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Abstract—We consider the detection and estimation of a zero-
mean Gaussian signal in a wireless sensor network with a coherent
multiple access channel, when the fusion center (FC) is configured
with a large number of antennas and the wireless channels between
the sensor nodes and FC experience Rayleigh fading. For the detec-
tion problem, we study the Neyman—Pearson (NP) detector and en-
ergy detector (ED) and find optimal values for the sensor transmis-
sion gains. For the NP detector, which requires channel state infor-
mation (CSI), we show that detection performance remains asymp-
totically constant with the number of FC antennas if the sensor
transmit power decreases proportionally with the increase in the
number of antennas. Performance bounds show that the benefit
of multiple antennas at the FC disappears as the transmit power
grows. The results of the NP detector are also generalized to the
linear minimum mean-squared error estimator. For the ED, which
does not require CSI, we derive optimal gains that maximize the
deflection coefficient of the detector, and we show that a constant
deflection can be asymptotically achieved if the sensor transmit
power scales as the inverse square root of the number of FC an-
tennas. Unlike the NP detector, for high sensor power, the multi-an-
tenna ED is observed to empirically have significantly better per-
formance than the single-antenna implementation. A number of
simulation results are included to validate the analysis.

Index Terms—Distributed detection, distributed estimation,
large scale antenna systems, massive MIMO, wireless sensor
networks.

I. INTRODUCTION

A. Background

HE use of wireless sensor networks (WSNs) for detec-
tion and parameter estimation has been widely studied
(e.g., [1]-[11]) . When a coherent multiple access channel is
employed between the sensor nodes and fusion center (FC)
[3]-10], each sensor takes a noisy measurement of the signal
of interest, amplifies and forwards the measurement to a FC
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through a wireless fading channel, and the FC makes a decision
about the presence of the signal and estimates its parameters
based on the coherent sum of the signals from all the sensor
nodes. To minimize the detection or estimation errors, the
transmit power at the sensors is optimized under either sum or
individual power constraints. The aforementioned works all
assume that the FC is configured with a single antenna. It is
well-known that multiple antennas can effectively increase the
throughput of a wireless link, and recently researchers have
investigated the use of arrays with a massive number of an-
tennas in wireless communication systems in order to improve
spectral and energy efficiency [12]-[15]. Most of the research
on so-called “massive MIMO” systems has been focused on
cellular networks where the base station (BS) is configured
with many antennas while the individual mobile stations have
a single antenna. When perfect channel state information (CSI)
is available at the BS, it has been shown that the transmit
power of the mobile terminals can be reduced proportionally to
the increase in the number of antennas without impacting the
asymptotic rate of the users in the system [12]. The benefit is
somewhat less when the BS uses an imperfect channel estimate;
in this case the mobile users’ transmit power can be inversely
proportional to the square root of the number of antennas in
order to achieve a constant rate [13].

For parameter detection or estimation problems in WSNs,
an important question is how to exploit a multi-antenna FC
to improve the probability of detection or estimation error.
Several recent papers have studied the benefit provided by
multiple antennas in the WSN context [16]-[21]. In [16], the
sensors use a fixed transmission gain to forward the measured
signal to the multi-antenna FC, and the probabilities of detec-
tion and false alarm are derived under different assumptions
for the CSI. Power allocation problems for signal detection and
estimation are formulated in [17], [18] for a multi-antenna FC
under a Rayleigh fading channel, but the performance benefit
of a multiple- versus single-antenna FC is shown to be bounded
by a constant that is unrelated to the number of antennas. For
signal estimation using a phase-shift and forward WSN with a
multi-antenna FC, it has been shown in [20] that as the number
of antennas M grows large, in certain cases the estimation
error will decrease by a factor of A7. Antenna arrays at the
FC are also considered in [19], [21], where each sensor node
first makes a local binary decision about the measured signal,
and then forwards the decisions to the multi-antenna FC using
uniform transmit power. In [19], a number of sub-optimal but
low complexity fusion rules at the FC are derived and analyzed,
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and the results indicate the benefit of using multiple antennas
in terms of detection performance. The recent work in [21]
shows that when the number of FC antennas is very large, low
complexity algorithms can asymptotically achieve an upper
bound on detection performance even using a linear receiver
with imperfect CSI.

While the benefits of massive numbers of antennas have been
carefully studied for communication systems, we see above that
relatively little work has analyzed their impact for WSNs. In this
paper, we investigate the gains in energy efficiency that can be
obtained in a coherent multiple-access WSN when the FC has
a large number of antennas, and we show how to determine op-
timal values for the sensor gains when the CSl is either perfectly
known or unknown at the FC. In particular, our motivation is to
demonstrate that FC antennas can be traded for sensor power;
this is an important observation for WSNs where the sensors
must conserve energy (e.g., due to the use of batteries or energy
harvesting). The specific contributions of the paper are detailed
in the next section.

B. Contributions

In this paper, we study the detection and estimation perfor-
mance of a coherent amplify-and-forward WSN with single
antenna sensors and a massive number M of antennas at the
FC. We assume the parameter of interest is a zero-mean circular
complex Gaussian variable and that the wireless channels
between the sensor nodes and FC undergo Rayleigh fading.
Under these assumptions, we investigate the performance
of the Neyman-Pearson (NP) and energy detectors and the
linear minimum mean-squared error estimator (LMMSE). Our
contributions are summarized below.

(1) For the case where CSI for the sensor nodes is available
at the FC and the NP detector can be implemented, we derive
the dependence of both probability of detection (PD) and prob-
ability of false alarm (PFA) on the sensor transmit power and
show that as M — oo, the sensor power can be reduced by
1/M to achieve a constant PD for the same fixed PFA. This is
similar in spirit to the results for massive MIMO in wireless cel-
lular communications with perfect CSI [13]. However, unlike
[13] which assumes each user transmits with equal power, we
derive the optimal transmission gains for the sensors that maxi-
mize PD for a fixed PFA under a sum power constraint. We show
that this problem is independent of the sensor phase and convex
with respect to the magnitude squared of the sensor gain as M
— 00, and we formulate a simple closed-form “water-filling”
solution to calculate the optimal gains. In our simulations, we
demonstrate that compared with a uniform power allocation, the
optimal gains result in significantly improved PD performance
when the sensors transmit with low power, which is the case of
interest for energy efficiency.

(2) For the NP detector, we also derive asymptotic perfor-
mance bounds for cases where the available sum transmit power
P satisfies either P — oo or P — 0. When P — 0, we show
that PD approaches PFA in the single antenna case, but PD is
strictly greater than PFA (and potentially significantly greater
than PFA) as long as P decreases at a rate of O(1/M) or slower
as M — oo. However, when P — o0, we show that both
the single- and multiple-antenna FCs asymptotically achieve the
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same detection performance, and hence the use of multiple an-
tennas asymptotically provides no benefit for the NP detector at
very high signal-to-noise ratios.

(3) For the case where the CSI is unknown or a computation-
ally simpler solution is desired, we study the performance of
the energy detector (ED). The deflection of the ED is used as
the performance metric, which generally serves as an accurate
indicator of a detector’s performance. Our results show that if
the sensor transmit power decreases as 1/v/M when M — oo,
a constant deflection can be achieved. Based on this, we show
how to choose the sensor transmission gains to maximize the
deflection under a sum power constraint. In particular, we show
that when M — oo, the optimal gains can be found in the gen-
eral case via a quadratically constrained linear program, and
we also show that closed-form solutions are possible for lim-
iting values of the power constraint P. As in the NP detector
case, the optimal solution is independent of the sensor phase.
Simulation results demonstrate that reducing transmit power by
1/+/M to maintain a constant deflection as M grows results
in a constant PD. Note that although this result is superficially
similar to a result in [13], the case we consider is considerably
different since it involves the ED which requires no CSI, unlike
[13] which assumes a minimum mean-squared error channel es-
timate obtained using pilot signals. Also, unlike [13], we do not
assume a uniform power allocation, but as mentioned above we
instead derive optimal sensor transmit gains and illustrate when
these optimal gains provide significantly better detection per-
formance.

(4) For the LMMSE estimator, we prove that a constant MSE
can be achieved by decreasing the transmit power as 1/M as
the number of FC antennas M grows. This result is obtained
by generalizing the asymptotic results for the NP detector to the
LMMSE estimator, and showing that the PD of the NP detector
and the LMMSE mean-squared error (MSE) both obey a similar
rule as M — oo. We also derive bounds on the MSE for the
limiting cases P — 0 and P — oo, and show similar behavior
for these bounds as in the case of PD for the NP detector.

Some of the contributions listed above appeared previously
in the conference paper [22].

C. Organization

The remainder of the paper is organized as follows. In
Section II, we introduce the signal model and derive basic re-
sults for PD and PFA. In Section III, we prove the main results
for the NP detector and LMMSE estimator, and we formulate
and solve the sensor transmission gain optimization problem
to maximize PD for a given PFA under a sum transmit power
constraint. The deflection of the energy detector is analyzed
in Section IV, and the problem of calculating the transmission
gains that maximize the deflection is solved. The results of
several simulation studies are provided in Section V to validate
the theoretical derivations, and the conclusions of the paper are
summarized in Section VI.

The notation used in this paper is summarized as follows.
Lower-case and upper-case bold letters represent vectors and
matrices respectively, and C**1 denotes the space of A -ele-
ment complex vectors. We use (-)7 and (-)# for transpose and
conjugate transpose respectively. The M x A identity matrix is
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denoted as Iy; and diag{d; --- dn}isa N x N diagonal ma-
trix with d; as the 7th diagonal element. Probabilities and condi-
tional probabilities are denoted by Pr(-) and Pr(:|-), and p(|-)
represents a conditional probability density function. The func-
tions E{-} and Var{-} denote the expectation and variance of a
random variable, and CA (0, £) denotes the complex Gaussian
distribution with zero mean and covariance matrix X. The ith
eigenvalue of a matrix is written as A;(-), and for two Hermi-
tian matrices A and B, A > B means that A — B is positive
semidefinite.

II. SIGNAL MODEL AND NEYMAN PEARSON DETECTOR

We consider a general binary Gaussian detection problem,
where the signal of interest 8 is modeled as a zero-mean circular
complex Gaussian variable! with variance o3, a distribution we
denote by CAN(0, 03). The measurement available at the ith of
N sensor nodes is given by

Si:9+via (1)

where v; is measurement noise distributed as CA/(0, o}, ;). The
ith sensor multiplies the measurement with a complex gain a;
and coherently forwards the result to the FC through a wireless
fading channel. The received signal at the M -antenna FC under
the two hypotheses is

Ho:y=HDv+n (2a)
Hy,:y=Had +HDv +n, (2b)
where
v=[v oyt (3a)
a=[a; ---an]” (3b)
D =diag{a; --- an} (3¢c)
H=[h; ---hyJ, (3d)

h; ¢ CM>! is the channel gain between the ith sensor and the
FC, and the vector n € CM*! represents additive Gaussian
noise at the FC and has the distribution CA(0, 521 ).
Assuming that the FC has perfect knowledge of signal vari-
ance o3, the measurement noise power 03,7: and the CSI'in H,
the NP criterion can be used to distinguish between the hy-
potheses Hg and H,. The NP detector decides H1 if [23]

L(y) = p(y|H1) >

p(y|Ho)
for a given threshold +y, where p(y|H1) and p(y|Ho) are the
conditional probability density functions (PDFs) of y under #;
and H,, respectively. Assume the measurement noise at the sen-
sors is independent, so that the covariance of v is given by 'V

“

= diag{ol, --- ag’N}. Since y is Gaussian under both #;
and Hg, we have [23]
1 _
p(y|H1) = exp (—y"(C. + Cu) " 'y)

T det(C, + Cy)
(5a)

: (5b)

p(y|Ho) = mfmp (-y"Culy) ,

IAlthough we use a Bayesian framework, our approach can be also used for
the deterministic case, in which € is assumed to be a deterministic signal.
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where C,, = HDVD#H¥ + 521,, is the covariance of y
under H,y, C, = agHaaHHH and C,, + C, is the covariance
of y under H;.

Lemma 1: Based on the signal model in (2a) and (2b), and
the conditional PDFs in (5a) and (5b), the NP detector in (4) is
equivalent to deciding H, if

ogla"BIC Ty >+, (6)

where
7' =1+ og9(a)In [v(1 + ajg(a))] ™)
g(a) =a"H¥C 'Ha . ®)

Proof: See Appendix A. ]
For the NP detector in (6), the probability of detection Pp
and probability of false alarm Pr 4 are defined as

Pp =Pr (o3|a"HYC,'y|* > +'[H1) (9a)
Ppy =Pr(ojla"H7Cly|* > v'|H,o) . (9b)

To evaluate Pp, we first rewrite it as
Pp = Pr (o357 Wy > +'|H1) , (10)

where § = (C, + C,,) %y and
W = (C, + C,,)?C_'Haa"H ' C ' (C, + C,)? .

Sincey ~ CN(0,C,; + C,) under H1, 5y = (C; + Cw)’%y
is distributed as CA(0, Is). Defining the eigendecomposition
of W as

W =UGUH (11)
where G = diag{g(a) + c3g(a)?,0--- 0}, (10) becomes
Pp =Pr (o357 UGU g > +'|H,)

b 5. ~

©Pr (o357 Gy > +/[H1)

(© o4 )

= exp| — A ; (12)
( o59(a)? + ajg(a)

where (b) results since the unitary transformation U does not
change the distribution of ¥, and (c) holds since ¥# G¥ has a
scaled chi-squared distribution with two degrees of freedom. In
a similar way, Pr4 can be derived as

’7’
Fra=exp < azg<a>> '
9

III. NEYMAN-PEARSON DETECTOR
OPTIMIZATION AND ANALYSIS

(13)

Both Pp and Pp 4 are functions of the sensor transmission
gains a, and thus it is natural to find values for the entries of
a that optimize detection performance. In what follows we will
show how to find a such that Pp is maximized for a given Pr 4.
According to (13), the threshold required to achieve Pr 4 = € is

!

v = —cjg(a)ne. (14)
When substituted into (12), this threshold yields
Ine
Pp = —— ] . 15
v (i) ()
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Since In e < 0, Pp is maximized when the signal-to-noise ratio
(SNR) g(a) is maximized. Thus, the problem becomes

max g(a) = a" HY(HDVD”H” + +21;,) 'Ha
a

st. afla=P, (16)
where P denotes the constraint on the sum sensor transmit
power. This result was derived in [18] by examining the be-
havior of the error exponent as the number of sensors went to
infinity. Here we see the result holds for fixed and finite values
of N. The role of g(a) in determining estimation performance
for 8 has also been noted in [17], [20]. In general, finding a
solution to (16) is difficult due to its nonlinear and non-convex
dependence on a. A simpler solution was found to be possible
in [20] if the sensor gains were restricted to all have the same
magnitude and only the phase was optimized. In this case, the
solution was shown to be found via a relaxed semidefinite pro-
gram. In this paper, we show that a closed-form “water-filling”
type of solution for (16) is possible under the assumption that
M — .

A. Energy Efficiency

For our analysis, we assume the wireless fading channel be-
tween the sensor node ¢ and FC is modeled as
h;

VT

where d; is the distance between the sensor node and FC, a is
the path loss exponent, and h; € CM*1 is a complex Gaussian
vector with distribution CA'(0,I,;). Note that the assumption
here of independent and identically distributed channel coeffi-
cients is made primarily to enable the asymptotic analysis of the
detection performance at the FC. The following theorem char-
acterizes the energy efficiency of the NP detector for large M .
Theorem 1: Assuming Rayleigh fading wireless channels, as
the number of FC antennas M tends to infinity, the transmit gain
\a;|? at each sensor can be reduced by 1/M to almost surely
achieve the same optimal Pp for a given fixed Pr 5.
Proof: We will show that as M — oo, the function g(a)
in (15) and (16) remains constant if the product M |a;|? is held
constant. We first use the matrix inversion lemma to show that

h; =

(17)

(HDVD?H? + o2L)

1 1 1, L pm o H

where E = DVD¥  Note that we have assumed that |a;| > 0
to guarantee the matrix inverse F ~! exists, but we will see that
the final solution allows |a;| — 0. Substituting (18) into g{a)
yields

1
gla) = —QaHHHHa

0—n

1 1 -

——a'a"H <E1 + —ZHHH> HYHa. (19)

4
Oy, n

For large M , the product H¥ H converges almost surely to [13]:

1 1 1
lim —HPH = diag{ — - --
im i diag { (20)

] o3 ?
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and substituting (20) into (19) yields, after some calculations,

N

I ( ) I Aflai\z
1m aj)= lm E .
Moo ? Moo = opd + o} ;Ma;|?

2]

We see that g{a) remains asymptotically unchanged as long as
the product M |a;|? is held constant, and thus asymptotically
equivalent detection performance can be achieved if any de-
crease in sensor transmit power is balanced by a corresponding
increase in the number of FC antennas. ]

B. Sensor Gain Optimization

Based on (21), when M — o0, the original problem (16) can
be rewritten as

N

]\/['d.i‘z
22
T ; 02d% + 02  M]a;? 22)
N
st Y |a*=P.
i=1

We see from this formulation that as M — oo, only the
magnitude of a; is important in determining the detection
performance, and we see that there is no problem if |a;| — 0
for some . As M grows, eventually we reach the point where
ag’il\l lai|* > o2d?, in which case the choice of the sensor
gains no longer matters. However, we will see in the simula-
tions that for moderately large values of M, optimizing (22)
over |a;| provides a significant benefit, especially when P is
relatively small.

Define a new variable #; = |a;|?, so that problem (22) is
equivalent to

) —Mz;
e ; oZdy + o) M 23)
N
i=1

In problem (23), the objective function is the sum of N convex
functions of z;, and the constraints are linear with respect to
the variable z;, so (23) is a convex problem and we can find a
“closed-form” solution using the Karush-Kuhn-Tucker (KKT)
conditions [24].
The Lagrangian of (23) is given by:

N

‘C(wh >‘7 ,uz) - Z

i=1

7M£L‘i
o2d? + o) ;M

N N
SIS Wt
i=1 i=1

and the corresponding KKT conditions are as follows:
—o2d*M

n-"

24

: A= =0 25
(02d2 + o2  Max;)? AT 25
N
A (Z z; — P) =0 (25b)
i=1



JIANG et al.: MASSIVE MIMO FOR WIRELESS SENSING WITH A COHERENT MULTIPLE ACCESS CHANNEL

N
Y ;- P=0 (25c¢)
i=1

iy ptis A 20 (25¢)

After some simple manipulations, we arrive at the following
optimal solution to (22):

c2d*M 2 0 +
TZ - J?zdi

o2 M ’

0,4

a7 =

(26)

where A > 0 is chosen such that Zf\;l la¥|?> = P. Lower and
upper bounds for A are given by

M
Y o2 min; {d¢}

N o2de M
P (o2de 02, PME [

and the unique value of A can be found via a simple bisection
search over [A;, \,].

Note that while implementing the NP detector in (6) requires
instantaneous CSI, the large A/ assumption allows the optimal
gains in (26) to be computed using only the channel statistics,
determined in this case by the distances of the FC to the sensors.
This is of interest since it means the sensors will not require
frequent feedback from the FC to update their transmit gains.

A (27a)

(27b)

C. Single-Antenna FC

It is of interest to consider the single-antenna FC case sepa-
rately, both for purposes of comparison and because in this case
an exact solution can be obtained. When M = 1, the signal
model reduces to

Ho:y=a"Fv+n
Hi:y=a’ho+aFv+n,

(28a)
(28b)

where a = J[a1---an]®, h = [hy---hy]T, F =
diag{hy---hx} and h; denotes the scalar channel gain be-
tween the ith sensor and the FC. The conditional PDFs of y
under H; and Hg are given by

S - i (29a)
m(oF + 03) ot o3

1 2
ply|Ho) = —5exp (—'i ) :
wa,

w

p(y|H1)
(29b)

where ¢ = o;a” hh"a and 02 = a? FVF”a + ¢2.

s =

For a given threshold 7, the NP detector decides 7 if

pyHy) _ -
Ly) = >, 30
W= i) 77 GO
which results in deciding H; if
2 2
Y2 > In (a (1 + 0—2>> (1 + U—l;) 2. (31
O-‘IU O-S
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Following an analysis similar to the multi-antenna case, the
probability of detection F’7, and the probability of false alarm
P; , for the single-antenna FC are given by

s _ g
PD = exp (m) (323.)
;5/1
Pp 4 =exp <_a_2> ; (32b)
(7'2 0'4
where 7' = In (ﬁ (1 + % )) (0'121] + U—’f)
To fix P§ 4 = €, we set ¥/ = —o2 Ine, and maximizing P},
for a fixed P 4 is equivalent to
ol c2aflhhfa (33)
max — = :
a g2 alFVFHa+ g2
H

st a’a=P.

Problem (33) is essentially identical to problem [10, (3)], and
using the same solution method derived in [10] leads to

~x P -1
=Rt M

2
where R = FVF# + 221, and the maximum value of 3 is

(34)

2

0--5'
2

oy,

=o2h"R"'h.

ax

(35)

In the following theorem, we compare the detection perfor-
mance of single- and multi-antenna FCs under low and high
transmit power scenarios.

Theorem 2: Assume Prpy = € and M — oo. When P =
O(1/M) — 0, the NP detector implemented by an FC with M
antennas achieves a Pp lower bounded by

1+
o

Pp>e Y (36)

q
“’|<mo
.
I MZ -
A
@ 1

while the Py, for a single-antenna FC is bounded by

e < P < eTHT, (37)

2 ja
where { = 5t Zil %‘g_d%'hHh — O in probability. When P
— 00, both Pp and Puf,l converge from below to the same
upper bound:

1

i (38)

1=

[

1+a§

{Pp,Ppyte

Proof: See Appendix B. |
Theorem 2 shows that when the transmit power P goes to
zero, Pf for a single-antenna FC converges to Pz 4 regardless
of the sensor network scenario, while Pp for a multi-antenna
FC is strictly greater than Pg 4, provided that M — oo and P
— 0 no faster than O(1/M). When o7 is large and the o
are small, Pp can in fact still converge to a value near unity. On
the other hand, when P is large, both Pp and P}, converge to
the same upper bound, and there is no benefit to having multiple
antennas at the FC.

a

Il
—
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D. LMMSE Estimation

While our paper is focused on detection, we show here that
similar results hold for LMMSE estimation. According to the
Gauss-Markov Theorem [25], the LMMSE estimator of 4 is

alHE (HDVDHHY + 521,,) 1y

6= . (39
0, +afHI(HDVDHHY | 521,) 'Ha (39)
and the mean-squared error is calculated as
MSE(§) =E{|6 — 6>} (40)
1
T3 N
o, +g(a)

where g(a) = a?H¥ (HDVD”H¥ + 521,,/) 'Ha, as de-
fined in (16). Thus, the problem of choosing the gains a to min-
imize the MSE is identical to the problem of maximizing Pp
for a fixed Pr 4 in (16), and the same conclusions drawn above
regarding energy efficiency and the optimal sensor gains apply
here as well. This is also true for the single-antenna FC, as it can
be easily shown that minimizing MSE requires maximization of
a2/c? , as with the NP detector.

The following corollary to Theorem 2 can also be established.

Corollary 1: When M — oo and P = O(1/M) — 0, the
MSE of the LMMSE estimator of 8 is upper bounded by

1

l]\]
JG +§20
i=

MSE(d) < , (41)

—

e Ky

i

while the MSE achieved by the single-antenna FC is bounded
by
2
1 + C
where { = 2M Zz 1 02 f ‘nfh = 0in probability. When P

— 00, both MSEs converge from above to the same lower
bound:

< MSE(4,) < 02,

(42)

1
2 N 1
+»Zl‘751'
i= >

Proof: The proof essentially follows that for Theorem 2
and is thus omitted. u

MSE(4,6,) > (43)

IV. ENERGY DETECTOR ANALYSIS AND SENSOR
GAIN OPTIMIZATION

Obtaining the instantaneous CSI required for the NP detector
consumes sensor power and could be difficult in fast fading sce-
narios. Computing the NP test statistic also requires the inverse
of the M x M channel-dependent matrix C,,, which may be
challenging when M is large. Consequently, it is of interest
to study computationally simpler approaches for detection in
sensor networks that can be applied when the CSI for the sen-
sors is unknown. In this section, we examine the performance
of the energy detector (ED), which decides H; if

1
T=—y"y>%, (44)

M
for some predefined threshold 4.
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Under either H or 1, the test statistic T' can be expressed
as

1 &N
T= 37250

=1

(45)

where )\; is the ith eigenvalue of the covariance matrix C,,
(under Hg) or C; + C,, (under H;) and the x?(2) terms rep-
resent independent chi-squared random variables with two de-
grees of freedom. Thus, while the ED test statistic does not re-
quire CSI, computing the ED probability of detection Py, and
false alarm Pz 4, does. When M is large, one could consider ap-
proximating 7" as a normal random variable using the Central
Limit Theorem. However, because the largest NV eigenvalues of
A; will increase with M, Lindeberg’s condition is not satisfied
and the normal distribution can not provide a good approxima-
tion for I'. Even if the distribution of 7" could be computed, it
would be a complicated function of the transmit gains a and
would be difficult to optimize. Instead, in the following we will
use the so-called deflection [23], [26]-[28] of T" as the metric of
detection performance, which will allow us to obtain an optimal
value for a that does not depend on CSI as M — oo.

A. Energy Efficiency

The deflection coefficient for a given test statistic 7' is defined
as [23]

(E{T[H:} — E{T[Ho})”
Var{T|7-[0}

D(T) = (46)

The deflection metric in (46) can be viewed as the normal-
ized distance between the distributions of 7" under Hg or Hq,
and is generally regarded as an accurate metric for character-
izing detection performance [26]. Note that a modified deflec-
tion is proposed in [28], which replaces Var{T|H,} in (46)
with Var{T|H;}. As mentioned below, both deflection statis-
tics yield very similar problem formulations that can be solved
via the same approach. As derived in the following theorem,
one of the key properties of the energy detector for our WSN
application is that the sensor transmit power can be reduced by
a factor of 1/+/M to maintain a constant deflection as M — co.
Theorem 3: Assuming Rayleigh fading channels, the deflec-
tion of the test statistic T = ﬁyHy almost surely remains con-
stant as M — oo provzded that the sensor transmit power sat-
isfies |a;|? =
Proof: See Appendlx C. ]

B. Sensor Gain Optimization

As with the NP detector, the proof of Theorem 3 shows that
as M — o0, only the magnitude |a;| of the sensor transmission
gains influences the deflection. In this section, we address the
problem of finding the |a;| that maximize the deflection under a
sum power constraint. The power allocation problem is formu-
lated as

I‘na‘%( D(T) (47)
st. ala=P.
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According to (C.5), we can rewrite (47) as

xTddTx
max 57 o (48)
o xTBx+ FpbTx+ 32
st. efx=P
ngi, iZl,...,N,
where
x =[lasl* - Jan )" (492)
1 117"
=|—= - — 49b
{d? d%} (490)
4 4
Ip1 Jv N
B =diag { — - S (49¢)
°{d? d }
2 2 17T
Ou1 Oy, N
b — . 2 49d
EEETL A
e=[1--- 1]T (49¢)

We note here that if the modified deflection of [28] is used in-
stead, then the resulting problem is identical to (48), except for
the definitions of B and b, which become

4 2 2 4 2 2
. Oy1+ 0,105 Ty N +o NOg
B’ =diag { ke dQO‘U NP d2a” (50a)
1 N
,_[otias  sAaiai]
b = [Tt % T (50b)
ds d%
1 N

Thus, the solution to (48) described below can be applied di-
rectly to the modified deflection as well.

Problem (48) is the maximization of the ratio of two quadratic
functions under quadratic constraints, which is referred to as
a QCRQ problem. In [29], a solution to the QCRQ problem
is found by converting it to a semidefinite program (SDP) via
rank relaxation, followed by an eigendecomposition to find
a rank-one result. However, in general, the optimality of the
rank-one solution to the original problem can not be guaranteed.
Consequently, here we take a different approach and find an
asymptotically optimal solution by maximizing an upper bound
for (48) that is tight when M — oc. In particular, we consider

xTddTx
max ————
Zi xTBx + 3
st. efx=P

ngi,i:L...,N.

(D

It is easy to verify that (51) provides an upper bound for (48)
and that the bound is asymptotically achieved when M — .
Since M — oo, we could eliminate the second term in the de-
nominator of (51) as well, but we will see in the simulations that
it is advantageous to keep it, especially in situations where P is
small. The simplification that arises when this term is dropped
will be discussed later, when asymptotic solutions for large P
are investigated. In the following, we will show that (51) can be
converted to a quadratically constrained linear program (QCLP)
[30] and solved via standard convex optimization methods.
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First, we rewrite (51) as
TddT
max reex (52a)
x xTBx
st. e’x=P (52b)

0<e;,i=1,...,N,
where B = B+ A/‘[T;ZQ ee”' . Since the objective function in (52a)
is unchanged by a simple scaling of x, we do not need to explic-
itly consider the constraint in (52b) in maximizing (52a), and the
optimal solution can be found via the following two steps:
1) Solve

xTddTx
max ———=—— (53)
x; xTBx
st. 0<ax;,1=1,...,N.

2) Denote the result of (53) as x*, then the optimal solution
to (52a) is given by )
eTx*

To solve problem (53), we first rewrite it in the equivalent
form

%" (54)

x" =

max x'ddTx
Xj

(55a)
x'Bx =1

0<az;,i=1,...,N.

s.1. (55b)

To convert (55a) to a QCLP, we make the following two ob-
servations: (1) since the elements of x and d are non-negative,
maximizing x7 dd” x is equivalent to maximizing x”'d, and (2)
we can relax the equality constraint in (55b) to an inequality
xTBx < 1, since we can always increase the objective func-
tion in (55a) by scaling x up to meet the constraint with equality.
Thus, solving (53) is equivalent to solving the QCLP

min  —x"d (56)
st. x'Bx <1
0<e;,i=1,...,N,

for which straightforward convex optimization methods exist.
The final result for the original problem in (51) is found by
scaling the optimal solution to (56) according to (54) to satisfy
the power constraint.

Our simulation results in Section V validate the use of the
deflection to optimize detection performance. In particular, we
will see that performance improves as the deflection is increased
and that with the a; chosen to maximize the deflection, detection
performance remains asymptotically constant as M — oo if the
power constraint P is scaled by 1/v/M.

C. Single-Antenna FC

For comparison purposes, we derive the deflection for the
case of a single-antenna FC. Based on the signal model in (28a)
and (28b), the single-antenna deflection is given by

(E{T3[H1} — E{T.|Ho})
Vbr{];”io}

([ o2ahhfa \’

- \a’FVFHa+,2) 7’

D(TS) =

(57)



3012

where T, = |y|? and y, a, h and F are as defined in (28b).
Unlike the deflection in (48) when M — o0, it is easy to
verify that D(Ts) in (57) decreases monotonically as the norm
of the transmission gain a decreases. If CSI is available at the
FC, then the optimal gains that maximize D(T) are given by
(34). A different approach is required in the single-antenna case
without CSI; for example, in the simulations later we assume
the sensor nodes transmit with equal power. We will also ob-
serve in the simulation results that when the sum transmission
power decreases, the probability of detection for the single-an-
tenna FC will decrease accordingly, while the performance of
the multi-antenna FC remains constant as long as the number
of antennas increases proportionally to the square of the power
decrease.

D. Asymptotic Closed-Form Solutions

While convergence to a globally optimal solution is guaran-
teed for the QCLP problem described above, we show here that
direct closed-form solutions can be found for low and high SNR
scenarios P > o2 and P < o2. When P >> o2, the size of
xTBx in the denominator of the objective function (48) will
dominate the terms involving M, which are already small for
large M. Thus, for P >> o2, another upper bound for (48) is

given by

xTdd"x x7ddTx
- - (58)
xTBx + 222bTx + %2 x'Bx

We can formulate the problem of maximizing this upper bound
as

xTddTx

_ 59
T2 XTBx (59)
st. eTx=P

OSZL'Z', iil,...,N,
which has a closed-form solution since B and d have non-neg-
ative elements:

. P

_ —1
X =apia®

(60)

and the corresponding a; are

(61)

Thus, for high SNR, after normalizing for distance, the sensors
with the lowest measurement noise are allocated higher power.
When P < o2, the terms involving x in the denominator

of (48) will decrease faster than 1/M, and thus the term %
will eventually dominate. This leads to the simpler optimization

problem

max x'ddTx

L4

(62)
st. elx="P

0<uzi,i=1,...,N.
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This is equivalent to maximizing the weighted sum x7d with
constraint e?x = P, and the optimal solution is to simply allo-
cate all of the power to the sensor that is closest to the FC:

la;| = {\/ﬁ i = arg min; d;

63
0 otherwise. (63)

Later in the simulation results, we will show that the solutions
in (61) and (63) provide good approximations to the optimal
solution of problem (56) for very large and very small values of
the available sum power P, respectively.

E. Detection Threshold Calculation

Once the transmission gains a; of the sensor nodes are opti-
mized, we need to find the threshold 4 to achieve the desired
PFA. In the following, we will show that asymptotically as M
— 00, the value of 4 can be calculated according to (45)
without requiring CSI. Under #,, the eigenvalues of C,, are
given by

- _ [ Mnptol 1<i<N
i A{ Gt = { o2 Ne<i<m, 9
i 20'2 ; . . .
where n; = [a: ‘d‘?‘ >%  Substituting (64) into (45), we have
N o2 2 U
lim T=Y = {m+-2]?(2)+-= 2(2) . (65
Jim T30 (0 B e Y ) (69)
= 1=N+1
According to the Strong Law of Large Numbers,
3 M
M- N
lim — 2(9) = 2
Jim 47;“)@( )= n (66)

and this equation holds almost surely. Then the right hand side
of (65) can be viewed as the sum of weighted chi-square vari-
ables plus a constant, and for a specific ¥, the PFA is calculated
as

Ppa —Pr (Mnm T> amo)

N .

1 o2 . M-N .

=Pr( ) S (m+2)xi@)>9- 2

r<i_12<n +M>Xl()>7 7 0n>
o2 N-1

N (r’i‘f‘ﬁ) -

&) Z o Mt

1 Hl;éi(ni —m) 7

where in (k) we used a result from [31], and we assume that
the values of #; are distinct. In the limit the PFA expression is
independent of the CSI, and the value of the threshold % that
achieves the desired PFA can be found numerically using (67).

+ M-N 3
(* M ‘Tn)

(67)

V. SIMULATION RESULTS

In the simulation examples that follow, we assume 2 =
1,02 = 0.3, = 2 and N = 10 sensor nodes. The distances
d; were uniformly distributed over [2,10], and the measure-
ment noise powers o2 ; were uniformly distributed in the in-
terval [0.25,0.5]. Once generated, d; and o2 ; were held fixed
for all simulations. Each point in the following plots is the result
of averaging over 10000 trials for each of 300 scenarios; each
trial involved a new random parameter #, as well as new noise
realizations and each scenario has a new channel. Plots showing
probability of detection were computed assuming a false alarm
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Fig. 1. Probability of detection for NP detector vs. the value of P, with antenna
number M = 50.
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Fig. 2. Mean-squared error vs. the value of P, with number of antennas M
= 50.

probability of e = 0.05. For the energy detector, both the de-
flection and modified deflection gave essentially the same per-
formance, so only the results for the deflection are included.

Figs. 1 and 2 show the NP detection and LMMSE estimation
performance for a single-antenna FC and a multi-antenna FC
with M = 50 as the available power P ranges from 0.1 to 400.
As predicted, as P grows, the performance benefit of having
multiple antennas at the FC is eventually lost, with both curves
in Fig. 1 approaching the upper bound in (38) and both curves
in Fig. 2 approaching the lower bound in (43). However, in both
cases the bound is reached with a much smaller value of P in the
multi-antenna case. Note also that for the multi-antenna FC, use
of the optimal sensor transmit gains can achieve significantly
better performance than equal power allocation when the sum
transmit power is low.

Figs. 3 and 4 respectively present the detection and estimation
performance of single- and multi-antenna FCs for increasing

3013

-©-Multi-antenna FC, NP detector (26)
09h~ + - Multi-antenna FC, energy detector (QCLP) i
- H-Single-antenna FC, NP detector (34)
0sl” % - Single-antenna FC, energy detector, equal power allocation i
0--0--0--60----0----0-------- On=im=amears 0]
0.7k -
g b ~
5 . Lower bound in (36)
o 0.6 Ny 3 4
)4 o -
8 \+-\‘Z*‘“+----+---
5o5- ° ¥y B ana e o L *
£ S Vag
% - B Heen Upper bound in (37)
a B _ T =N
0.3 T Tt _ 8
R~ e
0.2F B
0 1,‘ T
Ar il SR S — |
x pesEESiEts Hemmmmm o 3
ol L

40 60 80 100 120 140 160 180 200 220 240
Number of Antennas M (for each M, P is set as Eq. (B.1))

Fig. 3. Probability of detection vs. number of antennas M .

M, with the sum power decreasing as O(1/M) according to
the formula P = va:l % The energy efficiency of the
multi-antenna NP detector ivsﬂevident, as the MSE and Pp are
unchanged as M increases and P decreases; however, the per-
formance of the multi-antenna ED detector degrades with M as
the sum power is decreasing at a rate faster than 1/ VM. The
lower bound in (36) and the upper bound in (41) provide tight
estimates of the multi-antenna NP probability of detection and
LMMSE estimation error, respectively. The value of choosing
the optimal sensor gains is evident in comparing the two detec-
tion curves for the single-antenna FC, which show a large gap
in performance between that achieved with the optimal gains
and simply assigning equal gains to all sensors. The latter ap-
proach provides a PP}, that is barely greater than P}, ,, while the
optimal sensor gains have much better performance, although
P}, is decreasing due to the reduction in power. The single-an-
tenna upper bound in (37) grows tight as M increases, and is
decreasing towards the lower bound ¢, albeit very slowly.

Fig. 5 illustrates the detection performance of the ED ap-
proach with P varying from 0.1 to 400. The optimal QCLP ap-
proach is plotted along with the low and high SNR approxima-
tions in (61) and (63), the ED implemented with equal power al-
location to all sensors, and the single-antenna FC. The low SNR
approximation matches the QCLP approach for P < 1, while
the high SNR solution is optimal for P > 20; in between these
values, the QCLP algorithm provides significantly better per-
formance, although the equal power allocation is close for some
values of P. Unlike the NP detector, the single- and multiple-an-
tenna ED solutions do not converge to the same performance
for large P; we see in this example that there is a large perfor-
mance benefit in having a multi-antenna FC, even for large P.
In Fig. 6, we compare NP and energy detection performance as
a function of A assuming that P = 15/+/M. Consistent with
our analytical predictions, the ED with sensor gains chosen via
the QCLP to maximize deflection has constant Pp, while the
multi-antenna NP detector slowly improves and the single-an-
tenna FC solutions degrade as M increases.
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VI. CONCLUSION

We have studied the detection and estimation performance
of a sensor network communicating over a coherent multiple
access channel with a fusion center possessing a large number
of antennas. We studied Neyman-Pearson and energy detec-
tion, derived optimal sensor transmission gains for each case,
and showed that the optimal gains are phase-independent as the
number of antennas grows large. Similar to properties of mas-
sive MIMO wireless communications, one can trade antennas
at the fusion center for energy efficiency at the sensors. For
the case of Neyman-Pearson detection and LMMSE estimation,
which require channel state information, constant levels of per-
formance can be achieved if the transmit power at the sensors
is reduced proportional to the gain in the number of antennas.
For energy detection, which does not require channel state in-
formation, a constant deflection coefficient can be maintained if
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power is reduced proportional to the inverse square root of the
number of antennas. While bounds derived for Neyman-Pearson
detection and LMMSE estimation show performance gains for
a multiple-antenna fusion center in low sensor transmit power
scenarios, the benefit is shown to disappear when the transmit
power is high. However, for the energy detector, having mul-
tiple antennas at the fusion center provides a significant advan-
tage even when the sensors have high power.

APPENDIX A
PROOF OF LEMMA 1

Substituting p(y|#1) and p(y|Ho) from (5a) and (5b) into
(4) and calculating the logarithm of (4), we have

yH(Cot — (Co+ Cu) Ny >In(v(1+039()) , (A1)

where g(a) = af H¥ C'Ha, and in the above derivation we
have used the following equality

In(y) + Indet(C; + C,,) — Indet(C,,)
=In(y) + Indet(C,C," + Ix)

(é) ln(’y) + ln (1 -+ /\maX(CSC;l))

=In (v(1+ogg(a))) , (A2)
where (a) is due to the fact that C,C,;! is a rank-one matrix
and Apax () is the largest eigenvalue of its matrix argument.
Using the matrix inversion lemma, the left hand side of (A.1) is
calculated as

%

=—9 _C 'Haa’H”C ',
1+0'§g(a) w w

(A3)

Cz;l - (Cs + Cw)—l

and substituting (A.3) into (A.1) will produce the desired result.
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APPENDIX B
PROOF OF THEOREM 2

Beginning with the low transmit power case, assume the fol-
lowing suboptimal choice for the transmission gains: |a;| =

nzd
= L, Whlch results in
P= § @i = - ondf _ O(1/M) (B.1)
‘ QMZ < o7, ’ '

and hence P — 0 as M — oco. Substituting |a;| into (21), we
have

—

N
Z ol (B.2)

i=1 vl

wl»—t

where & = [a;---an]?. The value for g(a) can serve as a

lower bound for g(a) when evaluated at the optimal solution a*

obtained using (26) and using P in (B.1) as the power constraint:
1en 1

g(@") > 3 3 Z E .

=1

(B.3)

Substituting (B.3) into (15), we have the lower bound for the
multi-antenna FC:

A

Pp>e i T

m|<z> 8]

>e. (B.4)

For the single-antenna FC, according to (35) we have the fol-
lowing upper bound since G%I N =R

2 2
P
Te <Z0" pHp (B.5)
O’w Un

Using (B.5) and (B.1) together with (32a) and (32b), it is easy
to show that

Pj, < eTiT, (B.6)

where ( = 537 M Zl 1 ‘;"2 Lhih. According to the Rayleigh

channel model, h¥ h is the sum of weighted chi-squared random
variables, and for an arbitrary positive number 7 we have

o

d;
ZN max; —2—

4M min; d"‘ X2

A}im Pr((>7)< lim Pr

M—oo

)>’7’

=0, B.7
where x%,, denotes a chi-squared variable with 2N degrees
of freedom. Thus, ¢ converges to 0 in probability and hence P3,
converges to € in probability.

From (21), it is clear that for very large M, g(a) is upper
bounded by

—_

N
<y @9
i=1 UU7’

Note that the lower bound in (B.3) is one third the upper bound
in (B.8). When P — oo and hence |a;| is large, the upper
bound in (B.8) can be asymptotically achieved even with an
equal power allocation |a;| = +/P/N. Also, we see that to
maximize the upper bound for g(a) in this case, all the sensors
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should transmit. Plugging (B.8) into (15), we have the following
upper bound for Pp:

1
N

S

+09 -
— v,

Pp<e i (B.9)

For the single-antenna FC, according to (35), we have the fol-
lowing bound as P — oo since (FVFH)’1 >R

a?
5 <o Z (B.10)
Tw i=1 11 i
Using (B.10) together with (32a) and (32b) yields
—
Loy > o
Py <e =1 (B.11)

Note that for both (B.9) and (B.11), the inequality is asymptot-
ically achieved as P — oo, which completes the proof.

APPENDIX C
PROOF OF THEOREM 3
Using the definition in (46),
(He1 — pre)?

2
Ue,O

N . 2\2
as(z )
=————=1 , (C.1)
% (BETagh)

o2,
where the parameters fi. 1, fie,o and 0370 are defined and calcu-
lated below. For g 1,

, 1
A}linoc[E{My Y'H }
- Jim_ 3B 5 (Cur C)

1
lim —tr(C, + C;)

M—oc

1
= Jim —-tr (c;H"Haa"” + HYHDVD") 4 o2

M—oc

lim D (T)=

M—x

He,1 =

09 + aﬂ i ‘allz

(J)Z Yo

where ¥ has distribution CN (0,1I,s) and in (5) we used (20).
Similarly, we have

. 1 g
Jim £ { vy )
N 2 ,.
=) 2 4a2, (C.3)

(C2)

)U’E,O

M—oc

1
2,= lim Varq —y*
7: 0 im Var | —yy Ho

= lim MVar{y C.y}

Moo
Q) 1 2
= a4 (G
N 2 2 2\ 2
. oy ilai o (M-N) 4
= fm 2 (T * M) BT
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where in (h) we used the following lemma proved in
Appendix D:
Lemma 2: Given a complex Gaussian random vector
z € CMXY with distribution CN(0,1), and a Hermitian
matrix A € CM*M the variable 2" Az has a variance
Var{z Az} = tr(A?).
Introducing new variables x; = |a;
N 2
i=1
2o 2\ Mo 4
( = +W) + T On
4,T347T
gsxtdd*x
= T L 202 1 P (C5)
x'Bx+ 5pb'x+ 37

where the variables x, d, B, b are defined in (49a)—(49d). Sub-

12, (C.1) is equivalent to

Jim D) =

2

1

i

stituting 2; = j{? into (C.5), we obtain
4 TddT
lim D(T) = lim %eP T2 P
M—ox M- pTBp + \/_]\i{pr + 0-;11
angddTp

=4 = C.6

p"Bp + o}, (€0
where p = [Py --- Py], and we see that D(T') is asymptoti-
cally independent of M. We also observe from (C.5) that an
asymptotically non-zero deflection requires that |a;|* not de-

1
I faster than —~—.
crease faster tha NiTi

APPENDIX D
PROOF OF LEMMA 2

We first rewrite z7 Az as

M
2" Az =" @x?(?) , (D.1)
i=1

where \;(A) are the eigenvalues of A and x?(2) are indepen-
dent chi-squared variables with 2 degrees of freedom, which can
be expressed as

Xi(2) =zl + 25, (D.2)

where the independent variables z; ; and z; » have normal dis-
tribution A/(0, 1). Since z7 Az can be viewed as the sum of M
independent variables, the variance of z7 Az is calculated as

M
A2(A)
HAz) =) 20 (2
Var{z" Az} ; 1 Var{x;(2)}
M

= Z # (Var{zzl} + Var{zzQ})

M
EDIPHEY
i=1

®)

= tr(A?%), (D.3)

where (u) follows from
Var{z2,} = E{z,} — (E{3,})" = 2,

and (t) is due to the fact that \?(A) are the eigenvalues of the
matrix A2

(D.4)

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 63, NO. 12, JUNE 15, 2015

REFERENCES

[1] R. Viswanathan and P. K. Varshney, “Distributed detection with mul-
tiple sensors: Part [—Fundamentals,” Proc. IEEE, vol. 85, no. 1, pp.
54-63, Jan. 1997.

[2] R. Niu, B. Chen, and P. K. Varshney, “Fusion of decisions transmitted
over Rayleigh fading channels in wireless sensor networks,” I[EEE
Trans. Signal Process., vol. 54, no. 3, pp. 1018-1027, Mar. 2006.

[3] J.-FE. Chamberland and V. V. Veeravalli, “Decentralized detection
in sensor network,” IEEE Trans. Signal Process., vol. 51, no. 2, pp.
407416, Feb. 2003.

[4] J.-F. Chamberland and V. V. Veeravalli, “Asymptotic results for de-
centralized detection in power constrained wireless sensor networks,”
IEEE J. Sel. Areas Commun., vol. 22, no. 6, pp. 1007-1015, Aug.
2004.

[5] S. Cui, J.-J. Xiao, A. J. Goldsmith, Z.-Q. Luo, and H. V. Poor, “Es-
timation diversity and energy efficiency in distributed sensing,” JEEE
Trans. Signal Process., vol. 55, no. 9, pp. 4683-4695, Sep. 2007.

[6] W. Li and H. Dai, “Distributed detection in wireless sensor networks
using a multiple access channel,” IEEE Trans. Signal Process., vol. 55,
no. 3, pp. 822-833, Mar. 2007.

[7] M. Gastpar, “Uncoded transmission is exactly optimal for a simple
Gaussian “sensor” network,” IEEE Trans. Inf. Theory, vol. 54, no. 11,
pp. 5247-5251, Nov. 2008.

[8] Z. Quan, W.-K. Ma, S. Cui, and A. H. Sayed, “Optimal linear fusion
for distributed detection via semidefinite programming,” IEEE Trans.
Signal Process., vol. 58, no. 4, pp. 2431-2436, Apr. 2010.

[9] A. S. Leong, S. Dey, G. N. Nair, and P. Sharma, “Asymptotics and
power allocation for state estimation over fading channels,” IEEE
Trans. Aerosp. Electron. Syst., vol. 47, no. 1, pp. 611-633, Jan. 2011.

[10] F. Jiang, J. Chen, and A. L. Swindlehurst, “Optimal power allocation
for parameter tracking in a distributed amplify-and-forward sensor net-
work,” IEEE Trans. Signal Process., vol. 62, no. 9, pp. 22002211,
May 2014.

[11] Z. Zhang, E. K. P. Chong, A. Pezeshki, W. Moran, and S. D. Howard,
“Detection performance in balanced binary relay trees with node
and link failures,” IEEE Trans. Signal Process., vol. 61, no. 9, pp.
2165-2177, May 2013.

[12] T.L.Marzetta, “Noncooperative cellular wireless with unlimited num-
bers of base station antennas,” I[EEE Trans. Wireless Commun., vol. 9,
no. 11, pp. 3590-3600, Nov. 2010.

[13] H.Q.Ngo, E. G. Larsson, and T. L. Marzetta, “Energy and spectral effi-
ciency of very large multiuser MIMO systems,” I[EEE Trans. Commun.
vol. 61, no. 4, pp. 1436-1449, Apr. 2013.

[14] J.Hoydis, S. ten Brink, and M. Debbah, “Massive MIMO in the UL/DL
of cellular networks: How many antennas do we need?,” IEEE J. Sel.
Areas Commun., vol. 31, no. 2, pp. 160—-171, Feb. 2013.

[15] L.Lu, G.Y.Li, A. L. Swindlehurst, A. Ashikhmin, and R. Zhang, “An
overview of massive MIMO: Benefits and challenges,” IEEE J. Sel.
Topics Signal Process., vol. 8, no. 5, pp. 742-758, Oct. 2014.

[16] 1. Nevat, G. W. Peters, and I. B. Collings, “Distributed detection in
sensor networks over fading channels with multiple antennas at the fu-
sion centre,” IEEE Trans. Signal Process., vol. 62, no. 3, pp. 671-683,
Feb. 2014.

[17] A.D. Smith, M. K. Banavar, C. Tepedelenlioglu, and A. Spanias, “Dis-
tributed estimation over fading MACs with multiple antennas at the
fusion center,” in Proc. Asilomar Conf. Signals, Syst., Comput., Nov.
2009, pp. 424-428.

[18] M. K. Banavar, A. D. Smith, C. Tepedelenlioglu, and A. Spanias,
“On the effectiveness of multiple antennas in distributed detection
over fading MACs,” IEEE Trans. Signal Process., vol. 11, no. 5, pp.
1744-1752, May 2012.

[19] D. Ciuonzo, G. Romano, and P. Salvo Rossi, “Channel-aware decision
fusion in distributed MIMO wireless sensor networks: Decode-and-
fuse vs. decode-then-fuse,” IEEE Trans. Wireless Commun., vol. 11,
no. 8, pp. 29762984, Aug. 2012.

[20] F. Jiang, J. Chen, and A. L. Swindlehurst, “Estimation in phase-shift
and forward wireless sensor networks,” /EEE Trans. Signal Process.,
vol. 61, no. 15, pp. 3840-3851, Aug. 2013.

[21] D. Ciuonzo, P. Salvo Rossi, and S. Dey, “Massive MIMO channel-
aware decision fusion,” /EEE Trans. Signal Process., vol. 63, no. 3,
pp. 604-619, Feb. 2015.

[22] F.Jiang, J. Chen, and A. L. Swindlehurst, “Detection in analog sensor
networks with a large scale antenna fusion center,” in Proc. IEEE SAM,
Jun. 2014, pp. 245-248.



JIANG et al.: MASSIVE MIMO FOR WIRELESS SENSING WITH A COHERENT MULTIPLE ACCESS CHANNEL

[23] S. M. Kay, Fundamentals of Statistical Signal Processing: Detection
Theory. Englewood Cliffs, NJ, USA: Prentice-Hall, 1993.

[24] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge,
U.K.: Cambridge Univ. Press, 2004.

[25] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation
Theory. Englewood Cliffs, NJ, USA: Prentice-Hall, 1993.

[26] B. Picinbono, “On deflection as a performance criterion in detection,”
IEEFE Trans. Aerosp. Electron. Syst., vol. 31, no. 3, pp. 1072—1081, Jul.
1995.

[27] J. Unnikrishnan and V. V. Veeravalli, “Cooperative sensing for primary
detection in cognitive radio,” IEEE J. Sel. Topics Signal Process., vol.
2, no. 1, pp. 18-27, Feb. 2008.

[28] Z.Quan, S. Cui, and A. H. Sayed, “Optimal linear cooperation for spec-
trum sensing in cognitive radio networks,” IEEE J. Sel. Topics Signal
Process., vol. 2, no. 1, pp. 2840, Feb. 2008.

[29] A. Beck and M. Teboulle, “On minimizing quadratically constrained
ratio of two quadratic functions,” J. Convex Anal., vol. 17, no. 3—4, pp.
789-804, 2010.

[30] L. Martein and S. Schaible, “On solving a linear program with one
quadratic constraint,” Rivista di Matematica per le Scienze Eco-
nomiche e Sociali, vol. 10, no. 1-2, pp. 75-90, 1987.

[31] T. Y. Al-Naffouri and B. Hassibi, “On the distribution of indefinite
quadratic forms in Gaussian random variables,” in Proc. IEEE ISIT,
Jun. 2009, pp. 1744-1748.

Feng Jiang (S’10) received the B.S. degree in
Communication Engineering and M.S. degree in
Communication and Information System from Bei-
jing University of Posts and Telecommunications,
Beijing, China, in 2004 and 2008 respectively. He
is currently working toward the Ph.D. degree in
electrical engineering at University of California at
Irvine, Irvine, CA. His recent research focuses on
statistical signal processing in massive MIMO based
wireless sensor network. From Oct. 2012 to Mar.
2015, he worked as a student intern at Broadcom
Corporation in the Broadband, WPAN, and WLAN groups respectively, where
his work contributed to baseband algorithm design for Bluetooth chip and the
standardization of 802.11ax (uplink MU MIMO-OFDM). He is co-author of
a paper which received the Student Paper Award at Asilomar Conference on
Signals, Systems and Computers 2012.

Jie Chen (S°08) received the B.S. and M.S. degrees
in Communication Engineering from Shanghai
Jiao Tong University, Shanghai, China, in 1999
and 2002, respectively, and is currently pursuing
the Ph.D. degree in Electrical Engineering at the
University of California, Irvine. From 2002 to 2008,
he was an engineer at Huawei Technologies Co.,
Ltd. in China, where he was involved in the research
and development of algorithms for WCDMA and
LTE wireless communication systems. His research
interests include wireless communications, statistical
signal processing, multi-terminal source coding theory, and information theory.
He received the Best Student Paper Award of the 46th Asilomar Conference on
Signals, Systems and Computers.

3017

A. Lee Swindlehurst (S’83—M’84-SM’89-F’04) re-
ceived the B.S., summa cum laude, and M.S. degrees
in Electrical Engineering from Brigham Young Uni-
versity, Provo, Utah, in 1985 and 1986, respectively,
and the Ph.D. degree in Electrical Engineering from
Stanford University in 1991. From 1986-1990, he
was employed at ESL, Inc., of Sunnyvale, CA, where
he was involved in the design of algorithms and archi-
tectures for several radar and sonar signal processing
systems. He was on the faculty of the Department
of Electrical and Computer Engineering at Brigham
Young University from 1990-2007, where he was a Full Professor and served
as Department Chair from 2003-2006. During 1996—-1997, he held a joint ap-
pointment as a visiting scholar at both Uppsala University, Uppsala, Sweden,
and at the Royal Institute of Technology, Stockholm, Sweden. From 200607,
he was on leave working as Vice President of Research for ArrayComm LLC in
San Jose, California. He is currently the Associate Dean for Research and Grad-
uate Studies in the Henry Samueli School of Engineering and a Professor of the
Electrical Engineering and Computer Science Department at the University of
California Irvine. His research interests include sensor array signal processing
for radar and wireless communications, detection and estimation theory, and
system identification, and he has over 240 publications in these areas.

Dr. Swindlehurst is a past Secretary of the IEEE Signal Processing Society,
past Editor-in-Chief of the IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL
PROCESSING, and past member of the Editorial Boards for the EURASIP Journal
on Wireless Communications and Networking, IEEE Signal Processing Maga-
zine, and the IEEE TRANSACTIONS ON SIGNAL PROCESSING. He is a recipient
of several paper awards: the 2000 IEEE W. R. G. Baker Prize Paper Award, the
2006 and 2010 IEEE Signal Processing Society’s Best Paper Awards, the 2006
IEEE Communications Society Stephen O. Rice Prize in the Field of Commu-
nication Theory, and is co-author of a paper that received the IEEE Signal Pro-
cessing Society Young Author Best Paper Award in 2001.

José A. Lépez-Salcedo (S’98-M’03) received the
M.Sc. and Ph.D. degrees in telecommunication en-
gineering from Universitat Politécnica de Catalunya
(UPC), Barcelona, Spain, in 2001 and 2007, re-
spectively. From 2002-2006, he was a Research
; ) Assistant at UPC, where he was involved in 10+
. research projects on synchronization techniques
e for digital receivers, satellite communications and
b iterative decoding algorithms for MIMO wireless
‘ N systems. In 2006 he joined the Department of
o Telecommunications and Systems Engineering at
Universitat Autonoma de Barcelona (UAB), where he is currently an Associate
Professor. At UAB, he has been the principal investigator of 10+ research
projects, some of them funded by the European Space Agency (ESA) on robust
and adaptive signal processing techniques for GPS and Galileo receivers.
Since May 2011, he has been the coordinator of the telecommunications
engineering degree at UAB. His research interests include statistical signal
processing, detection and estimation theory, synchronization techniques for
digital receivers and applications to wireless communications and navigation.
In the summer of 2011, Dr. Lopez-Salcedo was a visiting scholar at the Coor-
dinated Science Laboratory (CSL), University of Illinois at Urbana-Champaign.
In the period 2010-2013, he also had several visiting appointments at the Uni-
versity of California at Irvine, in the framework of the California-Catalonia En-
gineering Innovation Program funded by the Balsells fellowship. In the second
semester of 2014 he was on leave at the European Commission, DG Joint Re-
search Center (JRC) as a Scientific Support Officer.



