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Abstract—This paper deals with the problem of sequentially de-
tecting statistical changes. In particular, the focus is on transient
change detection, in which a probability minimizing optimal crite-
rion is desirable. This is in contrast with the traditional minimiza-
tion of the detection delay, proposed in quickest change detection
problems. A finite moving average stopping time is proposed for the
general transient change detection problem. The statistical perfor-
mance of this stopping time is investigated and compared to other
methods available in the literature. The proposed stopping time
and theoretical findings are applied to quality monitoring, includ-
ing reliability monitoring in industrial processes and signal quality
monitoring in global navigation satellite systems. Numerical sim-
ulations are presented to assess the goodness of the presented the-
oretical results, and the performance of the considered stopping
times. This will show the superiority of the proposed scheme.

Index Terms—Transient change detection, stopping time, finite
moving average, GNSS, signal quality monitoring.

I. INTRODUCTION

THE problem of detecting sudden statistical changes has
many important applications, including fault detection,

on-line monitoring of safety-critical infrastructures, detection
of signals in radar and sonar signal processing, and segmenta-
tion of signals. An overview of these applications can be found
in [1]. This kind of detection lies on the field of statistical change
detection, including quickest change detection (QCD) and tran-
sient change detection (TCD). The traditional QCD problem
deals with a change of infinite duration, whereas TCD deals
with finite change duration.

The optimality criterion in QCD is to minimize the detec-
tion delay subject to a level of false alarms. Comprehensive
overviews of this type of detection can be found in [1] and [2].
In the present work, we focus on non-Bayesian approaches in
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D. Egea-Roca, J. A. López-Salcedo, and G. Seco-Granados are with
the Department of Telecommunications and Systems Engineering, IEEC-
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which the change time is modeled as being unknown but non-
random. For these approaches, the CUSUM algorithm was first
proposed as a continuous inspection scheme in the 1950s [3],
but it was not until 1971 that its optimality for the QCD prob-
lem was established asymptotically (i.e. when false alarms go
to zero) [4]. More than a decade later, Moustakides [5] proved
that the CUSUM is also non-asymptotically optimal.

In contrast, in TCD problems a bounded detection delay is
desired. Unfortunately, the traditional QCD criterion does not
completely fit into this problem. In this case, we wish to mini-
mize the probability of missed detection (unbounded delay) sub-
ject to a level of false alarms. This criterion was first adopted
in [6] for the Bayesian approach, but without controlling the
false alarm rate. In 2013, the authors of [7] considered a semi-
Bayesian approach imposing a suitable constraint on the false
alarm rate. But, it was not until 2014, that the first optimal re-
sults for the non-Bayesian case were provided by Moustakides
[8]. Nevertheless, all of these works have considered the very
particular case of a bounded delay of a single sample, which has
limited practical application. Actually, the field of TCD is still
under development.

There has been substantial recent interest in safety-critical ap-
plications such as navigation monitoring [9], water distribution
monitoring [10] or cyber attacks on networked control systems
[11]. In these applications it is desirable to detect abnormal sit-
uations with an established maximum tolerable delay md , so
that detections declared after this maximum tolerable delay are
actually considered as missed. In these applications, the above
mentioned TCD criterion is appropriate. This is also the case in
quality monitoring, including reliability monitoring in industrial
processes [12] and signal quality monitoring (SQM) in global
navigation satellite systems (GNSSs) [13]. The latter is of par-
ticular interest due to the recent interest in GNSS-based critical
applications [14]. These applications are often associated with
terrestrial environments, where local effects such as multipath,
interference and spoofing abound. This effects can jeopardize
the safety and trust of the end-user position and time, thus mak-
ing it of paramount importance to promptly detect any possible
anomaly or misleading behavior that could be endangering the
received GNSS signal. It is here where SQM can be very helpful
to improve the reliability of the system.

A. Related Literature

As mentioned previously, the related literature on QCD is
extensive and applied to a wide range of fields [15]–[17]. In
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contrast, the related literature for the fundamentals of TCD is
scarce (listed above). This dearth of theory is in contrast with
the recent interest on TCD problems in areas as diverse as navi-
gation and drinking water quality monitoring, or radar and sonar
image processing, to mention a few. Several approaches for deal-
ing with the TCD problem in these applications have been pro-
posed. Standard solutions are based on the CUSUM algorithm
[18]–[20]. Unfortunately, almost all available results are appli-
cable to off-line detection on finite observation intervals, and
they adopt the traditional criterion of QCD. Exceptions, adopt-
ing the probability minimization criterion above mentioned, are
[9] and [10]. On the GNSS side, the application of QCD is
limited. Based on this observation, we already addressed the
problem of detecting local degrading effects in a QCD frame-
work (see [21]–[26]). However, for SQM purposes, a bounded
delay is desirable and then we should rely on the framework
of TCD.

SQM is linked with the concept of GNSS integrity, which is
intended to provide timely warnings to the user when GNSS
should not be used due to miss-performance of the system.
This concept has its origins on civil aviation, and it has been
addressed by means of augmentation systems [27] and receiver
autonomous integrity monitoring (RAIM) techniques [28]–[30].
These approaches are feasible in civil aviation, where local ef-
fects have a controlled influence on the GNSS signal, but it
is not the case in terrestrial environments, where a plethora
of disturbing effects may be present, so that the signal quality
is strongly affected. For this reason, a large number of con-
tributions addressing SQM have appeared in the last decade,
adopting either a block-wise detection framework [31]–[33], or
the use of external information like maps, sensors, or cameras
[13], [34]. Unfortunately, these contributions do not consider the
timely detection of local threats. To this end, the TCD frame-
work may be useful, and it is why we consider its application
to SQM as an example of an application of our theoretical
findings.

B. Contributions

As noted above, the TCD field is still under development.
Indeed, for the non-Bayesian case, the only optimal result was
provided a few years ago in [8] for the case of a maximum
tolerable delay of one sample (i.e. md = 1), but the problem is
still open for finite delays greater than one sample. In this line,
the recent paper [10], proposing a windowed-limited CUSUM
(WLC) solution (i.e. using a number of samples equal to the
maximum tolerable delay md), is of interest. The reason is that it
was shown that a finite moving average (FMA) [1], [3] stopping
time is the solution of the Gaussian mean change when the WLC
is optimized. The optimality criterion was to find the threshold
of the WLC that provides, for a Gaussian mean change, the
minimum bound on the probability of missed detection with a
constraint on the false alarms. Since the FMA is the optimal
solution for the Gaussian mean change, we propose its use for
the general TCD problem, although its optimality with respect
to the above criterion is no longer guaranteed.

The contribution of this work is twofold. Firstly, we the-
oretically investigate the statistical performance of the FMA
stopping time, based on the TCD framework, in the general
case. This leads to the provision of novel bounds valid for any
kind of change and not restricted to the Gaussian mean change.
These bounds are more tight than those available in the literature
for other approaches, convenient to be used in practice. These
bounds were briefly introduced in [35]. In this work, however,
we provide a more extensive and complete proof. Secondly, and
importantly in terms of comparison, we show with numerical
results that the FMA stopping time outperforms other methods
proposed in the literature.

For the sake of exemplification, most of the numerical results
are carried out in the setting of SQM in GNSS. This was also
briefly introduced in [35] for the carrier-to-noise ratio (C/N0)
metric. Here, we provide a more extensive analysis including
a brief description of integrity algorithms and its connection to
TCD. Moreover, the three multipath detection techniques pre-
sented in [26], including all possible changes in a Gaussian
distribution (i.e. mean or/and variance changes), are analyzed.
It is worth clarifying that the application of the presented theo-
retical results to GNSS is without loss of generalization, that is,
they are valid to the general theory and they are not restricted to
GNSS neither to Gaussian distributions. To support this claim,
we also consider the example of detecting a change in the rate
parameter of an exponential distribution.

The rest of the paper is organized as follows: Section II
provides background on statistical change detection, including
both QCD and TCD, and introducing the proposed FMA
stopping time. Next, Section III investigates the statistical
properties of the FMA stopping time. Then, Section IV
investigates the application of the obtained theoretical results
to different study cases. Further, Section V introduces concepts
about SQM and integrity in GNSS and its connection to TCD.
Finally, Section VI deals with our numerical results, while
Section VII concludes the paper.

II. BACKGROUND ON STATISTICAL CHANGE DETECTION

A change detection algorithm, including QCD and TCD,
is completely defined by its stopping time T at which the
change is declared. In general, a change detection algorithm
can be modeled as follows: Let {xn}n≥1 be a random sequence
observed sequentially, and let v be the instant (in samples)
when the change in distribution appears. We consider a fam-
ily {Pv |v ∈ [1, 2, . . . ,∞]} of probability measures, such that,
under Pv , x1 , . . . , xv−1 and xv+m , . . . , x∞, with m the change
duration, are independent and identically distributed (iid) with
a fixed marginal probability density function (pdf) f0 , corre-
sponding to the normal conditions (i.e. H0). On the other hand,
xv , . . . , xv+m−1 are iid with another marginal pdf f1 �= f0 , cor-
responding to the abnormal conditions (i.e. the change is present,
H1). Next, we briefly recall the problem of QCD. Secondly, we
introduce the problem of TCD. Finally, the idea of windowed
solutions and the FMA stopping time proposed in this paper are
presented.
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A. Quickest Change Detection (QCD): CUSUM
Stopping Time

The statistical model for QCD is described as follows:

xn ∼
{H0 : f0(xn ) if n < v
H1 : f1(xn ) if n ≥ v

, (1)

where in this case m = ∞. Denoting Ev as the expectation
under the probability measure Pv , the effectiveness of QCD has
been traditionally quantified by the minimization of [4]

d(T ) .= sup
v≥1

essup Ev

[
(T − v + 1)+ |x1 , . . . , xv−1

]
(2)

among all stopping times T satisfying E∞(T ) ≥ γ, where
(x)+ .= max(0, x), essup denotes the essential supremum, and
γ > 0 a finite constant. That is, we seek a stopping time T
that minimizes the delay d(T ) within a lower-bound constraint
on the mean time between false alarms E∞(T ). The following
solution was proposed for the QCD in [3]:

TC(h) .= inf
{

n ≥ 1 : max
1≤k≤n

Sn
k ≥ h

}
;Sn

k
.=

n∑
i=k

LLR(i),

(3)
where LLR(i) .= ln(f1(xi)/f0(xi)) is the log-likelihood ratio
(LLR) of the observation xi and h is the detection threshold.

The above solution is known as the CUSUM stopping time,
and its first optimal results, in the sense of the criterion in (2),
were shown in [4] and [5], in an asymptotic (i.e. γ → ∞) and
non-asymptotic (i.e. for all finite γ) way, respectively. How-
ever, as shown in [36], the requirement of having large values
of E∞(T ) does not guarantee small values of the probability
of false alarm P∞(l ≤ T < l + mα ) within a fixed interval of
length mα , for all l ≥ 1. As a result, [36] proposed to replace the
traditional constraint E∞(T ) ≥ γ by the following constraint
on the worst-case probability of false alarm within any inter-
val of length mα , which is more convenient for safety-critical
applications:

Pfa (T,mα ) .= sup
l≥1

P∞ (l ≤ T < l + mα ) ≤ α̃, (4)

with α̃ ∈ (0, 1) a given constant value. It was shown in [36]
that the CUSUM stopping time TC asymptotically minimizes
(as Pfa → 0) the detection delay, over all stopping times T
satisfying (4), if h fulfills the following equation:

Pfa (TC ,mα ) ≤ α̃ = mαe−h . (5)

B. Transient Change Detection (TCD): Shewhart
Stopping Time

Unlike QCD, in which the change duration m is assumed to
be infinite, the change duration in TCD problems is assumed to
be finite. This is modeled as

xn ∼
{H0 : f0(xn ) if n < v or n ≥ v + m
H1 : f1(xn ) if v ≤ n < v + m

. (6)

As discussed in [10], there are two types of TCD problems. The
first type involves the detection of suddenly arriving signals of
random unknown duration. In this case m denotes the unknown
duration of the change. The second type involves safety-critical

applications where a maximum tolerable detection delay is a
priori fixed to a pre-established value md , and then m is con-
sidered to be known. This article belongs to this second class
of TCD problems; in this case a detection with a delay greater
than md is considered as missed, even if m > md . On the other
hand, if the duration of the change m is smaller than md , then
such a change is considered less dangerous because its impact
on the system is limited or negligible. It is for this reason that
the duration m is considered to be known henceforth and equal
to md (i.e. m = md ).

We observe from (2), though, that no hard limit is imposed on
the detection delay; consequently, this quantity can become ar-
bitrarily large. In this sense, the optimality criteria for the TCD
problem should be modified, with respect to the one used in
QCD, in order to seek a small probability of missed detection
given an acceptable false alarm rate. In other words, we wish
to have v ≤ T < v + m. Stopping within the prescribed inter-
val constitutes a desirable event while stopping at T ≥ v + m
is considered a missed detection. This criterion involves the
following minimization:

inf
T ∈Cα

{
Pmd(T,m) .= sup

v≥1
Pv (T ≥ v + m|T ≥ v)

}
(7)

among all stopping times T ∈ Cα satisfying

Cα = {T : Pfa(T,mα ) ≤ α̃} , (8)

where Pmd and Pfa stand for the worst-case probabilities of
missed detection and false alarm within any interval of length
mα , respectively, with Pfa defined as in (4). Very recently, the
optimal solution of this class of TCD problem, for m = 1, was
shown to be the Shewhart test [8]

TS(h) .= inf {n ≥ 1 : LLR(n) ≥ h} . (9)

Indeed, this is the only available optimal result for the criterion
in (7)–(8). Nevertheless, for the case of finite m > 1 no optimal
solution is available, so that the problem is still open.

C. Windowed Solutions: WLC and FMA Stopping Times

Since there is no optimal solution available in the literature
of TCD for a finite m > 1, we propose a windowed solution
based on the following idea: We know that the optimal solution
for QCD, that is for m = ∞, is the CUSUM test [5], which
uses information about all the past samples. On the other hand,
the Shewhart test, which uses information of one sample, is
established to be optimal for the non-Bayesian TCD problem
with m = 1 [8]. Hence, it is intuitive to think that the optimal
solution for 1 < m < ∞ would be some test statistic between
these two techniques, and particularly, a test statistic using in-
formation about m samples (i.e. windowed). In this context, a
WLC solution is proposed in [10] by using at each moment the
m last observations only, given by

TWLC (h) .= inf
{

n ≥ m : max
n−m+1≤k≤n

Sn
k ≥ h

}
. (10)

It is assumed that the WLC is not operational during the first
m − 1 observations.
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It is also shown that after certain optimization process the
WLC, for a Gaussian mean change, leads to

T ∗
WLC

(
h̃
)

= inf

{
n ≥ m :

n∑
i=n−m+1

xi ≥ h̃

}
, (11)

where h̃ denotes the chosen threshold after the optimization.
It is important to note that the previous stopping time is equiv-

alent to an FMA test (i.e. comparison of a moving average of m
LLRs to a threshold) for the case of a Gaussian mean change.
Inspired by this result and the idea of windowed solution, in
this paper we propose the use of an FMA stopping time for any
general TCD problem, which becomes

TF (h) .= inf {n ≥ m : Sn ≥ h} ;Sn
.= Sn

n−m+1 . (12)

Furthermore, the use of the FMA stopping time is motivated
by the fact, as we will see, that we can obtain tight bounds
for both the probabilities of missed detection and false alarm.
On the contrary, the bounds available in the literature for these
probabilities for the CUSUM and WLC are not that tight.

III. STATISTICAL PERFORMANCE OF THE FMA STOPPING TIME

The goal of this section is to theoretically investigate the
statistical performance of the FMA stopping time TF(h); that
is, to determine the worst-case probability of missed detection
Pmd (TF(h),m) and the worst-case probability of false alarm
for a given duration mα , Pfa (TF(h),mα ). The exact calculation
of these probabilities is very complicated, and this is why the
existence of tight-enough bounds is of practical interest. These
bounds are stated in the next theorem.

Theorem 1: Let us consider the FMA stopping time TF(h) in
(12) with Sm

.=
∑m

i=1 LLR(i); then the worst-case probability
of false alarm for a given duration mα is bounded as

Pfa (TF(h),mα ) ≤ α (h,mα ) , (13)

where

α (h,mα ) = 1 − [P∞ (Sm < h)]mα . (14)

On the other hand, the worst-case probability of missed detection
is bounded as

Pmd (TF(h),m) ≤ β(h,m), (15)

where

β(h,m) = P1 (Sm < h) . (16)

Proof: The proof is given in Appendix A. �
In practice, values α̃ for Pfa are imposed, so that we have

to guarantee that Pfa ≤ α̃. Thus, the threshold h has to be se-
lected in order to satisfy this constraint, and then Pmd turns
out to be a function of the fixed α̃ (i.e. Pmd (TF(h(α̃)),m)). In
some sense, Pmd (TF(h(α̃)),m) plays the same role in the TCD
theory as the Cramér-Rao lower bound in estimation theory, or
as the receiver operating characteristic (ROC) in classical de-
tection. Moreover, this kind of ROC allow us to compare the
performance of different algorithms in terms of the optimality
criterion in (7). This relation between Pmd and Pfa is given in
the following corollary.

Corollary 1: Let Fi , with i = {0, 1}, be the cumulative dis-
tribution function (cdf) of Sm under Hi and let h be selected so
that

Pfa(TF(h),mα ) ≤ α̃, (17)

with α̃ a desirable constant value for the probability of false
alarm. A possible threshold h satisfying (17) is given by

h (α̃) = F−1
0

[
(1 − α̃)1/mα

]
, (18)

where F−1
0 is the inverse of F0 , and thus

β (h (α̃) ,m) = F1

[
F−1

0

[
(1 − α̃)1/mα

]]
. (19)

Moreover,

Pmd

(
TF

(
h̃
)

,m
)
≤ β (h (α̃) ,m) , (20)

with h̃ the threshold for which the exact Pfa fulfills
Pfa(TF(h̃),mα ) = α̃.

Proof: It is worth noting that Pj (Sm < h) = Fi(h), with
j = {1,∞} and i = {1, 0}, is the cdf of Sm under Hi , respec-
tively, evaluated at h. This is because Pj (Sm < h) denotes the
probability that the random variable Sm is below the thresh-
old h when the change in distribution appears at time j = 1 or
j = ∞, that is, at the first sample or never, respectively. This
means that we are evaluating the probability that the sum of m
LLR samples under H1 and H0 , respectively, is below h, which
actually is the definition of Fi(h), with i = {1, 0}, respectively.
Hence, solving the equation α(h,mα ) = α̃ for h from (14), a
possible threshold can be selected as

h(α̃) = F−1
0

[
(1 − α̃)1/mα

]
, (21)

which leads to Pfa (TF(h),mα ) ≤ α̃ thanks to (13), and (18) thus
follows. The proof of (19) follows immediately by the definition
of the cdf F1 and by substituting (21) into (16). In order to
prove (20) it is important to see that the threshold h̃, such that
Pfa(TF(h̃),mα ) = α̃, is lower than h(α̃) (i.e. h̃ < h(α̃)) and
that

Pmd

(
TF

(
h̃
)
,m

)
≤ β

(
h̃,m

)
≤ β (h,m) , (22)

where the last inequality follows because β(h,m) in (16) is a
monotonically increasing function on h, so that (20) follows,
completing the proof of the corollary. �

The previous results are valid for the general FMA stop-
ping time. That is, they are not restricted to the Gaussian mean
change, as in [10], but they are valid for any kind of change.
Moreover, as we will see later, these bounds are tighter than
bounds for other available methods in the literature. Unfortu-
nately, we cannot establish the optimality of the proposed FMA
stopping time in the class Cα . To do so we should analyze the
speed of convergence of the term F−1

0 [(1 − α̃)1/mα ], which is
beyond the scope of this paper. Nonetheless, in [10] the optimal-
ity of the FMA stopping time is shown for the particular case of
a Gaussian mean change. In addition, we will show later how
the proposed FMA stopping time outperforms other available
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methods in the literature. This makes it evident that the FMA
stopping time is a good candidate for TCD problems.

IV. STUDY CASES

The goal of this section is to theoretically evaluate the per-
formance of the FMA stopping time for several problems of
practical interest. In particular, we show the statistical charac-
terization of the LLR for these problems, so that the correspond-
ing results given by Corollary 1 can be obtained. To do so, we
will denote the parameters that govern the distribution under H1
by λ. Since these parameters may be unknown in practice, we
will first formulate the LLR for a particular change parameter
denoted by λ̃, which will be given by the minimum change pa-
rameter we want to detect. Then, the statistical characterization
of the obtained LLR will be evaluated taking into account the
true distribution with parameters given by λ. This is done with
the aim of obtaining the actual performance of the detectors.

In the following, we will start with the problem of detecting
the change in the rate parameter of an exponential distribution.
Next, we will continue with the case of a change in a Gaussian
distribution. We will consider first the simpler cases of having a
change in either the mean or variance of a Gaussian distribution.
Finally, we present the most general case of having changes in
both the mean and variance of a Gaussian distribution. Indeed,
these cases represent a wide-range of practical TCD problems
in which the Gaussian distribution appears. Nevertheless, it is
worth clarifying that the theoretical results in Section III are not
restricted to Gaussian distributions, but they are valid for the
general TCD theory. This will be confirmed with the evaluation
of the exponential distribution problem.

A. Exponential Rate Parameter Change

In this section, we evaluate the statistical characterization
of the LLR for the problem of detecting a change in the rate
parameter of an exponential distribution. This problem is of
particular interest in reliability theory, in which it is often desired
to react to increasing (or decreasing) failure rates. This is the case
when we wish to detect the onset of deterioration of reliability in
the course of production in industrial processes. Times between
failures are usually assumed to have an exponential distribution
or, more generally, a Weibull distribution [4]. Let us consider
the following exponential-based statistical model:

xn ∼
{H0 : λ0e

−λ0 xn if n < v or n ≥ v + m
H1 : λ1e

−λ1 xn if v ≤ n < v + m
, (23)

with xn the observation samples (e.g. magnitude of the process
to be monitored), λ0 the known rate parameter underH0 , and λ1
the unknown rate parameter under H1 (i.e. after deterioration).
With this model, we have the following result.

Corollary 2: Let λ̃1 = λ0 + θ be the minimum change pa-
rameter we want to detect, with θ > 0. Therefore, the LLR for
the model in (23) is

LLRe(n) = ln

(
λ̃1

λ0

)
− θ · xn . (24)

Now, let TF ,e(h) be the FMA stopping time in (12) with LLR
in (24) and threshold h so that Pfa(TF ,e(h),mα ) ≤ α̃. Further-
more, let Γ(x; a, b) denote the cdf of the gamma distribution
with shape and scale parameters given by a and b, respectively;
and let λ1 be the actual change parameter. Hence

h (α̃) = B − θ · Γ−1 (A;m,λ−1
0
)
, (25)

Pmd(TF ,e(h),m) ≤ 1 − Γ
(

B − h

θ
;m,λ−1

1

)
, (26)

Pfa(TF ,e(h),mα ) ≤ 1 −
[
1 − Γ

(
B − h

θ
;m,λ−1

0

)]mα

,

(27)

with A = 1 − (1 − α̃)1/mα and B = m · ln(λ̃1/λ0).
Proof: The expression for the LLR in (24) follows after sim-

ple calculus from (23) and the definition of the LLR. With this
LLR we have

Sm
.=

m∑
n=1

LLRe(n) = B − θ ·
m∑

n=1

xn = B − θ · Y, (28)

with Y a gamma random variable with shape parameter m
and scale parameter equal to λ−1

0 and λ−1
1 under H0 and H1 ,

respectively. Hence, taking into account that for θ > 0

Pi (Sm < h) = Pi

(
Y >

B − h

θ

)
, (29)

with i = {∞, 1}, (25)–(27) thus follows by virtue of Theorem 1
and Corollary 1. Similar results follow for θ < 0. �

B. Gaussian Mean Change

In this section, we analyze the statistical characterization of
the LLR for the problem of a change in the mean of a Gaussian
distribution. This problem appears in applications such as radar
or communication systems [37], in which under H0 the received
signal follows a Gaussian distribution with certain mean that
changes under H1 . First, let us introduce the statistical model
for this problem given by

xn ∼
{H0 : f(xn ;μ0 , σ

2)
H1 : f(xn ;μ1 , σ

2) , (30)

where f(x;μ, σ2) .= (1/
√

2πσ2) exp(−(x − μ)2/2σ2) de-
notes the Gaussian pdf with mean μ and variance σ2, xn stands
for the sequential observations used for detection (e.g. received
signal samples), μ0 and σ2 the known mean and variance of xn

under H0 , and μ1 the unknown change parameter, denoting the
mean of xn under H1 . For the sake of notation simplicity, we
omit here and henceforth the time conditions in each hypothe-
sis (i.e. if n < v or n > v + m, ...) corresponding to the TCD
model. With the above statistical model, the following result for
the Gaussian mean change problem is obtained.

Corollary 3: Let μ̃1 and μ1 be the minimum change param-
eter we want to detect and the actual change parameter, respec-
tively, and let μ0 and σ be known. Therefore, the LLR for the
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Gaussian mean change problem in (30) is given by

LLRm(n) = yn =
μ̃1 − μ0

σ2

(
xn − μ̃1 + μ0

2

)
, (31)

with mean and variance equal to

μy,0 = − (μ̃1 − μ0)
2

2σ2 , σ2
y = −2μy,0 ,

μy,1 =
μ̃1 − μ0

σ2

(
μ1 − μ̃1 + μ0

2

)
.

(32)

Now, let TF ,m(h) be the FMA stopping time in (12) with LLR
in (31) and threshold h so that Pfa(TF ,m(h),mα ) ≤ α̃, and let
Φ(x) denote the cdf of the standard Gaussian distribution. Hence

h (α̃) =
√

m · σ2
y · Φ−1

[
(1 − α̃)1/mα

]
+ m · μy,0 , (33)

Pmd(TF ,m (h,m) ≤ Φ

⎛
⎝h − m · μy,1√

m · σ2
y

⎞
⎠ , (34)

Pfa(TF ,m (h) ,mα ) ≤ 1 −
⎡
⎣Φ

⎛
⎝h − m · μy,0√

m · σ2
y

⎞
⎠
⎤
⎦

mα

. (35)

Proof: From the definition of the Gaussian pdf and the statis-
tical model for the Gaussian mean change in (30), (31) follows
after simple calculus. Thereby, it is trivial to see, from (31) and
(30), that the LLR for the Gaussian mean change problem is
Gaussian distributed in both hypotheses, with mean and vari-
ance as in (32). Hence, S

(m)
m =

∑m
i=1 LLRm(i) is Gaussian as

well, but with mean and variance scaled by a factor m, and
(33)–(35) thus follows by direct application of Theorem 1 and
Corollary 1. �

C. Gaussian Variance Change

Now, we analyze the characterization of the LLR for the
problem of a change in the variance of a Gaussian distribution.
This problem is relevant for applications like spectrum sensing
in cognitive radio [17]. In these cases the sequential observations
follow a Gaussian distribution with a given variance under H0 ,
whereas under H1 the variance changes. Moreover, in the above
applications, the Gaussian distribution under both H0 and H1
has zero mean, so that the statistical model for the variance
Gaussian change is given by

xn ∼
{H0 : f(xn ; 0, σ2

0 )
H1 : f(xn ; 0, σ2

1 ) , (36)

with xn the sequential observations used for detection (e.g.
received signal power), σ2

0 the known variance under H0 , and
σ2

1 the unknown variance under H1 . Thereby, we obtain the
following result for the above Gaussian variance change.

Corollary 4: Let σ̃2
1 be the minimum change parameter we

want to detect, and let σ0 be known. Therefore, the LLR for the
Gaussian variance change in (36) is given by

LLRv(n) = a · x2
n + c, (37)

with

a =
σ̃2

1 − σ2
0

2σ2
0 · σ̃2

1
and c = ln

(
σ0

σ̃1

)
. (38)

Now, let TF ,v(h) be the FMA stopping time for the Gaus-
sian variance change with LLR in (37) and threshold h so that
Pfa(TF ,v(h),mα ) ≤ α̃; and let σ2

1 be the actual change param-
eter. Furthermore, let Υm (x) denote the cdf of the Chi-squared
distribution with m degrees of freedom, and ki = σ2

i · a, with
i = {0, 1}. Hence,

h (α̃) = k0 · Υ−1
m

[
(1 − α̃)1/mα

]
+ m · c, (39)

Pmd (TF ,v(h),m) ≤ Υm

(
h − m · c

k1

)
, (40)

Pfa (TF ,v(h),mα ) ≤ 1 −
[
Υm

(
h − m · c

k0

)]mα

. (41)

Proof: From the definition of the Gaussian pdf and the sta-
tistical model for the Gaussian variance change in (36), (37) fol-
lows. Thereby, underH1 , and denoting S

(v)
m

.=
∑m

i=1 LLRv(i),
we have

S(v)
m |H1 = a

m∑
n=1

σ2
1

(
xn

σ1

)2

+ m · c

= k1

m∑
n=1

X2
n + m · c,

(42)

with Xn ∼ f(Xn ; 0, 1) a standard Gaussian random variable.
A similar result is obtained under H0 , and then we can write
S

(v)
m |Hi = kiX̃ + m · c, with i = {0, 1} and X̃ a Chi-squared

random variable with m degrees of freedom. Hence,

Hi :
S

(v)
m − m · c

ki
∼ χ2

m , (43)

where χ2
m stands for the Chi-squared pdf with m degrees of

freedom, and (39)–(41) thus follow by direct application of
Theorem 1 and Corollary 1. �

D. General Gaussian Change

Previously, we have analyzed the characterization of the LLR
for the particular cases of having a change in either the mean
or variance of a Gaussian distribution. In this section, we ana-
lyze the characterization of the LLR for the most general case
of having a change in both mean and variance of a Gaussian
distribution. This problem appears in diverse applications such
as neuron receptive fields modeling [38] or financial problems
dealing with portfolio losses of CDO pricing [39], just to men-
tion a few. The statistical model for the Gaussian mean and
variance change is given by

xn ∼
{H0 : f(xn ;μ0 , σ

2
0 )

H1 : f(xn ;μ1 , σ
2
1 )

, (44)

with xn the sequential observations used for detection (e.g.
neuron movement), {μ0 , σ

2
0} the known mean and variance of

xn under H0 , respectively, and {μ1 , σ
2
1} the unknown change
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parameters, denoting the mean and variance of xn under H1 ,
respectively. Thereby, from the definition of the Gaussian pdf
and LLR, after some manipulations, we can write

LLRg(n) = a · x2
n + b · xn + c, (45)

with

a =
σ̃2

1 − σ2
0

2σ2
0 · σ̃2

1
; b =

σ2
0 · μ̃1 − σ̃2

1 · μ0

σ2
0 · σ̃2

1
;

c = ln
(

σ0

σ̃1

)
+

σ̃2
1 · μ2

0 − σ2
0 · μ̃2

1

2σ2
0 · σ̃2

1
,

(46)

where μ̃1 and σ̃1 are the minimum change parameters we want
to detect.

In this case we cannot find the distribution of LLRg(n) in
an straightforward way as for the previous cases. Here, in order
to find the pdf of S

(g)
m

.=
∑m

i=1 LLRg(i), we make use of the
so-called Edgeworth series expansion [40] and extreme value
theory (EVT) [41], which provide a very tight closed-form ex-
pression for the bounds of the FMA stopping time for the gen-
eral Gaussian change [42]. For the sake of notation clarity, let us
write S

(g)
m as the random variable Z (i.e. Z = S

(g)
m ). Thereby,

we can state the following result.
Corollary 5: Let TF ,g(h) be the FMA stopping time for the

Gaussian mean and variance change with LLR in (45) and
threshold h so that Pfa(TF ,g(h),mα ) ≤ α̃, and let φ(x) be the
standard Gaussian pdf. Hence, we have

h (α̃) = δ − ln (− ln (1 − α̃))
γ

, (47)

Pmd (TF ,g (h) ,m) ≤ F1 (h) , (48)

Pfa (TF ,g (h) ,mα ) ≤ 1 − exp
(
−e−γ (h−δ)

)
, (49)

with

δ = F−1
0

(
1 − 1

mα

)
,

γ = mα · f0 (δ) ,

(50)

and

Fi(z) = Φ(z̃i) − σzs ,i · φ(z̃i)
∑
k∈A

Ck,Hi
· Hk−1(z̃i),

fs,0(z) = φ(z̃0)

[
1 +

∑
k∈A

Ck,H0 · Hk (z̃0)

]
,

(51)

where A = {3, 4, 6}, Ck,Hi
, with i = {0, 1}, are the coeffi-

cients Ck (expressions can be found in Appendix B) under Hi ,
Hk (z) is the Hermite polynomial of degree k evaluated at z and
z̃i = (z − μzs ,i)/σzs ,i , with

μzs ,i = m
[
a
(
σ2

i + μ2
i

)
+ b · μi + c

]
,

σ2
zs ,i

= m
[
σ2

i

[
2a

(
a · σ2

i + 2a · μ2
i + b · μi + b2)]] ,

(52)

where {μi, σ
2
i }, with i = {0, 1}, are the actual mean and vari-

ance under hypothesis Hi , and {a, b, c} defined as in (46).

V. APPLICATION TO SIGNAL QUALITY MONITORING

This section shows the application of TCD to SQM in GNSS
and its link to GNSS integrity. This is done for the sake of exem-
plification; the previously presented theoretical results for TCD
are not restricted to GNSS, but they could be used in any TCD
problem. It is important to clarify that the application of SQM
is beneficial for GNSS integrity, but its use in current integrity
algorithms is not direct by the presented TCD framework. The
application of TCD here is devoted to providing a novel mathe-
matical framework for SQM, so that it can be used for integrity
monitoring.

A. SQM: TCD Framework

The quality of the received GNSS signal can be jeopardized,
particularly in terrestrial environments, by local effects such
as multipath, interference and spoofing, so that traditional in-
tegrity algorithms cannot be applied. It is for this reason that
the use of SQM may play a prominent role for the design of
future integrity algorithms in terrestrial environments. The key
point is that SQM can compute metrics to monitor the quality
of the signal from features of the received signal, measurable
within the GNSS receiver, without need of external information.
In the following, we show the application of TCD to SQM, so
that a bounded detection is possible. We will focus on detect-
ing three different effects threatening the quality of the signal:
(i) a change in the mean of the C/N0 metric [26], [43], (ii) in the
variance of the so-called code discriminator output (DLLout)
metric [24], [26], and (iii) in the mean and/or variance of the
slope asymmetry metric (SAM) [23], [26].

The first step to apply TCD is to statistically characterize the
above mentioned metrics, so that the LLR can be computed.
The distribution of the considered metrics can be fairly mod-
eled as Gaussian according to the Central Limit Theorem. The
metrics are computed by averaging many correlation values ob-
tained in a GNSS receiver, and experimental results using real
GNSS signals corroborated the validity of the approximation
[26]. Thereby, we model the SQM problem as a change on the
parameters of a Gaussian distribution, that is

xn ∼
{
H0 : f(xn ;μ0 , σ

2
0 )

H1 : f(xn ;μ1 , σ
2
1 )

, (53)

where xn contains the series of values of metrics obtained from
the underlying signal (e.g. C/N0 , DLLout and SAM). It is worth
clarifying that this model can be regarded as a simplification of
real multipath effects, and it is used here for the sake of exem-
plification. Nevertheless, for operational SQM algorithms more
sophisticated multipath models are needed. With the statisti-
cal model at hand, the next step is to calculate the LLR of the
proposed metrics. The resulting LLR is one of those obtained
in the previous section for the Gaussian changes, namely (31),
(37) and (45) for the C/N0 , DLLout and SAM metrics, respec-
tively. Thus, Corollaries 3, 4 and 5 can be used for the statistical
evaluation of the detectors.
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B. Link to GNSS Integrity

An integrity failure is defined as a positioning error that ex-
ceeds a certain threshold, called the alert limit (AL), during
a maximum tolerable time collectively known as time to alert
(TTA). The cornerstone of integrity algorithms is the so-called
integrity risk, defined as the probability that a failure is present
without warning the user within the TTA [30]. Now, let ttta be
the TTA in samples and let {Pfa(zn , tmα

),Prisk(zn , ttta)} be
the probability of false alarm within an interval of tmα

samples
and integrity risk resulting from the test zn ≥ h, respectively.
Integrity requirements of certain applications are given in the
form of TTA, and fixed values of integrity risk and probability
of false alarm given by {α̃, β̃} [44]. To fulfill these require-
ments, integrity algorithms compare the test statistic zn with a
threshold h in order to decide whether a failure is present or not.
The threshold h is selected so that Pfa(zn , tmα

) ≤ α̃. When the
rest of the requirements are fulfilled we say that the integrity
algorithm is available.

This availability is evaluated by means of the so-called protec-
tion level (PL) [27], [30], which is the value that upper bounds
the true error with probability β̃. Therefore, at each epoch, if
PL≤AL the integrity algorithm is declared available, otherwise
the algorithm is declared unavailable because it cannot guaran-
tee that Prisk(zn , ttta) ≤ β̃. The PL is computed based on the
definition of integrity risk, given by

Prisk(zn , ttta)
.= Pr {zn < h, n > v + ttta |H1} , (54)

where v denotes the unknown time in which a failure appears.
Current integrity algorithms rely on RAIM and augmentation
systems and a substantial literature is available for further details
[27]–[30]. Along this line, it is important to note that when using
the test Sn ≥ h instead of zn ≥ h, tmα

= mα , and ttta = m,
the probability measure in (54) could be written as the Pmd in
TCD problems (see (7)). Hence, the integrity problem is closely
connected to TCD. Notwithstanding, further work is needed
to fully connect the proposed SQM framework and current in-
tegrity algorithms. The presented application of TCD is mainly
intended to give a mathematical framework aimed at minimizing
the integrity risk for SQM.

VI. NUMERICAL RESULTS

The aim of this section is to first compare the proposed FMA
stopping time with other approaches in the literature of TCD.
This is done, without loss of generality of the presented theo-
retical results, in the setting of SQM by considering the C/N0 ,
DLLout and SAM metrics. In order to justify the generality of
the results, we will also consider the problem of a change in
the rate parameter of an exponential distribution. Secondly, the
availability of the SQM algorithm is analyzed.

A. Evaluation of the Probability Minimization Criterion

Here, we compare the FMA stopping time with those stop-
ping times currently available in the literature of TCD. This
comparison is done with both simulated and available the-
oretical results. The simulated results include Monte-Carlo

Fig. 1. Simulated ROC of the FMA stopping time and its competitors (mark-
ers) for the case of a change in the rate parameter of an exponential distribution.
Comparison with the theoretical results (lines) given in (25)–(26) and those
obtained with (5) for the bound of the probability of false alarms.

Fig. 2. Simulated ROC of the FMA stopping time and its competitors (mark-
ers) for the case of SQM with the C/N0 metric. Comparison with the theoretical
results (lines) given in (33)–(34) and those obtained with (5) for the bound of
the probability of false alarms.

simulations (106 runs) of the exact worst-case probability of
missed detection Pmd(TF(h),m) as a function of the exact
worst-case probability of false alarm Pfa(TF(h),mα ), hence-
forth referred to as the ROC. Regarding the theoretical results,
on the one hand they include those obtained in Section IV for the
FMA stopping time of the different considered study cases in
this work, stated in Corollaries 2–5. On the other hand, they also
include the bounds available in the literature for the CUSUM
and WLC. For the probability of missed detection of these two
methods we have an upper bound in the form of (16) (see [9]
and [10] for the WLC and CUSUM, respectively). For the false
alarm probability, we use the upper bound given by (4)–(5),
which holds for both the CUSUM and WLC.

For the representation of the theoretical results shown in
Figs. 1–4, the procedure is as follows: (i) For the FMA bound
(dashed line), the detection threshold is fixed as given in the
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Fig. 3. Simulated ROC of the FMA stopping time and its competitors (mark-
ers) for the case of SQM with the DLLout metric. Comparison with the theoret-
ical results (lines) given in (39)–(40) and those obtained with (5) for the bound
of the probability of false alarms.

Fig. 4. Simulated ROC of the FMA stopping time and its competitors (mark-
ers) for the case of SQM with the SAM. Comparison with the theoretical results
(line) given in (47)–(48) and those obtained with (5) for the bound of the prob-
ability of false alarms.

corollaries for the corresponding study case (i.e. (25), (33),
(39) and (47)) using the Pfa value indicated on the x-axis; and
(ii) then the obtained threshold is substituted into the formula
for the bound β(h,m) in the corollary pertaining to the cor-
responding study case (i.e. (26), (34), (40), (48)), giving the
value depicted in the y-axis. Similarly, for the CUSUM and
WLC bounds (solid line), the same formulas for β(h,m) are
used, but the detection threshold is computed with (5). For
instance, for the case of detecting a change in the rate pa-
rameter of an exponential distribution, results in Corollary 2
apply and hence (25) is used to obtain the threshold h(Pfa),
which is further applied to (26) leading to the value depicted
on the y-axis. This procedure is indicated in the figure’s leg-
end (see Fig. 1) as (25)→ h(Pfa) →(26) for the FMA bound,
and as (5)→ h(Pfa) →(26) for the WLC and CUSUM bound.
For the sake of comparison, we assume that the actual change

TABLE I
SIMULATION PARAMETERS FOR THE CONSIDERED PROBLEMS

parameters have been used to formulate the LLR (i.e. λ̃ = λ).
This is done by considering the parameters shown in Table I.

Similar results are given in Figs. 2–4 for the case of SQM in
GNSS when using the C/N0 , DLLout and SAM metrics. In this
case, the parameters shown in Table I were considered in [23]
and [26]. Results in Corollaries 3, 4 and 5 apply, respectively,
so that {(33), (39), (47)} and {(34), (40), (48)} are used to ob-
tain the threshold and probability of missed detection bound,
respectively. It can be concluded from the obtained results that
the FMA stopping time outperforms (for all the study cases), in
the sense of the optimality criterion in (7)–(8), all the other stop-
ping times considered. Moreover, we see in Figs. 1–4 how the
improvement of the FMA bounds with respect to those available
in the literature for other stopping times is quite significant, pro-
viding between half- to two-orders-of-magnitude improvement.
This is important not only for a theoretical study but also to
set the threshold in practice and provide a level of performance
that is close to the desired one. Finally, we also see that the
Shewhart stopping time is not giving the best results for any of
the considered problems, thus losing its optimality properties
for m > 1.

At this point, it is worth noting that the curves correspond-
ing to the WLC are those for the WLC without optimization
(i.e. given by (10)).We do so for two reasons. First of all, if
the WLC is optimized, then the expression of the FMA test is
exactly obtained, and there is nothing to add or to compare since
both of them coincide. This would be the case for the Gaussian
mean change, for the other cases no expression is available.
Second, the optimization done in [10] contains some ad hoc el-
ements (this is why we have denoted it as optimization) because
it includes the possibility that the threshold is a function of the
window size, which is equivalent to biasing the LLRs with a
window-size-dependent constant. We have considered the con-
ventional WLC formulation with a window-size-independent to
enrich the comparisons.

B. Numerical Example: SQM Availability

This section is intended to show the behavior of the considered
stopping times in terms of availability of SQM. As before, the
simulation parameters for each metric are presented in Table I,
but here we will consider different values for the parameters
under H1 , stated below.

CASE 1: C/N0 metric
Let us start with the C/N0 metric assuming that we have a
tolerable error equivalent to a mean change in the C/N0 of 7 dB;
thus we fix the change parameter as μ̃1 = 103.7, but the actual
change parameter is μ1 = 103.4 . Therefore, for the case of using
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the FMA stopping time, fixing the detection threshold from
(33) to h = 2.92 so that Pfa(TF ,m(h),mα ) ≤ α̃ = 10−1 , and
substituting the previous values in (32) and (34), the integrity
risk is bounded as Pmd(TF ,m(h),m) ≤ β(h,m) = 6.97 · 10−4 .
For the CUSUM or WLC stopping time we fix the threshold
h̃ from (5), which for α̃ = 10−1 gives h̃ = 6.40, and thus from
(34) we get Pmd(TWLC(h̃),m) ≤ β(h̃,m) = 4.56 · 10−3 . Now,
suppose the maximum allowed integrity risk is β̃ = 10−2 ; then
since β(h) < β(h̃) < β̃ the SQM algorithm will be available
in the case of using any of the analyzed stopping times. On
the other hand, we suppose we need α̃ = 10−2 so from (33)
and (5) we get h = 3.59 for the FMA and h̃ = 8.70 for the
CUSUM and WLC, respectively. Thus, from (34) we have that
β(h) = 1.02 · 10−3 and β(h̃) = 1.33 · 10−2 . Hence, in this case,
SQM will be available only if the FMA stopping time is used.
Otherwise, it will not be available since β(h̃) > β̃, showing the
improvements of the FMA in terms of SQM availability.

CASE 2: DLLout metric
For the DLLout, we evaluate the effect of using the actual change
parameter on the availability of SQM when a threat is present
and we use the reference parameter σ̃2

1 . To do so, imagine that
a change is present with σ2

1 = 5.44 · 10−4 , but the maximum
tolerable error in the measured range within the GNSS receiver
for each satellite is equal to 14.65 m. For a GPS signal, 14.65 m
of error is equivalent to a variation of ±0.05 chips, which con-
verted to DLLout variance as in [26] gives a minimum de-
tectable change parameter of σ̃2

1 = 2.78 · 10−4 . Assuming we
want Pfa(T (h),mα ) ≤ α̃ = 10−2 , from (39), we have h = 3.14
for the FMA and, from (5), h̃ = 8.70 for the CUSUM and WLC.
Thereby, if we fix the actual parameter as σ2

1 = σ̃2
1 , we get

from (40) β(h,m) = 1.70 · 10−2 and β(h̃,m) = 4.25 · 10−2 ,
and then, since they are above β̃, SQM is not available. On
the other hand, if we would know the actual change param-
eter, from (40) we would have β(h,m) = 2.74 · 10−3 and
β(h̃,m) = 7.41 · 10−3 , which are below β̃ and thus SQM would
be available using either the FMA, CUSUM or WLC stopping
time. With this result we corroborate the improvements on the
availability by knowing the real change parameter in (40).

VII. CONCLUSIONS

This work has investigated the problem of TCD. Specifically,
we have proposed the use of an FMA stopping time, inspired
by the fact that the optimal WLC for the case of a Gaussian
mean change is the FMA stopping time. This optimality refers
to the choice of the threshold that minimizes the missed detec-
tion probability bound of the WLC, when treating a change in
the mean of a Gaussian distribution. The statistical performance
of the general FMA stopping time has been theoretically in-
vestigated and compared by numerical simulations to different
methods available in the literature. These experiments have con-
firmed that the proposed solution outperforms other solutions
available in the literature of TCD. It is for this reason that the
proposed solution contributes to the general theory of TCD by
providing the best solution currently available, in terms of both
optimal properties and the goodness of the proposed bounds.

Finally, it is worth mentioning that part of the numerical anal-
ysis has been done in the setting of GNSS SQM. Nevertheless,
this is done without loss of generality, as shown by the consid-
ered problem of a change in an exponential distribution. This is
because the presented theoretical results were obtained without
any assumption on a particular application or on the statistical
distribution, so that they are valid for the general theory of TCD.

APPENDIX A
PROOF OF THEOREM 1

The proof of Theorem 1 is divided in two parts. Firstly, we
prove the bound for the probability of false alarm given in
(13)–(14). Secondly, we show the proof of the bound for the
probability of missed detection given by (15)–(16).

A. Probability of False Alarm Pfa(TF(h),mα )

We first introduce an important result, stated in the following
lemma, that will be very useful to prove Theorem 1.

Lemma 1: Let Sn
.=
∑n

i=n−m+1 LLR(i), k ≥ m and
N > k be integers, then

P∞

(
k+N −1⋂

i=k

{Si < h}
)

≥ [P∞ (Sm < h)]N . (55)

Proof: Let yi = LLR(i), then from (12), for n ≥ m we can
write

Sn =
n∑

i=n−m+1

yi =
n∑

i=1

cn−iyi , (56)

with

ci =
{

1 if 0 ≤ i ≤ m − 1
0 if i ≥ m

, (57)

so that Sn is written as a monotonically increasing function of
{y1 , . . . , yn} (since ci ≥ 0). Therefore, since y1 , y2 , . . . are iid
under P∞, from Theorem 5.1 of [45], we have that

P∞

(
k+N −1⋂

i=k

{Si < h}
)

≥
k+N −1∏

i=k

P∞ (Si < h) , (58)

and the inequality (55) thus follows from the fact that the distri-
bution of Si , under P∞, is the same for any i ≥ m. �

Now, we aim to prove first another useful result to get
(13)–(14), that is

Pfa (TF(h),mα ) = P∞ (m ≤ TF(h) < m + mα ) . (59)

To do so, in a similar way as in [10], from (8) we can write

Pfa(TF(h),mα ) = sup
l≥m

l+mα −1∑
k= l

P∞(TF(h) = k). (60)

Now denoting Vl = P∞(l ≤ TF(h) < l + mα ) for l ≥ m and
Uk = P∞(TF(h) = k), we have that

Pfa(TF(h),mα ) = sup
l≥m

Vl = sup
l≥m

l+mα −1∑
k= l

Uk . (61)
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It is easy to verify, from the definition of TF(h) in (12), that

Um = P∞ (Sm ≥ h) (62)

and

Um+1 = P∞
(
{Sm < h}

⋂
{Sm+1 ≥ h}

)

≤ P∞ ({Sm+1 ≥ h}) (a)
= P∞ ({Sm ≥ h}) = Um ,

(63)

where (a) follows because Sn has the same distribution, under
P∞, for n ≥ m (i.e. the distribution of the sum of m LLRs under
H0). Similarly, for k > m, we have

Uk+1 = P∞

(
k⋂

n=m

{Sn < h}
⋂

{Sk+1 ≥ h}
)

≤ P∞

(
k⋂

n=m+1

{Sn < h}
⋂

{Sk+1 ≥ h}
)

= P∞

(
k−1⋂
n=m

{Sn < h}
⋂

{Sk ≥ h}
)

= Uk .

(64)

Thus, {Uk}k≥m is a non-increasing sequence, and then

Vl − Vl+1 =
l+mα −1∑

k= l

Uk −
l+mα∑
k= l+1

Uk = Ul − Ul+mα
≥ 0,

(65)
so that {Vl}l≥m is a non-increasing sequence as well. Hence,
from (61) and the definition of Vl ,

Pfa (TF(h),mα ) = sup
l≥m

Vl = P∞ (m ≤ TF(h) < m + mα ) ,

(66)
and thus (59) follows.

Now, we can proceed with the calculation of Pfa(TF(h),mα ).
However, the exact calculation from (66) is complicated to ob-
tain, and then an upper bound is proposed instead. From (66)
and since TF(h) ≥ m from the definition in (12), we can write

Pfa (TF(h),mα ) = 1 − P∞ (TF(h) ≥ m + mα ) , (67)

with

P∞ (TF(h) ≥ m + mα ) = P∞

(
m+mα −1⋂

n=m

{Sn < h}
)

. (68)

So, (13) and (14) follows by direct application of (55) to (68).

B. Probability of Missed Detection Pmd(TF(h),m)

Applying the Bayes rule in (7) we have

Pmd(TF(h),m) = sup
v>m

Pv (TF(h) ≥ v + m)
Pv (TF(h) ≥ v)

= sup
v>m

Pv

(
m+v−1⋂
n=m

{Sn < h}
)

Pv

(
v−1⋂
n=m

{Sn < h}
) ,

(69)

where the last equality follows from the definition of TF(h) in
(12). Due to the windowed behavior of TF(h) we have assumed

that v > m. As for Pfa(TF(h),mα ), the exact calculation of
Pmd(TF(h),m) from (69) is quite difficult, and then we propose
the derivation of an upper bound.

Now, denoting the event An = {Sn < h}, with n ≥ m, it is
clear that Av−1 and Am+v−1 are independent because they do
not share any samples, thus

Pv

(
m+v−1⋂
n=m

An

)
≤ Pv (Am+v−1) Pv

(
v−1⋂
n=m

An

)
, (70)

since in the left side we evaluate more events than in the right
side. So, applying this result to (69) we have that

Pmd (TF(h),m) ≤ sup
v>m

Pv (Sm+v−1 < h)

= P1 (Sm < h) ,
(71)

where the equality follows because Sm+v−1 is identically dis-
tributed under Pv , and (15)–(16) thus follow, completing the
proof of Theorem 1.

APPENDIX B
CALCULATION OF COEFFICIENTS Ck

A complete proof of the results in Corollary 5 can be found
in [42]. Here we only give the expression for Ck so that the
bounds in Corollary 5 can be calculated. The coefficients Ck,Hi

are obtained as

C3 =
ξzs ,3 − 3μzs ,i · ξzs ,2 + 2μ3

zs ,i

σ3
zs ,i

,

C4 =
ξzs ,4 − 4μzs ,iξzs ,3 + 6μ2

zs ,i
ξzs ,2 − 3μ4

zs ,i

σ4
zs ,i

− 3, (72)

C6 = 10C2
3 ,

with ξzs ,n the moments of Z, under Hi , given by

ξzs ,2 = μ2
zs ,i

+ σ2
zs ,i

,

ξzs ,3 = m
[
ξy ,3 + (m − 1)

(
Δ + (m − 2)μ3

zs ,i

)]
, (73)

ξzs ,4 = m [ξy ,4 + (m − 1) (Ω + (m − 2) (Γ + Λ))] ,

where {μzs ,i , σ
2
zs ,i

} are given by (52), Δ = 3μzs ,i · ξy ,2 , Ω =
4μzs ,i · ξy ,3 + 3ξ2

y ,2 , Γ = 6μ2
zs ,i

· ξy ,2 , Λ = (m − 3)μ4
zs ,i

, and

ξy ,n =
n∑

i=0

A(i), (74)

with

A(i) =
i∑

j=0

(
n

i

)(
i

j

)
an−i

s · bi−j
s · cj

s · ξxs ,2n−i−j , (75)

where
(
n
i

) .= (n!)/(i!(n − i)!) is the binomial coefficient,
ξxs ,k

.= Ei(xk
n ) is the moment of k-th order of xn under hy-

pothesis Hi and {as , bs , cs} are defined in (46).
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of quickest detection theory for signal integrity monitoring in single-
antenna GNSS receivers,” in Proc. Int. Conf. Localization GNSS, 2015,
pp. 1–6.

[24] D. Egea-Roca, G. Seco-Granados, and J. A. López-Salcedo, “Quickest
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