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Abstract—Local threats such as radio frequency interference, multipath and spoofing have attracted the
attention of many researchers in the past years thus leading to a myriad of contributions in the field of threat
detection. Nevertheless, the current state of the art relies on classical detection techniques, which are not well
suited for threat detection. In this paper, we take a leap forward by adopting the so-called quickest detection
framework. This approach fits perfectly in critical applications where the aim is to detect the presence of local
threats as soon as possible in order to improve the integrity of GNSS receivers.
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I. INTRODUCTION
With the widespread deployment of Global Navi-

gation Satellite Systems (GNSS) [1], one of the major
challenges to be solved is the provision of integrity to
users beyond the civil aviation community, where this
feature is already a well-established performance cri-
terion. Integrity refers to the ability of the user receiver
to guarantee the quality and trust of the received sig-
nal, in such a way that critical or commercial applica-
tions can be safely operated.

Position integrity is typically provided in civil avia-
tion by Receiver Autonomous Integrity Monitoring
(RAIM) algorithms and Satellite Based Augmentation
Systems (SBAS). However, such methods assume that
local effects like multipath, Non-Line-Of-Sight
(NLOS) propagation, radio frequency interference
and spoofing have a controlled influence on the signal
[2], which is not the case in terrestrial environments.
This is the reason why the analysis of signal integrity
greatly contributes to the capability to provide PVT
integrity, which is currently a concern within the
GNSS community.

In order to improve integrity in terrestrial environ-
ments we have to detect local effects as soon as possi-
ble with the aim of promptly alerting the user. So far,
contributions have been addressed adopting a classical
detection framework [3–5], which is not well suited to
fulfill the requirements of safety-critical applications.
Alternatives may be based on the use of bank of Kal-
man filters as used in the pioneering work [6] and in
[7] or in the recent work [8]. Nevertheless, these
methods have the drawback of a high computational
complexity and they assume Gaussianity in the mea-
surements. On the other hand, mitigation techniques

have attracted the attention of many researchers
during the past years [9–12], leaving the detection of
these threats in a secondary place, when indeed it is
even more important than mitigation, especially for
NLOS. The reason is that before using mitigation
techniques, we can benefit from knowing whether
these threats are present or not. For instance we can
discard the current measurements [13], thus not
requiring complicated mitigation techniques, or apply
mitigation as soon as possible.

For the prompt detection of integrity threats, it is
essential to formulate the problem under the frame-
work of statistical change detection, which is also often
known as quickest detection. This framework is aimed
at minimizing the detection delay, and then it is the
right way for proceeding in the problem under consid-
eration. The quickest detection framework has been
extensively studied in the past decades, being applied
to many fields [14–16]. One of the most popular tech-
niques is the CUSUM algorithm, which was first pro-
posed in 1954 by Page [17]. However, it was not until
1971 when Lorden [18] showed the optimality of the
CUSUM from an asymptotic point of view (i.e. when
the mean time between false alarms goes to infinity).
And it was not until 1986 when Moustakides [19]
proved the optimality of the CUSUM in a non-
asymptotic framework. The long period between the
CUSUM proposal by Page and the optimal results by
Lorden and Moustakides makes evident the difficul-
ties in analyzing the statistical properties and optimal-
ity theory of quickest detection.

As a matter of fact, there is scarce literature
addressing the problem in a rigorous manner, being
exceptions the work by Nikiforov [20] and Poor [21],
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which are not intended for a general reader. Based on
this observation, the goal of this work is to provide a
comprehensive analysis of the statistical properties of
the CUSUM algorithm (optimality results are out of
the scope of this work) and its application to local
threat detection in GNSS. We already addressed this
problem in [22]. In the present paper, though, we
extend the work by giving a more detailed explanation
in terms of different interpretations of the CUSUM
(Sec. III-A) and demonstration of some key concepts
(Sec. III-B). Moreover, we provide the proof of the
results in Sec. III-C, which has not been presented so
far. In essence, our main goal is to introduce and stim-
ulate the use of quickest detection within the GNSS
community, in particular, in those applications where
threats must promptly be detected.

The rest of this paper is organized as follows. Sec-
tion II introduces the signal model and Section III
introduces the fundamentals of quickest detection. In
Section IV we present the application of quickest
detection to interference and multipath detection.
Finally, Section V concludes the paper.

II. SIGNAL MODEL

Let us consider a sequence of independent obser-
vations {x(0), x(1), … , x(v), x(v + 1)… }, with v the
time instant at which an integrity threat appears. Con-
sequently, it is assumed that before v(*0) the observa-
tion x(n) follows a given statistical distribution,
whereas after the change (*1) it follows a different
one:

(1)

Based on these premises, quickest detection aims at
finding the strategy that minimizes the detection
delay, while keeping the mean time between false
alarms larger than a conveniently set value. For this
purpose, the CUSUM algorithm was proposed by
Page [17] based on a key concept in statistics, namely
the logarithm of the likelihood ratio or the log-likeli-
hood ratio (LLR)

(2)

A fundamental property of this ratio is as follows:
Let E0 and E1 denote the expectations under the two
distributions f0 and f1, respectively. Hence,

E0 [LLR(n)] < 0 and E1 [LLR(n)] > 0, (3)
namely, a change in the distribution of the random vari-
ables x(n) is reflected as a change in the sign of the mean
value of the log-likelihood ratio. This is depicted in
Fig. 1, which shows the cumulative LLR (lower plot),

(4)

for the case of a Gaussian set of observations (upper
plot) with mean before change μ0 = 0, mean after
change μ1 = 4 and constant variance σ2 = 2.5. The
unknown change time is set to v = 25 samples.

In this case, the probability density functions (pdf)
are

(5)

and then

(6)

with μ0, 1 the mean value of the incoming observations
before and after change, respectively. Therefore,

(7)

It is worth pointing out that these results are for the
particular case of having a change in the mean of a
Gaussian distribution. However, (3) holds true for any
kind of change and thus any distributions f0 and f1.
Moreover, we assume that both distributions are
known. In practice, this is particularly true for f0
because it models the nominal conditions, which are
completely known. However, f1 is usually unknown,
rather some parameter of this distribution is unknown.
In order to avoid nuisance parameters we fix the
unknown parameters according to the minimum
change we want to detect, so that the change will be

∼ <
∼ ≥

v

v
0 0

1 1

: ( ) ( ( )),
: ( ) ( ( )), .

х n f x n n
х n f x n n

*

*

=
�

1

0

( ( ))LLR( ) ln .
( ( ))

f x nn
f x n

0

0

LLR( ),
n

n

i

S i
=

= ∑

−μ
−

σ=
σ π

2
0,1
2

( )

2
0,1

1( ) ,
2

x

f x e

μ − μ μ − μ⎛ ⎞= −⎜ ⎟
⎝ ⎠σ

1 0 1 0
2LLR( ) ( ) ,

2
n x n

=

μ − μ μ + μ⎛ ⎞= −⎜ ⎟
⎝ ⎠σ ∑1 0 1 0

0 2
0

( ) .
2

n
n

i

S x i

Fig. 1. Typical behavior of the cumulative LLR  (bottom
plot) corresponding to a mean change (μ0 = 0 and μ1 = 4)
of a Gaussian sequence with constant variance (σ2 = 2.5)
(upper plot), for v = 25.
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detected as long as the actual change is greater or equal
than the fixed one.

III. FUNDAMENTALS OF QUICKEST 
DETECTION

In this section, we provide an overview of the most
important theoretical results of quickest detection and
it is aimed at introducing this theory to the GNSS
community. We first introduce several derivations of
the CUSUM algorithm in order to familiarize with the
quickest detection problem. These derivations can be
found in [20]. Secondly, we analyze the properties of
the CUSUM algorithm, which are mainly stated in
Theorems 1 and 2. These theorems can be found in
[20] and [21]. Finally, we study the case when we have
unknown parameters, suggesting an alternative to the
CUSUM algorithm and analyzing its performance,
stated in Theorem 3. To the best of the authors’
knowledge, the proof of this theorem is something
new.

A. CUSUM Derivation
Next, we introduce the CUSUM algorithm

explaining different derivations of the algorithm.

INTUITIVE APPROACH
As it has been depicted in Fig. 1, the typical behav-

ior of the cumulative LLR shows a negative drift before
change and a positive drift afterwards. With this
behavior, the relevant information lies in the differ-
ence between the value of the cumulative LLR and its
current minimum value. Therefore, the corresponding
decision rule is, at each instant, to compare this differ-
ence to a threshold h as

(8)

with  as in (4) and

(9)

PAGE’S APPROACH
The previous derivation of the CUSUM algorithm

is a kind of intuition-based one. Next, we show the
derivation of the CUSUM algorithm based upon a
repeated use of the sequential probability ratio test
(SPRT). Details on the SPRT can be found in [23].
The idea of Page [17] was to test the two simple
hypotheses for successive values of n

*0 : f(x(n)) = f0(x(n)), 

*1 : f(x(n)) = f1(x(n)), (10)

with the aid of the SPRT, where x(n) is defined as the
vector that contains x(0), x(1), ..., x(n) and {f0(x(n)),
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f1(x(n))} the multivariate versions of {f0(x(n)),
f1(x(n))} in (1). The SPRT is defined by the pair (d, T),
where d is a terminal decision rule taking values in the
set {0, 1}, and T is a stopping time defined as the time at
which the final decision is taken.

Thereby, T declares the time to stop sampling, and
once the value of T is given, d takes the value 0 or 1
declaring which of the two hypotheses to accept (i.e.
*0 or *1, respectively). Formally,

(11)

where T is the stopping time defined as

(12)

The thresholds e ≥ 0 and h ≥ 0 are conveniently
chosen according to some probability of false alarm
(α) and some probability of missed detection (γ).
Then, the key idea of Page was to restart the SPRT
algorithm whenever the taken decision was d = 0. More-
over, the first time at which d = 1, the SPRT is stopped
and this time becomes the stopping time or alarm time
at which the change is detected. To do so, Page sug-
gested that the optimal value of the lower threshold e
should be zero (i.e. e = 0) and thus, repeating the
SPRT with this threshold, the resulting decision rule
can be written as

(13)

with gLLR(n) = g(n – 1) + LLR(n) and g(0) = 0. This
decision rule can be compacted into

g(n) = (g(n – 1) + LLR(n))+, (14)
where (x)+ = max(0, x). Thus, the stopping time is
defined by the well-known expression for the
CUSUM algorithm

(15)

LORDEN’S APPROACH
Finally, let us introduce an idea due to Lorden [18]

that turns out to be useful for analyzing change detec-
tors. First, it is worth noting that (8) can be rewritten
as

(16)
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change. This can be formalized as follows. Let Tj be
the stopping time for the SPRT activated at time j

Tj = min {n ≥ j :  ≥ h}, (17)
with the convention that Tj = ∞ when this minimum
is never reached. Let us now define the following stop-
ping time as the minimum of the Tj

(18)

Comparing (15) and (18), with the definition of
g(n) in (16), we see that ta = T∗.

B. Properties of the CUSUM algorithm
In this section, we describe several criteria for the

performance evaluation of the CUSUM algorithm
with the aim of providing a way for setting the detec-
tion threshold h in order to obtain a desired perfor-
mance. To assess the goodness of the resulting detec-
tor, it is convenient to use the mean delay for detection
(i.e.  = E1[tα]) and the mean time between false
alarms (i.e. = E0[tα]). In fact, it would be interesting
to have a specific function that contains all the infor-
mation related to both values. This function is the
average run length (ARL), defined as

(19)
where θ = θ0 under *0 and θ = θ1 under *1, and 7 is
the stopping time. Thereby, the ARL function defines
at θ0 the mean time between false alarms, and at θ1 the
mean delay for detection.

Let us now define two important concepts useful
for the analysis of the statistical properties of the SPRT
and that will be used for the computation of the ARL
of the CUSUM algorithm. Such a computation of the
ARL appears in [20] and [21] and is presented in The-
orem 1.

Definition 1 (ASN). The average sample
number (ASN) of a SPRT is the mean number of sam-
ples Eθ[T–e,h] necessary for testing the hypotheses with
acceptable conditions (i.e. α and γ).

Definition 2 (OC). The probability Pθ (T–e, h) of
accepting hypothesis H0 (i.e. the SPRT reaches the lower
threshold –e) is called the operating characteristic
(OC).

Theorem 1. If Eθ[T0, h] and Pθ (T0, h) are the ASN
and OC, respectively, of a SPRT with thresholds –e = 0
and h, the ARL for the CUSUM algorithm Lθ(ta) is

(20)

Proof: Taking into account that the CUSUM algo-
rithm can be derived with the aid of a SPRT formula-
tion, it is possible to link the ARL function of the
CUSUM algorithm with the statistical properties of
the SPRT with lower threshold e = 0 and upper
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threshold h. With this formulation it is possible to
write the ARL function as

(21)

where Eθ[T–e, h| ] is the conditional ASN of
one cycle of SPRT when the cumulative sum reaches
the lower threshold –e, and Eθ[T-e, h| ] is the
conditional ASN of one cycle of SPRT when the
cumulative sum reaches the upper threshold h, and
then a final decision is taken.

In (21), Eθ[c – 1] is the mean number of cycles
before the cycle of final decision (i.e. before the cumu-
lative sum reaches the upper threshold h). The random
variable y = c – 1 can be represented as a geometrical
random variable with distribution f(y) = (1 – p)py for y
= 0,1,2,…, where p = Pθ (T–e, h) is the OC. Thus,

(22)

and it results from (21) that

(23)

Now, considering that p is the OC of the stopping
time T–e, h, we have that the summation of the two
numerators in (23) is equal to Eθ[T–e, h]. Therefore,
with these considerations and using the value of the
lower threshold for the CUSUM (i.e. e = 0) the result
in (20) follows. 

The ASN and OC are solutions of the Fredholm
integral equation of the second kind, which has to be
solved numerically. In order to avoid this numerical
solution, and with the aim of making easier the design
of the CUSUM algorithm, some approximations are
available [20]. Usually, bounds on the ARL function
are more desirable than approximations. This is
because, in practice, it is important to fix a conve-
niently chosen performance of the change detection
algorithm (given by the fixed threshold h) and then be
sure that this performance will always be achieved
within some limits. This is particularly important for
online integrity monitoring, where the working condi-
tions vary along time and then the threshold h should
be computed continuously, as well. For this purpose,
the use of bounds is mandatory to ensure that the
desirable limits are always preserved.

Theorem 2. If  is the Kull-
back-Leibler divergence between f1 and f0, the bounds for
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delay of the CUSUM algorithm are
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(24)

Proof: A lower bound for  can be obtained from
Wald’s inequalities [23]

(25)

with γ and α the probability of missed detection and
false alarm, respectively, of the SPRT. For the
CUSUM algorithm the lower threshold is equal to
zero (i.e. e = 0). Regarding the missed detection prob-
ability, the CUSUM algorithm will always detect the
presence of a change. It would take more or less time, but
it will detect the change. Therefore the missed detection
probability of the CUSUM detection is equal to zero (i.e.,
γ = 0) and, from (25), h ≤ –ln(α). With these consid-
erations, taking into account that the mean time
between false alarms can be defined as the inverse of
the false alarm rate (i.e.  = 1/α), the lower bound for

 in (24) follows.
On the other hand, we can obtain an upper bound

for the mean detection delay from the result of the
Wald’s approximations [23]:

(26)

with  the Kullback−Leibler
divergence between f1 and f0. Taking into account the
previous considerations and the Wald’s inequalities,
the upper bound for the detection delay in (24) fol-
lows. 

A similar proof of Theorem 2 can be found in [21].
Results in (24) provide us the asymptotic (i.e. when h
goes to infinity) relationship between the mean time
between false alarms and the detection delay with the
fixed threshold. These results have been proved to be
the optimal ones for the quickest detection problem.
As we have already commented, Lorden [18] showed
that the CUSUM procedure asymptotically minimizes
the detection delay, attaining the bounds in (24).
Lorden’s method is based on linking the CUSUM
algorithm with the SPRT, similarly as we do in this
section. On the other hand, instead of studying the
optimal detection problem via SPRT, Moustakides
[19] was able to formulate the problem as an optimal
stopping problem and to prove that the CUSUM rule
is indeed the optimal solution.

In some sense, results in (24) play the same role in
the change detection theory as the Cramer−Rao lower
bound in estimation theory, or as the receiver operat-
ing characteristic (ROC) in classical detection. It is
worth mentioning that the optimal results are obtained
when the CUSUM algorithm is tuned with the true
values of the distributions before and after the change.
When the algorithm is used in situations where the
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actual distribution is different from the assumed ones,
this optimal property cannot be guaranteed anymore.

C. Unknown Log Likelihood Ratio

In this section, we discuss the case when the LLR
is not completely known, that is the case when the
parameters under *1 are unknown. Without loss of
generality, the parameters under *0 are assumed to be
known. Thus, two possible solutions exist [20]:

• Weighted Likelihood Ratio (WLR): To weight the
likelihood ratio with respect to all possible values of
the parameters under *1 (i.e. θ1), using a weighting
function dF(θ1) dependent on the probability of
occurrence of θ1.

(27)

• Generalized Likelihood Ratio (GLR): To replace
the unknown parameters θ1 by its maximum likeli-
hood estimate.

(28)

In other words, for known θ1, change detection
algorithms are based on the likelihood ratio 
f1(x(n))/f0(x(n)). For unknown θ1, Λ(n) must be
replaced by other statistic like (n) or (n). Nonethe-
less, for the WLR we need information about the
unknown parameters, which is not a common situa-
tion. On the other hand, in general, the GLR-
CUSUM cannot be written in a recursive form since it
depends upon the maximization over the unknown
time change (i.e. we need all the collected samples).
This gives rise to a big computational burden. It is for
these reasons that we propose an alternative CUSUM-
based approach (i.e. offset-CUSUM) in order to avoid
the previous practical issues.

Thus, in general, when the LLR is not completely
known, it can be replaced by any other function of the
observations x(n). That is to say,  with
negative mean before the change and positive mean
after the change (i.e. E0 [ρ(n)] < 0 and E1 [ρ(n)] > 0),
in line with the key idea of the CUSUM (see (3)). That
is,

(29)

And then, the stopping time is defined by

(30)

In this case, the detection rule is no longer guaran-
teed to be optimal. Nevertheless, it is still a very good
candidate, provided that an appropriate function ρ(n)
is chosen.
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Theorem 3. If ω0 > 0 is the nonzero root of the equa-

tion , the bounds for the mean time between
false alarms and the detection delay of the offset-
CUSUM are given by the following expressions

(31)

Proof: The proof is found in the Appendix. 
The proof of Theorem 3 is based on results in [20],

but to the best of the authors’ knowledge it is a new
contribution. Usually, the mean before the change of
ρ(n) is not negative and then the idea proposed above
is not applicable. In that case, we propose the modi-
fied metric

(32)
and then, by selecting a proper offset b, the mean of
ρ(n) before the change will be negative, but it will
become positive after the change. Specifically, the
choice of the offset b should be large enough to ensure
a negative mean before change and to provide a certain
false alarm rate. But at the same time, b should be
small enough to maintain a positive mean after
change. From (31) and using expression of ρ(n) in
(32), we are able to adjust the false alarm rate through
the nonzero root, ω0, of the following equation

(33)

where  is the characteristic function of ρb(n)
under *0.

IV. QUICKEST DETECTION 
FOR INTEGRITY MONITORING

This section describes the application of the
CUSUM algorithm to GNSS integrity monitoring. To
do so, we use the CUSUM algorithm for interference
and multipath detection, which are the most relevant
and common problems in GNSS. We show different
situations for applying the CUSUM algorithm in order
to be used as a guideline for further works in GNSS
integrity. Some results using real GNSS receiver data
are shown. For a more extensive analysis with real sig-
nal confirming the models and theoretical results pre-
sented in this section see [24] and [25]. Also, it is worth
pointing out that we assume temporal statistical inde-
pendence of the metrics used at the input of the
CUSUM algorithm. This is a fair assumption since the
metrics are computed using disjoint blocks of data
whose length is typically much larger than the coher-
ence time of the disturbing effect.

A. CASE 1 (Interference): Completely Known LLR
This section presents the case when both distribu-

tions before and after the change are completely
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known. This situation is often the case when address-
ing interference detection in GNSS. Interference
detection must be carried out at the output of the
GNSS front-end, since it is here where the interfer-
ence is visible (i.e. before de-spreading). In the
absence of interference, the received signal will be
dominated by noise, since the GNSS signal remains
under the noise f loor, whereas in the presence of inter-
ference the received signal will be dominated by the
interference itself due to the high interference power.

The detection problem thus becomes:

(34)

where r(n) represents the discrete-time base-band
sample at time n, i(n) models the interference signal
impinging into the GNSS receiver, and w(n) is the
thermal noise disturbing the received samples, which
can be modeled as an independent and identically dis-
tributed (i.i.d.) zero-mean Gaussian random process.
Next, we propose a detection method based on the
statistical analysis of the received data. That is, it is
based on the fact that, in the absence of interference,
the samples at the front-end output should follow a
Gaussian distribution.

The kurtosis value is a good metric for measuring
the Gaussianity of the data. It is a statistical measure-
ment equal to 3 if the data is Gaussian (i.e. under *0),
otherwise (i.e. under *1) it departs from 3. Let us
define the kurtosis estimate as

(35)

with  the N-samples estimates of the i-th central
moment of r(n). In turn, m stands for the snapshot
index, where each snapshot includes N samples.

In [26] it is stated that for large N (i.e. N ≫ 1000),
the estimate of the kurtosis of a Gaussian variable is
another Gaussian variable with mean and variance
below,

(36)

Moreover, in the presence of interference, the kur-
tosis estimates are still Gaussian distributed but suffer-
ing from a change in both mean and variance. From
[27] we have the following expression for the mean
after change

(37)

where INR is the interference-to-noise ratio, and 0 <
κ < 1 the duty cycle. This is so for any kind of interfer-
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ence, both pulsed and continuous (i.e. κ = 1), except
for wide-band ones, which maintain the Gaussianity
of the data and then the kurtosis value does not vary.

Thereby, we can formulate the kurtosis-based
detection in a quickest interference detection frame-
work as

(38)

This is shown in Fig. 2, which presents the distribu-
tion of the kurtosis for the case of nominal conditions
and under the presence of a pulsed wave interference
(PW). We see how under *0 (see left plot) the kurtosis
distribution is Gaussian with a mean close to 3. On the
other hand, under *1 (see right plot) the kurtosis dis-
tribution is still Gaussian but the mean departs from
the baseline value equal to 3. These results have been
obtained with N = 104 samples, INR = 20 dB, a PW
with κ = 0.1, and 105 Monte-Carlo runs. This value of
INR is selected to show a distinguishable change in the
mean of the kurtosis.

From (38) we have characterized the statistical

behavior of the kurtosis, with ,  and 

known. However,  is typically unknown, and then
we cannot fully characterize the distribution under *1.
Nevertheless, we can assume that both variances

before and after the change are equal (i.e.  = ),
and then use the CUSUM algorithm as a Gaussian
mean change detector. Doing so, we are able to
express the LLR as

(39)

with ,  and  defined as in (36)–(37), and
 the N-sample kurtosis estimate at snapshot m.
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It is worth noting that  is known to depend on the
INR and the duty cycle of the interference. Hence, a
way to proceed is to fix a certain value for  accord-
ing to the minimum INR that one expects to detect.
Moreover, the duty cycle might be fixed to the value
that produces the minimum change possible. In this
way, a minimum change detection is set allowing the
detection of any larger change caused by higher power
interferences or with duty cycle that give rise to larger
changes in the kurtosis. Thus, we can make use of the
CUSUM algorithm decision rule as

(40)
leading to the following performance

(41)

with Kk(f1, f0) = (  – ( )2/( ).
These bounds are presented in Fig. 3, which are

compared with simulated results. We use N = 104 and
105 Mote-Carlo runs. In addition, for the detection
delay case we fix INR = –10 dB. This low value is
selected in order to show representative results, other-
wise the detection delay would be just one sample. The
left plot shows that the simulated number of samples
between false alarms is larger than the lower bound,
which allows us to set a threshold hk assuring certain
desired false alarm rate. Moreover, the right plot
shows similar values for the simulated and theoretical
results on detection delay.

B. CASE 2 (Interference): Unknown LLR
Here, we present the case when the distribution

after the change is completely unknown. To do so, we
apply the CUSUM algorithm to interference detection
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Fig. 2. Statistical characterization of the kurtosis value. Comparison between simulated (i.e. histogram) and theoretical distribu-
tion under *0 (left) and *1 with a pulsed wave interference (right).
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again, but using a different metric for measuring the
Gaussianity of the received signal samples.

We know from (34) that in the interference free-
case, the received signal is dominated by noise, so that
the histogram of the received samples should follow a
Gaussian shape. Meanwhile, when interference is
present, the received signal is dominated by the inter-
ference , and then the histogram of the received sam-
ples should not follow a Gaussian shape. This detec-
tion problem is equivalent to a goodness-of-fit test
(GoF), specifically, we are interested in determining
whether our received signal follows a Gaussian distri-
bution or not. To do so, we make use of the chi-square
test, which uses a metric based on the histogram and
have a known distribution under *0.

The chi-square test evaluates the next test statistic
[26]

(42)

with Ei the value of the i-th bin of the reference theo-
retical histogram evaluated under *0 with Nb bins.
These values are obtained by calculating the theoreti-
cal pdf for each bin and transforming it to a histogram
value (i.e. taking into account the snapshot samples N
and the separation between bins). Oi

(m) is the value of
the i-th bin of the measured histogram with Nb bins at
snapshot m, where each snapshot contains N samples.

Pearson [26] claimed that for large N, the variable
xhist(m) under *0 is approximately chi-squared dis-
tributed with Nb — 1 degrees of freedom, whereas
under *1 it departs from a central chi-square distribu-
tion. Therefore, we can write the following hypotheses

(43)
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This is depicted in Fig. 4. We can see how under *0
(see left plot) the histogram of the simulated data
almost fits the theoretical χ2 with Nb – 1 degrees of
freedom. On the other hand, in the right plot, the his-
togram is shown for the case when the simulated inter-
ference is present. It can be seen how it departs from
the χ2(Nb – 1) distribution, which is expected under
*0. The results have been obtained using a number of
N = 104 samples, 105 Monte-Carlo runs, a number of
bins Nb = 50, and a continuous wave (CW) with
INR = 20 dB for the *1 case. Again, this INR value is
selected in order to show a visible change on distribu-
tion.

So far, we have seen that the pdf after change is dif-
ferent to that before the change, but we have no
knowledge about this pdf. Hence, since the pdf under
*1 is unknown, the LLR cannot be completely
defined, and then we are unable to apply the CUSUM
algorithm directly to xhist(m). However, since *0 is
known, we can use the offset-CUSUM (Sec. III-C).
To do so we need to propose a metric ρ that has a neg-
ative and positive mean before and after the change,
respectively.

It is known that the mean of a  random variable
is equal to the number of degrees of freedom of the .
Therefore, E0 [xhist(m)] = Nb – 1 > 0. Hence, we
cannot use directly xhist(m) as the function ρ, but we
define the following modified function

(44)

with b a proper offset for which the mean of ρhist(m)
before change is negative, but it is positive after
change.

Moreover, the choice of the offset b should be large
enough to ensure a negative mean before change and
to provide a certain false alarm rate, always maintain-
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Fig. 3. CUSUM performance for the kurtosis method with respect to the detection threshold and N = 104. False alarm rate in
samples (left) and detection delay for a PW with INR = –10 dB (right).
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ing a positive mean after change. From (33) and using
ρhist(m) we are able to adjust the false alarm rate
through the nonzero root ω0 with (31), which turns out
to be the nonzero root of the next equation

(45)

which can be solved numerically. Thus, the choice of
b will fix a value for ω0 given by the equation above.
Thereby, making use of the following decision rule

(46)

we obtain the following performance

(47)

where ω0 is the nonzero solution of (45).
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These bounds are proved in Fig. 5, which shows the
offset-CUSUM performance using ρhist(m), and com-
pares it with the theoretical bounds above. We set the
offset to b = 55, the number of bins to Nb = 50 and for
the case of the detection delay we simulate a CW with
INR = –20 dB. Again, this low value is chosen in
order to show representative results. The left plot of
Fig. 5 shows how the simulated number of samples
between false alarms is greater than the lower bound
given in (47). In addition, the right plot shows the
detection delay measured in samples with respect to
the set threshold, and shows similar values for the sim-
ulated results and theoretical ones, being the simu-
lated delay below the upper bound given in (47).

C. CASE 3 (Multipath): Incompletely Known LLR
We present here the case when both the distribu-

tion before and after the change are known, but some
of the parameters of them are unknown. This situation

Fig. 4. Statistical characterization of the chi-squared GoF test metric. Comparison between simulated (i.e. histogram) an 
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is often the case when addressing multipath detection
in GNSS. The problem of multipath detection in
GNSS must be carried out at the acquisition and/or
tracking stage, since it is there where multipath effects
are visible (i.e. after de-spreading). Multipath affects
tracking measures as the estimated С/N0, the code dis-
criminator output (DLL) and the shape of the correla-
tion curve [28]. Therefore, we will able to detect
NLOS and multipath based on the f luctuations of
these measurements.

Now, we apply the CUSUM algorithm for the
slope asymmetry metric (SAM), which is based on the
correlation curves calculated in the tracking loop of
any GNSS receiver [28]. We know that under benign
conditions (i.e. *0) the correlation curve is symmetri-
cal, but it loses the symmetry under harsh conditions
(i.e. *1) due to the multipath components. This can
be measured by the SAM, which under *0 is close to
zero, indicating symmetry, whereas under *1 it
departs from zero, indicating asymmetry. Specifically,
when multipath is present we experience two different
effects:

• Under LOS condition, the mean of the SAM
departs from 0.

• Under NLOS condition, the variance of the
SAM fluctuates.

Indeed, in both LOS and NLOS cases the mean
and variance vary, but the mean change is predomi-
nant in LOS situations (i.e. deterministic component
of LOS prevails), whereas the variance change is pre-
dominant in NLOS (i.e. random components due to
multipath prevails). Therefore, this is equivalent to
have a change on both the variance and mean of the
SAM. Since the SAM is calculated from the Least
Squares estimation of the slope at both sides of the
correlation curve, we can assume that the distribution
of the SAM is Gaussian, and then we can formulate

the problem of multipath detection in a quickest
detection framework as

(48)

This is presented in Fig. 6, which shows the histo-
gram of the SAM values for data gathered with a real
GNSS receiver in urban environment under the
framework of the Integrity GNSS Receiver (iGNS-
Srx) project, funded by the European Commission.
This data was captured during 80 s in a scenario (i.e.,
London downtown) that was under benign conditions
the first 40 s, and then it changed to harsh conditions
until the end of the captured data. We discriminate
between benign and harsh conditions by analyzing the
positioning error (i.e. using a truth reference). For the
data under benign conditions we obtain a mean posi-
tioning error of 2 meters, whereas for the data under
harsh conditions we obtain a mean positioning error of
50 meters.

In the left plot of Fig. 6 we present the histogram
under benign conditions, where we see the Gaussian-
ity of the SAM with a mean about 0.1. This value is due
to the asymmetry introduced by the front-end filter
and can be calibrated. On the other hand, in the right
plot, we present the histogram under harsh conditions.
We see how the histogram fits a Gaussian distribution
quite well. This distribution has a mean that is also
close to 0, but a much greater variance than under *0.
This may be because in this case we are under NLOS
conditions, and then the change on the variance is
predominant.

We see that the SAM follows a Gaussian distribu-
tion with known mean before change (i.e. it must be
calibrated) but unknown a-priori variance before and
after the change. In order to use the CUSUM algo-
rithm we propose the following configuration of the
Gaussian distribution parameters:
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• : It should be equal to 0, but in practice it is
slightly larger due to the shape of the front-end filter.
Hence

(49)

with ζ = 0.1 herein.

• : This value is unknown a-priori because it is
difficult to have a perfect knowledge of the actual vari-
ance, even knowing the expression for the variance of
the SAM. This is so because it ultimately will depend
on the multipath parameters, which will be random
and unknown. Hence, we propose to fix the variance
under benign conditions according to the maximum
allowable variations on the SAM values under *0, as
follows

(50)

with (∆0)max the maximum allowable variations under
*0. This is so because we know that for a Gaussian
distribution the 99.86% of the values are comprised in
the interval μ ± 3σ. For example, in our case we see
that the SAM under *0 takes variations between –
0.1–0.45. Therefore, a proper value for (∆0)max may be
±0.4, which gives rise to σ0 = 1.78 × 10–2.

• : This value is unknown, but it might be fixed
as follow

(51)

with δ a proper value selected experimentally.

• : Similarly as for the variance before change,
we fix the variance under harsh conditions as the min-
imum detectable variability on the SAM due to mul-
tipath as follows

(52)

with (∆1)min the minimum detectable variation on the
SAM under *1. For instance, in our case, a suitable
value might be a variation equivalent to ±0.6, which

results in  = 4 × 10–2.

Therefore, since the SAM may present a change in
both mean and variance, we suggest the use of two dif-
ferent CUSUM algorithms, one for detecting the
change in variance (i.e. NLOS) and another for
detecting the mean change (i.e. LOS). The expression
for the mean change CUSUM would be like (39), but
with the SAM parameters. For the variance change
CUSUM the LLR expression is as
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(53)

with , ,  defined as in (49)–(52), and xS(k)
the calculated SAM value at the k-th post-correlation
snapshot.

Thereby, we can use the following decision rule:

(54)
leading to the next performance

(55)

with KS(f1, f0) = ln( /  + ( / ) – 0.5.
In Fig. 7, we show the obtained SAM and the

CUSUM evolution for the real data characterized in
Fig. 6. We see in the left plot how the SAM presents a
change in variance just when multipath appears (i.e.,
second 40). The change of the variance is quite large
and then it is promptly detected when it appears, as it
is presented in the right plot, which shows how the
CUSUM remains close to 0 until it start drifting
upward at second 40 and it crosses the threshold. The
threshold is set to fix a false alarm rate of 1 hour, which
with a sampling rate of 10 MHz and snapshot time of
20 ms becomes equal to hS = 12 (see dashed black line
in Fig. 7).

V. CONCLUSIONS
This paper deals with a twofold objective: on the

one hand, a comprehensive overview of quickest
detection has been provided with the aim of introduc-
ing this topic to the non-expert reader; on the other
hand, we have applied the tools of quickest detection
theory to a practical example such as interference and
multipath detection in GNSS with the aim of improv-
ing integrity in single-antenna GNSS receivers. Two
different cases have been presented: when the LLR is
completely known and when the LLR is unknown. For
the first case, the optimal solution is the CUSUM
algorithm, whereas for the second case there is not an
optimal solution, but a practical approach that works
quite well may be the offset-CUSUM. Applying the
CUSUM to interference detection we cope with the
cases of completely known and unknown LLR, which
leads to the use of the CUSUM algorithm and the off-
set-CUSUM, respectively. These algorithms are
applied to two different metrics, the kurtosis and the
chi-squared GoF test, respectively. The first is rele-
vant for PW/CW interferences (i.e. it is restricted to
the type of interference), but it uses the optimal algo-
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rithm. The GoF method is not restricted to any kind
of interference, but it does not use the optimal algo-
rithm, and then it may be used as complement for the
cases when the kurtosis is not useful. On the other
hand, applying the CUSUM to multipath detection
we cope with the case of incompletely known LLR. In
this case, we see that we can discriminate between
LOS and NLOS conditions. This is done by making
use of two different CUSUM for detecting both the
change in mean and variance of the SAM. Results of
the proposed methods show the suitability of quickest
detection for interference and multipath detection and
the potential interest in practical applications involv-
ing GNSS signal integrity real-time monitoring. This
is so because the suggested methods make use of sim-
ple techniques (i.e. easy for practical implementation)
and allow tuning the CUSUM algorithm providing
certain performance in terms of false alarms or detec-
tion delay fixed by the user through the detection
threshold.

APPENDIX
Proof of Theorem 3

In order to prove the bounds in (31) let J be the
stopping time of a one-sided test

(56)

for some test statistics {Zj}, which are function of the
i.i.d. observations x(j) (i.e. Zj = q(x(j))). For k = 1, 2,
…, let Jk be the stopping time of the same test applied
to {Zj} for j ≥ k and define N as

(57)

the stopping time of the test that stops when the first of
the tests applied to {Zj} ∀j ≥ k for k = 1, 2,… stops. Now,
we quote the following useful lemma, a proof of which
is found in [18].

Lemma. Let J be such that Pr{J < ∞|H0} ≤ α. Then,

E [N|*0] ≥ 1/α, (58)

= >inf{ : },jJ j Z h

≥
= + −

1
min{ 1},k

k
N J k

and for any alternative distribution,
E [N|*1] ≤ E [J|*1]. (59)

To use the lemma, we examine the Wald’s one-
sided test with stopping variable J defined by

(60)
where

(61)

The probability that this test terminates (i.e.,
Pr{J < ∞}) is the probability that the boundary h is
exceeded. For the case of ρ(n) = LLR(n), this proba-
bility can be computed using the theory of sequential
detection [23]. However, this probability cannot be
computed exactly for arbitrary jumps ρ(n). In this
case, we can only provide an estimate using Wald’s
approximations and bounds [20, 21, 23].

Therefore, in order to compute the probabilities
and expectations required in the lemma for J, we con-
sider the two-sided Wald test with boundaries – e <
0 < h given by the stopping time M,

(62)

with  as in (61). The one-sided test in (56) is now
the limit of the two-sided test in (62) as ε tends to
infinity (i.e. ). Let us formally define
the OC of the two-sided test according to

(63)
The following bound for the OC will be used under

*0 [20, 23]:

(64)

where η ≤ 1, and ω0 > 0 is the root of the equation

. Also, we will use the following bound
for the ASN under *1 [20, 23]
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Fig. 7. SAM-based multipath detection for the real data characterized in Fig. 6. Metric (left) and CUSUM (right) time-evolution.
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(65)

Hence, the probability that J does not stop
under *0 is given by the limit as e tends to infinity of
the probability that M terminates at the lower thresh-
old –e:

(66)

Therefore, the probability that J terminates is
upper bounded by

(67)

Similarly, for the ASN of the one-sided test we
have:

(68)

The right hand side is a decreasing function of
Pθ1(M), so that the inequality is preserved if we replace
Pθ1(M) by zero, resulting in

(69)

Now, the lemma can be applied to yield results on
the offset-CUSUM with a threshold h and using ρ(n)
instead of LLR(n). It is worth mentioning that N is
equivalent to the stopping time T* defined in (18), and

then we can show that  = N, with Z j =  = 
(x(i)), so that the mean time between false alarms and
the mean delay for the offset-CUSUM in (29) are
bounded by

(70)
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