energy, up to one 
order of magnitude compared with hot 
and assisted starts, and up to roughly 
2.5 orders of magnitude in contrast with 
warm and cold starts. 

Finally, the economic cost implied 
by the use of cloud services to process 
the GNSS data and obtain the position 
of the sensor has been shown to be low, 
thus ensuring the cloud GNSS receiver 
as a low-energy and low-cost solution for 
IoT positioning.
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