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This paper focuses on transient signal detection based on inhomogeneous quadratic tests, which involve 
the sum of a dependent non-central chi-square with a Gaussian random variable. These tests arise in 
many signal processing-related problems in biomedicine, finance or engineering, where sudden changes 
in the magnitude under analysis need to be promptly detected. Unfortunately, no closed-form expression 
is available for the density of inhomogeneous quadratic tests, which poses some concerns and limitations 
in their practical implementation. In particular, when trying to assess their detection performance in 
terms of probability of detection and probability of false alarm. In order to circumvent this limitation, 
two closed-form approximations based on results from Edgeworth series expansions and Extreme Value 
Theory (EVT) are proposed in this work. The use of these approximations is shown through a specific case 
of study in the context of transient detection for signal quality monitoring in Global Navigation Satellite 
Systems (GNSS). Numerical results are provided to assess the goodness of the proposed approximations, 
and to highlight their interest in real life applications.

© 2018 Elsevier Inc. All rights reserved.
1. Introduction

Detecting the presence of an event is a recurrent task in many 
signal processing-related problems arising in biomedicine, finance 
or engineering, where decisions are taken based on the observa-
tion of the signal samples provided by some system. In partic-
ular, these samples are processed by a decision function whose 
outcome is compared to a predefined threshold for accepting or 
rejecting the hypothesis under analysis (i.e. the event is present 
or not). The function of the observed samples is often referred to 
as the test statistic for the problem at hand, and it can be ob-
tained applying different optimization criteria. For instance, the 
well-known Neyman–Pearson (NP) criterion, which aims at max-
imizing the probability of detection subject to some probability of 
false alarm; the Generalized Likelihood Ratio Test (GLRT), which 
replaces unknown parameters by their maximum likelihood esti-
mates (MLE); or the Bayesian criterion, which aims at minimizing 
a weighted function of different error probabilities, known as the 
Bayesian risk [1].

✩ This work was partly supported by the Spanish Government under grant 
TEC2014-53656-R.

* Corresponding author.
E-mail addresses: daniel .egea @uab .es (D. Egea-Roca), gonzalo .seco @uab .es

(G. Seco-Granados), jose .salcedo @uab .es (J.A. López-Salcedo).
https://doi.org/10.1016/j.dsp.2018.02.012
1051-2004/© 2018 Elsevier Inc. All rights reserved.
When it comes to assess the detection performance, the first 
step is to determine the density of the test statistic, or more specif-
ically, its cumulative density function (cdf) also referred here as 
the distribution. This allows the designer to assess the receiver op-
erating characteristics (ROC) based on the probability of (missed) 
detection and probability of false alarm, thus having a full picture 
of the overall detection performance [2].

In many real life applications dealing with Gaussian distributed 
samples, the resulting test statistic is based on homogeneous 
quadratic forms. That is to say, quadratic forms that are com-
posed of linear combinations of quadratic terms or mixtures of 
both quadratic and crossed terms. Unfortunately, a closed-form ex-
pression cannot be obtained for the general class of homogeneous 
quadratic forms, since the presence of linearly combined corre-
lated terms often makes the problem mathematically intractable. 
This is the case of tests statistics based on the weighted sum 
of chi-squared random variables, which have received significant 
attention in the past decades in the context of spacecraft engi-
neering [3], transient signal detection [4], multiuser interference 
in broadcast channels, or cooperative spectrum sensing in wireless 
communications [5]. Because of the difficulty in characterizing lin-
ear combinations of quadratic forms, the resulting distribution is 
numerically computed through approximate methods such as the 
saddle-point approximation [6] or by matching a few of the first 
cumulants to some other known closed-form distributions [7].

https://doi.org/10.1016/j.dsp.2018.02.012
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/dsp
mailto:daniel.egea@uab.es
mailto:gonzalo.seco@uab.es
mailto:jose.salcedo@uab.es
https://doi.org/10.1016/j.dsp.2018.02.012
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dsp.2018.02.012&domain=pdf


D. Egea-Roca et al. / Digital Signal Processing 78 (2018) 20–29 21
The problem is further aggravated when dealing with inho-
mogeneous quadratic tests, where apart from a combination of 
quadratic forms, linear terms are also present thus making even 
more challenging to characterize the overall statistical distribution. 
Inhomogeneous quadratic forms appear in diverse applications 
such as neuron receptive fields modeling [8], financial problems 
dealing with portfolio losses of CDO pricing [9], or Signal Qual-
ity Monitoring (SQM) in Global Navigation Satellite Systems (GNSS) 
[10], just to mention a few. The use of inhomogeneous quadratic 
forms has typically remained in the realm of estimation and opti-
mization theory, where the focus is placed on estimating unknown 
parameters or solving some optimization cost function [11]. To the 
best of the authors’ knowledge, little attention has been paid to in-
homogeneous quadratic tests in signal detection problems, where 
finding the statistical characterization of these tests is actually the 
cornerstone for solving the problem.

Motivated by this observation, the goal of this work is the 
derivation of closed-form approximations for the distribution of 
inhomogeneous quadratic forms, in order to facilitate the compu-
tation of the error probabilities in signal detection problems with 
time-varying working conditions. This is a fundamental problem in 
many real life applications, thus making the present contribution 
interdisciplinary and relevant to a wide audience. To illustrate the 
contribution, and without loss of generality, the example of tran-
sient change detection (TCD) is considered in the context of GNSS 
SQM. This is an application where the propagation conditions may 
vary quite rapidly, and the user terminal needs to promptly react 
to detect the presence of deleterious effect such as multipath [12], 
non-line-of-sight (NLOS) or signal attenuation [13], as well as po-
tential threats such as spoofing [14] and interference attacks [15]. 
For illustration purposes, we will consider some generic SQM met-
ric exhibiting a simultaneous change in mean and variance when 
some threat or signal distortion appears. The detection of this 
change results in an inhomogeneous quadratic test that fits very 
well with the ultimate motivation of this paper, which is nothing 
but to show the application of the proposed closed-form bounds 
in a practical case of interest.

The core of this work is based on exploiting the Edgeworth 
series expansion, which provides an analytical expression for the 
density of a random variable based on its constituent moments 
[16, p. 169]. In contrast to other methods, such as the saddle-
point approximation, the advantage of the Edgeworth expansion 
is that it does not require the cumulant generating function to be 
known in closed-form [17]. Furthermore, it provides a closed-form 
expression to work with, which greatly simplifies its application 
in practical problems [18]. However, tailoring the Edgeworth ex-
pansion for the problem at hand is not straightforward, since it 
requires a specific truncation and a rather cumbersome compu-
tation of the required Hermite coefficients. In this context, the 
contributions of this work are twofold. Firstly, to overcome these 
concerns, the Edgeworth expansion for the problem at hand is 
computed. Moreover, it is shown that this expansion is accurate 
enough to approximate the miss detection probability of inhomo-
geneous quadratic tests in TCD problems. Secondly, it is also shown 
that the Edgeworth expansion is not so accurate when approxi-
mating the probability of false alarm. In that case, we will propose 
an alternative approximation based on results from Extreme Value 
Theory (EVT), which again make use of the statistics of inhomoge-
neous quadratic forms. The overall contribution of this work is to 
show that the proposed Edgeworth and EVT approximations pro-
vide a dual approach to assess the performance of signal change 
detectors dealing with inhomogeneous quadratic forms, while pro-
viding guidelines for their use and tuning in practical applications.

The paper is organized as follows. Some preliminaries are dis-
cussed in Section 2, where the signal model for inhomogeneous 
quadratic tests is provided as well as some stepping-stone results. 
Next, inhomogeneous quadratic test in TCD is introduced in Sec-
tion 3. Closed-form approximations for the probability of miss and 
probability of false alarm are provided in Section 4 and Section 5, 
making use of Edgeworth series and EVT, respectively. The applica-
tion example on GNSS SQM is discussed in Section 6, and finally, 
conclusions are drawn in Section 7.

2. Preliminaries

Let {Yn}n≥1 be a sequence of iid signal samples whose inner 
structure is given by the inhomogeneous quadratic form,

Yn
.= aX2

n + b Xn + c (1)

for some constants {a,b, c} and Xn some random variable. Because 
of the presence of a quadratic and a linear term, the density of 
Yn is not straightforward. This problem is further aggravated when 
considering the sum of {Yn}m

n=1 signal samples,

Z
.=

m∑
n=1

Yn (2)

whose density f Z involves m times the convolution of the density 
of Yn . This poses insurmountable obstacles for the derivation of 
a closed-form expression for f Z , and the corresponding distribu-
tion, F Z . In order to circumvent this limitation, the corresponding 
Edgeworth and EVT approximations will be derived, which provide 
a tight match to the original density while still providing a math-
ematically tractable and closed-form formulation. We will briefly 
recall here the Central Limit Theorem, which becomes a simple 
reference benchmark for the approximations to be proposed later 
on, as well as some indications on the statistical moments of Z to 
be used as well.

2.1. Central limit theorem (CLT) for the density of Z

Theorem 1 (CLT). Let Z be the sum of m independent random variables 
Y1, Y2, . . . , Ym, with mean μZ = μ1 + μ2 + . . . + μm and variance 
σ 2

Z = σ 2
1 + σ 2

2 + . . . + σ 2
m. Then,

f Z (z) −−−−→
m→∞ φ(z̃)

.= 1√
2π

e−z̃2/2 (3)

F Z (z) −−−−→
m→∞ �(z̃)

.= 1√
2π

z̃∫
−∞

e−λ2/2dλ (4)

with z̃ .= (z − μZ )/σZ , φ(z̃) the standard Gaussian density and �(z̃)
the standard Gaussian distribution [19].

2.2. Moments of Z

Lemma 1. Let Z
.= ∑m

n=1 Yn with {Yn}m
n=1 independent random sam-

ples. The k-th order moment of Z can be computed using the multinomial 
theorem [20] as follows,

ξk
Z

.= E
[

Zk
]

=
∑

l1+l2+...+lm=k

k!
l1!l2! · · · lm!ξ

l1
Y1

ξ
l2
Y2

· · · ξ lm
Ym

(5)

for all sequences {ln}m
n=1 ∈ Z

∗ such that their sum is equal to k, and 
where ξ l

Y stands for the l-th order moment of the inhomogeneous 
quadratic form in (1).

The computation of moments up to order four will be used 
later on, so it is convenient to provide the result here. After some 
cumbersome manipulations, the result is
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ξZ = mξY (6)

ξ2
Z = m

[
ξ2

Y + (m − 1)(ξY )2
]

(7)

ξ3
Z = m

[
ξ3

Y + (m − 1)
[

3ξ2
Y ξY + (m − 2)(ξY )3

]]
(8)

ξ4
Z = m

[
ξ4

Y + (m − 1)
[
4ξ3

Y ξY + 3(ξ2
Y )2

+ (m − 2)
[
6ξ2

Y (ξY )2 + (m − 3)(ξY )4]]]. (9)

2.3. Moments of Yn

Lemma 2. Let Yn
.= aX2

n +b Xn +c for some constants {a,b, c} and some 
random variable Xn. Then the moments of Yn are given by

ξk
Y

.= E[Y k
n] =

k∑
i=0

A(i), (10)

with

A(i)
.=

i∑
j=0

(
k

i

)(
i

j

)
ak−ibi− jc jξX,2k−i− j, (11)

where ξk
X

.= E[Xk
n] is the k-th order moment of Xn and 

(l
i

) .= k!/
(i!(k − i)!) is the binomial coefficient.

Proof. Let us rewrite Yn as Yn = u + v , with u .= aX2
n and v .=

b Xn + c. Applying the binomial expansion gives

Y k
n =

k∑
i=0

(
k

i

)
uk−i vi =

k∑
i=0

(
k

i

)
ak−i X2(k−i)

n (b Xn + c)i . (12)

Proceeding in the same way for the right-hand side of (12),

Y k
n =

k∑
i=0

(
k

i

)
ak−i X2(k−i)

n

⎛⎝ i∑
j=0

(
i

j

)
(b Xn)

i− jc j

⎞⎠
=

k∑
i=0

i∑
j=0

(
k

i

)(
i

j

)
ak−ibi− jc j X2k−i− j

n

(13)

which leads to (10) once the expectation is applied. �
3. Inhomogeneous quadratic tests in transient change detection 
problems

This section tackle with signal decision metrics relying on inho-
mogeneous quadratic tests, as it is the case in many signal process-
ing applications dealing with finance, biomedical engineering or 
positioning systems. Without loss of generality, the problem of TCD 
is considered, where the goal is to promptly detect the presence 
of an abnormal event in the observed signal. This problem has 
been widely studied in the existing literature [21], but no results 
are available for the case of inhomogeneous quadratic decision 
rules. In that sense, the present work is filling this gap by provid-
ing simple closed-form approximations to assess the performance 
of such decision rules. To do so, we will first introduce in Sec-
tion 3.1 the Gaussian mean-and-variance change model (MVCM) 
widely adopted in many applications. Then Section 3.2 will show 
how inhomogeneous quadratic forms arise in the problem under 
study. Finally, Section 3.3 will introduce the detection performance 
metrics to be evaluated and the distributions whose closed-form 
expression is sought. The application to TCD presented in this sec-
tion is for the sake of exemplification. The theoretical findings in 
this paper are valid for any other application dealing with inhomo-
geneous quadratic forms of Gaussian random variables.
3.1. Signal model

Let {Xn}n≥1 be a sequence of random signal samples that 
are observed sequentially. Let us also consider a family {Pv |v ∈
[1, 2, . . . , ∞]} of probability measures, such that under Pv , the 
samples X1, . . . , Xv−1 and Xv+m, . . . , X∞ are iid with a fixed 
marginal density f X,0, with v the deterministic but unknown 
change time when a change in density appears. On the other hand, 
Xv , . . . , Xv+m−1 are iid with another marginal density f X,1 �= f X,0. 
In our case, we focus on the simultaneous change of mean and 
variance of a Gaussian density,

Xn ∼
{
H0 : N

(
μ0,σ

2
0

)
if 1 ≤ n < v or n ≥ v + m

H1 : N
(
μ1,σ

2
1

)
if v ≤ n < v + m

, (14)

where {μ0, σ 2
0 } are the mean and variance of Xn under nomi-

nal conditions (i.e. hypothesis H0) and {μ1, σ 2
1 } the mean and 

variance after the change (i.e. hypothesis H1). The model in (14)
implicitly assumes that the random samples are sufficiently well 
represented by a stationary random process under H0 and H1. 
In practice, a pragmatic (and suboptimal) approach to detect non-
stationary random samples under H1 is to set the corresponding 
mean and variances with the worst-case values to be detected. 
Typically, the smallest mean and variance that may be experienced 
under H1.

3.2. Test statistic

The detection of a transient change in the observed signal is 
completely defined by the stopping time T at which the change 
is declared, which can be computed following different rules and 
criteria [22, Ch. 6]. Herein the focus is on the finite moving aver-
age (FMA) stopping time introduced in [21] for the specific case 
of Gaussian mean-changes, and recently extended to the case of 
Gaussian mean- and variance-changes in [23]. The FMA test statis-
tic results in the following stopping time

TF
.= inf {n ≥ m : Sn ≥ h} , (15)

with h the detection threshold and

Sn
.=

n∑
k=n−m+1

LLRk, (16)

where LLRk
.= ln

(
f X,1(Xk)/ f X,0(Xk)

)
is the log-likelihood ratio 

(LLR) of the sample Xk . Interestingly, the LLR turns out to be an in-
homogeneous quadratic form when evaluated for the signal model 
in (14). That is,

LLRk = aX2
k + b Xk + c (17)

where the constants {a,b, c} are given by:

a = σ 2
1 − σ 2

0

2σ 2
0 σ 2

1

, (18)

b = σ 2
0 μ1 − σ 2

1 μ0

σ 2
0 σ 2

1

, (19)

c = ln

(
σ 2

0

σ 2
1

)
+ σ 2

1 μ2
0 − σ 2

0 μ2
1

2σ 2
0 σ 2

1

. (20)

The detection metric in (16) is actually the accumulation of m in-
homogeneous quadratic forms, and therefore it can be modeled by 
the random variable Z in (2). While the exact density of (16) is 
unknown, the statistical moments can be derived using the results 
from Lemma 1 and 2.
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3.3. Detection performance

The detection performance is measured in terms of the worst-
case probability of missed detection and false alarm, which are 
defined respectively, as

Pmd(TF)
.= sup

v≥1
Pv(TF > v + m − 1|TF ≥ v), (21)

Pfa(TF)
.= sup

l≥1
P∞(l ≤ TF < l + mα), (22)

where m is the length of the transient to be detected and mα the 
time window where we want a given value of Pfa to be guar-
anteed. The exact computation of (21) and (22) leads to an in-
tractable formulation. To circumvent this limitation, upper bounds 
are typically adopted instead such that [23],

Pmd(TF) ≤ βm(h), (23)

Pfa(TF) ≤ αmα (h), (24)

with

βm(h)
.= P1(Sn < h), (25)

αmα (h)
.= 1 − [P∞(Sn < h)]mα . (26)

Due to the one-to-one relationship between (16) and (2), the upper 
bounds in (25)–(26) become

βm(h) = F Z ,1(h) (27)

αmα (h) = 1 − [
F Z ,0(h)

]mα (28)

with F Z ,0 and F Z ,1 the distribution of Z in the absence and in the 
presence of a transient signal change, respectively.

These distributions have no closed-form expression either, but 
tight approximations can be adopted instead. For instance, using 
the Edgeworth series expansion to be presented next in Section 4. 
This approach works well for βm(h) in (27), since it directly de-
pends on the cumulative density function of Z , for which the 
Edgeworth expansion can readily be derived using the moments 
of Z in Section 2.2. However, some difficulties are found for αmα (h)

in (28) due to the presence of the mα-th power on the cumula-
tive density function of Z . In that case, the approximation errors 
incurred by the Edgeworth series tend to be amplified, thus poten-
tially violating the upper bound inequality in (24). This issue will 
be addressed by adopting an alternative closed-form approxima-
tion using results from extreme value theory (EVT), as described 
next in Section 5.

4. Closed-form approximation for βm(h), the upper bound 
on PPPmd

For a sufficiently large m, the density of Z in (2) can be as-
sumed to be Gaussian in virtue of the CLT. This certainly relaxes 
the complexity of the problem at hand, and provides an acceptable 
match with the target density. However, the CLT approximation is 
often too loose for small m or when focusing on the tails of the 
resulting distribution, as it occurs when dealing with error proba-
bilities (e.g. Pmd and Pfa). A tighter approximation can be obtained 
through the following theorem [24, p. 223]:

Theorem 2 (Gram–Charlier type-A expansion). The error between the 
target density f Z and the CLT approximation can be modeled by a series 
expansion as follows:

ε(z̃)
.= f Z (z) − φ(z̃) = φ(z̃)

∞∑ C p

p! H p
(
z̃
)

(29)

p=3
with z̃ .= (z − μZ )/σZ , H p(z̃) the Hermite polynomial of degree p and 
C p the projection of the target density onto H p(z̃),

C p
.=

∞∫
−∞

H p
(
z̃
)

f Z (z̃)dz̃. (30)

Corollary 1 (Gram–Charlier type-A expansion for f Z ). Using the result 
in (29), the density of Z can be represented through the following series 
expansion,

f Z (z) = φ
(
z̃
)⎡⎣1 +

∞∑
p=3

C p

p! H p
(
z̃
)⎤⎦ . (31)

Corollary 2 (Gram–Charlier type-A expansion for F Z ). Integrating the 
result in (29), the distribution of Z can be represented through the fol-
lowing series expansion,

F Z (z) = �
(
z̃
)− σZ φ(z̃)

∞∑
p=3

C p

p! H p−1
(
z̃
)
. (32)

Proof. See Appendix A. �
While the results in (31)–(32) provide a closed-form approx-

imation for f Z (z) and F Z (z), it is well-known that the Gram–
Charlier approximation may suffer from some instabilities and con-
vergence issues [25,16]. In particular, the terms of the infinite 
series in (29) do not monotonically decrease with increasing the 
order p, thus making the truncation of the asymptotic series a not 
trivial task. Notwithstanding, these issues can be circumvented by 
rearranging the error terms so as to provide a series expansion 
with guaranteed convergence [24]. This rearrangement of terms 
leads to the so-called Edgeworth series expansion, which consists 
on grouping the error terms with similar order. This is the case, 
for instance, of terms p = 3, p = {4, 6} and p = {5, 7, 9}. Using this 
observation, we are now in position to provide a closed-form ap-
proximation for the upper bound on Pmd in (27).

Proposition 1 (Edgeworth approximation for Pmd). Using the result 
in (32), the upper bound on Pmd in (27) can be approximated as follows

βm(h) ≈ βEDG,m(h) (33)

= �(h̃1) − σZ ,1φ(h̃1)
∑
p∈A

C p,1 H p−1(h̃1)

where A = {3, 4, 6} and C p,1 are the Hermite coefficients computed us-
ing f Z ,1(z) under H1 , and given by

C3,1 = ξ3
Z ,1 − 3ξZ ,1ξ

2
Z ,1 + 2(ξZ ,1)

3

σ 3
Z ,1

,

C4,1 = ξ4
Z ,1 − 4ξZ ,1ξ

3
Z ,1 + 6(ξZ ,1)

2ξ2
Z ,1 − 3(ξZ ,1)

4

σ 4
Z ,1

− 3,

C6,1 = 10C2
3,1,

(34)

where ξk
Z ,1 is the k-th order moment of Z , which can be evaluated us-

ing the results in Section 2.2 under H1 . Finally, σZ ,1 is the standard 
deviation of Z that can be obtained as σZ ,1 =

√
ξ2

Z ,1 − (ξZ ,1)2 , and 

h̃1
.= (h − ξZ ,1)/σZ ,1 .
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5. Closed-form approximations for αmα (h), the upper bound 
on PPPfa

5.1. Edgeworth series approximation

A closed-form approximation for the upper bound of Pfa in (28)
can similarly be obtained substituting F Z ,0 by its Edgeworth series 
expansion, as already done in (33) for Pmd.

Proposition 2 (Edgeworth approximation for Pfa). Using the result 
in (32), the upper bound on Pfa in (28) can be approximated as follows

αmα (h) ≈ αEDG,mα (h) (35)

= 1 −
⎡⎣�(h̃0) − σZ φ(h̃0)

∑
p∈A

C p,0 H p−1(h̃0)

⎤⎦mα

where A = {3, 4, 6}, h̃0
.= (h − ξZ ,0)/σZ ,0 and C p,0 are the Hermite co-

efficients computed using f Z ,0(z) under H0 , and given by (34) replacing 
ξZ ,1 by ξZ ,0 .

5.2. Extreme value theory (EVT) approximation

Although the Edgeworth series provides a better approximation 
for the tails of the density of Z than the CLT, there is still some 
mismatch between the tail of the approximation and the true den-
sity. This mismatch is negligible for the case of approximating F Z ,1
in (27), but it is not when approximating the mα-th power of F Z ,0
in (28). The approximation inaccuracies become amplified and the 
upper bound inequality in (24) is not guaranteed to be preserved 
anymore.

In order to circumvent this issue an alternative approximation 
for Pfa will be formulated making use of results from extreme 
value theory (EVT). EVT has historically been linked to the sta-
tistical problem of flood frequency analysis, where predicting such 
extreme events is of paramount importance. However, EVT is also 
widely adopted today in applications dealing with finance, insur-
ance or engineering [26]. In the problem at hand, the upper bound 
in (28) can be understood as the probability that none of the mα

trials of Z under H0 exceeds the threshold h. This is equivalent 
to state that the maximum of these mα trials does not exceed it 
either. Following this rationale, the next theorem is used.

Theorem 3 (EVT distribution). Let U .= max1≤i≤N {Zi} with {Zi}N
i=1 iid 

samples whose density f Z exhibits exponentially decreasing tails. Let us 
also define

δ
.= F −1

Z

(
1 − 1

N

)
, (36)

γ
.= N f Z (δ). (37)

Then, the distribution of U becomes

FU (u)
N→∞= exp

(
−e−γ (u−δ)

)
. (38)

Proof. See [26, p. 166]. �
Using the result above, an alternative approximation for the up-

per bound on Pfa follows.

Proposition 3 (EVT approximation for Pfa). Using the result in Theo-
rem 1, the upper bound on Pfa in (28) can be approximated as follows

αmα (h) ≈ αEVT,mα (h) (39)

= 1 − exp
(
−e−γmα

(
h−δmα

))
,

where

δmα

.= F −1
Z ,0

(
1 − 1

mα

)
, (40)

γmα

.= mα f Z ,0(δmα ). (41)

Proof. The term [F Z ,0(h)]mα in (28) can be rewritten as

[F Z ,0(h)]mα = P∞

(
mα⋂
i=1

Zi < h

)
= P∞

(
Mmα < h

)
, (42)

with Mmα

.= max1≤i≤mα {Zi}. That is, [F Z ,0(h)]mα is obtained as the 
probability that mα iid signal samples of Z are below the value h, 
which is equivalent to the probability that the maximum of all mα

samples is below h. Thereby, EVT can apply to obtain [F z,0(h)]mα . 
Since Z is the sum of dependent non-central chi-squared and 
Gaussian random variables, the density of Z has an exponentially 
decreasing tail and Theorem 3 is applicable to (42). On the other 
hand, since the density and distribution of Z are unknown, the 
corresponding Edgeworth expansion is applied in order to use The-
orem 3, and the proof of Corollary 3 thus follows. �

Before concluding this section it is worth noting that to obtain 
δmα in (40) the inverse distribution F −1

Z ,0 needs to be evaluated. 
Even though there is no closed-form for this inverse, it can easily 
be found by numerically solving F Z ,0(δ) = 1 − (1/mα). This nu-
merical evaluation is possible thanks to the proposed Edgeworth 
closed-form for F Z ,0 and the use of a simple iterative algorithm 
like the Newton–Raphson method, which can be easily imple-
mentable in a digital receiver. Once δmα is calculated, the approxi-
mation in (39) can be applied to calculate F Z ,0 in a closed form. In 
case it was of interest to obtain the threshold guaranteeing a given 
level of false alarms α̃ , it can be fixed from (39) as

h(α̃) = δmα − ln
(− ln

(
1 − α̃

))
γmα

. (43)

This procedure is very convenient to be used in practice within a 
digital receiver.

6. Application to signal quality monitoring in GNSS

Section 3 has introduced inhomogeneous quadratic tests in the 
context of TCD. Next, closed-form approximations for its statistical 
distribution have been proposed in Section 3 and 5, thus facili-
tating the computation of Pmd and Pfa in practice. In the present 
section, these results will be applied to a particular case study such 
as the one of SQM in GNSS [27]. Without loss of generality, this 
example serves to illustrate the goodness of the proposed upper 
bounds on Pmd in (33) and Pfa in (35) and (39). For simplicity, 
the former is denoted by βEDG and the latter by αEDG and αEVT, 
respectively. It is worth clarifying that the used model can be re-
garded as a simplification of signal quality monitoring, as used in 
most of SQM contributions [14,28,29], and it is used here for the 
sake of exemplification. Nevertheless, if more sophisticated and ac-
curate models are available they should be used instead.

6.1. Motivation

Integrity refers herein to the ability of a GNSS receiver to guar-
antee the quality and trust of the received signal in such a way 
that critical applications can be safely operated. While this con-
cept is circumscribed here to GNSS, it can actually be extrapolated 
to many other disciplines where some element needs to be mon-
itored for quality control purposes. In our case, signal processing 
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techniques must be implemented at the receiver side to analyze 
some key performance indicators of the received signal and to 
detect abnormal values. While this problem has been widely ad-
dressed within the civil aviation community [30], it has always 
remained at the realm of position, velocity and time (PVT) ob-
servables, where measurements from several sources need to be 
compared and cross-checked for consistency purposes. In the re-
cent years, there has been an increasing interest in signal quality 
metrics. The reason is that they can act as early indicators on 
the presence of integrity threats, since they are metrics directly 
linked to the physical received signal and they are readily avail-
able before PVT observables are computed. This is the case of the 
signal-to-noise ratio (SNR), the symmetry of the correlation peak at 
the matched filter output, or the ratio between the maximum and 
minimum eigenvalues of the spatial correlation matrix in multi-
antenna systems.

The problem to be addressed here fits perfectly within the 
scope of TCD, since the density of many signal quality measure-
ments suddenly departs from its nominal value when some threat 
is present (e.g. a jamming signal, multipath reflections, etc.). More-
over, for integrity purposes, the delay to detect a threat is bounded 
by the so-called time-to-alert. In our model given by (14) the time-
to-alert is modeled by m, so that a detection delayed more than 
m samples is considered missed, thus fitting with the framework 
of TCD. Furthermore, it is important to say that the parameters 
that govern the distribution under H1 may be unknown in prac-
tice or may not be stationary, as confirmed by several experimen-
tal data analyses [29,31]. Nevertheless, the pragmatic approach to 
cope with these situations is to set as change parameters under H1
in (14) those corresponding to the smallest change in mean and 
variance to be detected. This assumes that the distribution under 
H1 is sufficiently well represented by a stationary random process, 
as considered by many of the contributions on SQM in the existing 
literature [12,14,28,29]. We will follow this approach for the sake 
of simplicity, since we are merely interested in showing how to 
apply the proposed closed-form bounds for Pmd and Pfa in a case 
of interest.

6.2. SQM with the Slope Asymmetry Metric (SAM)

Among the wide range of possible signal quality metrics, the 
focus here is on the so-called slope asymmetry metric (SAM) [32]. 
This metric is intended to detect some distortion of the correlation 
curve, which may be caused by propagation effects such as mul-
tipath, but also by the presence of counterfeit signals in spoofing 
attacks. The SAM metric is obtained at the output of the matched 
filter by comparing the left and right slopes of the cross-correlation 
between the GNSS received signal r(k) and the local replica c(k). 
To better illustrate the process, let us denote the cross-correlation 
output samples by R(τ̂ , f̂ ), which in general can be computed us-
ing a combination of coherent and noncoherent integrations as 
follows,

R(τ̂ , f̂ ;n) =
(n+1)NI−1∑

m=nNI

∣∣∣∣∣
(m+1)LC−1∑

k=mLC

r(k)c(k − τ̂ )e− j2π f̂ k

∣∣∣∣∣
2

(44)

where 
{
τ̂ , f̂

}
are the tentative time-delay and Doppler frequency 

at the acquisition or tracking stage of the receiver, LC is the co-
herent integration length and NI the number of noncoherent inte-
grations [33]. These correlation samples and the process to obtain 
the SAM through them is shown in Fig. 1. For a given side of 
the correlation peak, a set of discrete-time samples can be col-
lected in the neighborhood of τ̂ and stack them into vector form, 
r(n) .= [R(τ1, f̂ ; n), R(τ2, f̂ ; n), . . . , R(τL, f̂ ; n)]T , where |τi − τ̂ | < T
Fig. 1. (Up) Correlation peak of a GNSS received signal affected by some signal dis-
tortion. (Down) Example of SAM time series where distortion appears at t = 11 s.

for i = 1, 2, . . . , L, and T usually given by the chip period of the 
GNSS signal. The fitting of these samples with a linear shape 
R(τ , f ; n) ≈ a(n)τ + b(n), for some constants {a(n),b(n)}, can be 
formulated as a least squares estimation problem where the slope 
is obtained as,

â(n) =
[
(MH M)−1MH r(n)

]
1,1

(45)

where [·]i, j denotes the (i, j) element, and M is given by

M
.=
[

τ1 τ2 . . . τL

1 1 1

]T

. (46)

The solution in (45) must be evaluated twice, using correlation 
samples from each of the sides of the correlation peak. That is, 
with either 

{
τ+

1 , τ+
2 , . . . , τ+

L

}
or 

{
τ−

1 , τ−
2 , . . . , τ−

L

}
as illustrated in 

Fig. 1, in order to obtain the estimates of the left and right slopes 
of the correlation peak, respectively. These slopes are denoted by 
the pair 

{
â+(n), â−(n)

}
in Fig. 1 and they lead to the so-called SAM 

metric, which is obtained as

SAM(n)
.= â+(n) + â−(n). (47)

In nominal conditions when only the line-of-sight signal is re-
ceived, the correlation peak should exhibit a nearly symmetric 
shape, thus causing the SAM to become a zero mean random pro-
cess. However, when a threat introducing some signal distortion is 
present, the right slope of the correlation peak tends to flatten thus 
causing the SAM to depart from zero mean. A detailed analysis of 
the SAM metric was conducted in [34] using experimental data, 
where it was shown that (47) could fairly be modeled by the same 
Gaussian MVCM as in (14). Similar models are adopted in [12]
and [28] for similar metrics As such, detecting a sudden change 
in the SAM metric using the FMA stopping rule in (15) leads to 
the same inhomogeneous quadratic form as in (17). Therefore, the 
detection performance can be assessed using the upper bounds in 
Section 3.3, whose closed-form expressions are proposed in Sec-
tion 6.3 for Pmd and in Section 6.4 for Pfa. It is important to 
emphasize here that detecting changes in the SAM metric is just 
one of the possible applications where the proposed closed-form 
approximations for Pmd and Pfa can be used. In practice, many 
other problems can be formulated in terms of the inhomogeneous 
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Fig. 2. Comparison between the exact bound for the probability of missed de-
tection βm(h) with the corresponding Edgeworth and the CLT approximation for 
m = {3, 10, 25}.

quadratic test in (17), and therefore our contribution would be ap-
plicable too.

For the results to be shown next, we consider a GNSS receiver 
operating in a representative urban scenario where abnormal prop-
agation conditions appear. According to the measurement cam-
paign conducted in [10], the following values have been used for 
the Gaussian MVCM in (14) when applied to the SAM metric: μ0 =
10−1, μ1 = 2 · 10−1, σ 2

0 ∈ [10−4, 10−2] and σ 2
1 ∈ [10−3, 10−2], 

where SAM samples are provided at sampling time Ts = 1 sec-
ond. Without loss of generality, values within these ranges will be 
used when assessing the goodness of the Edgeworth approxima-
tion for the upper bound on Pmd in Section 6.3. Next, the upper 
bound on Pfa in Section 6.4 will follow, where both the Edgeworth 
and EVT approximations will be compared. Apart from the com-
putation of the corresponding probabilities, the distance between 
the exact bound and each of the proposed approximations will be 
also evaluated. This will be done using the Cramér–von Mises dis-
tance [35],

D2
C V M(F , F̂ )

.=
∞∫

−∞

(
F (h) − F̂ (h)

)2
dF (h) (48)

where F (h) stands for the exact bound distribution, αmα (h) or 
βm(h), and F̂ (h) stands for the proposed approximations. The nor-
malized distance is here computed following [36].

6.3. Goodness of the upper bound on Pmd

Fig. 2 shows the comparison between the exact bound βm(h)

in (27) and both the CLT and Edgeworth approximations for dif-
ferent values of the transient duration, m = {3, 10, 25} samples. 
The signal parameters for the MVCM are μ0 = 10−1, σ 2

0 = 4 · 10−4, 
μ1 = 2 · 10−1, σ 2

1 = 1.6 · 10−3. The results in Fig. 2 show a tight 
match between the proposed Edgeworth approximation and the 
exact bound, even for low values of m, in contrast to what happens 
with the CLT approximation. The tight match is particularly true 
for moderate values of probability of miss down to 10−4, which 
comprise the region where practical algorithms typically operate. 
Some inaccuracies are observed for the Edgeworth approximation, 
but they are restricted to low values of m and βm(h) < 10−4.

For the same signal parameters, the Cramér–von Mises distance 
between the exact bound and the proposed approximations is de-
Fig. 3. Cramér–von Mises distance between the exact bound for the probability of 
missed detection β and the Egeworth and CLT approximations {βCLT, βEDG} for the 
range of interest 0 ≤ β ≤ 0.1.

picted in Fig. 3 as a function of the transient length. The results 
were obtained for 0 ≤ β ≤ 0.1, which is the range of missed de-
tections that are typically considered in practical applications. As 
can be observed in Fig. 3, the Edgeworth approximation is con-
sistently providing a better match to the exact distribution, when 
compared to the CLT. It is true though that the accuracy of the CLT 
approximation improves with the transient length, as more terms 
are accumulated in (16). However, the transient would need to be 
on the order of a few hundred samples length for the CLT to pro-
vide similar results to the Edgeworth approximation in terms of 
probability of miss detection.

6.4. Goodness of the upper bound on Pfa

Two experiments are considered: the first one for different val-
ues of the transient length m = {3, 10, 25, 50} and mα = 10m as 
the time window for guaranteed Pfa; the second one for a fixed 
transient length m = 6 and two possible time windows for guar-
anteed Pfa, namely mα = {60,900}. The latter correspond to 1 and 
15 minutes time windows commonly adopted in some integrity 
applications.

The results for the first experiment are shown in Fig. 4, illus-
trating the match between the Edgeworth approximation and the 
exact bound αmα (h) is not that tight as the one previously dis-
cussed in Section 6.3 for βm(h). Indeed, there are values of the 
threshold h where the Edgeworth approximation is actually below 
the exact bound, thus violating the upper-bound inequality in (24). 
This is indeed the main reason for the proposed EVT approxima-
tion, which is shown in Fig. 4 to always remain above the exact 
bound, thus fulfilling the upper-bound inequality.

Examining the behavior of both the Edgeworth and EVT ap-
proximations as a function of m, it is seen that the greater the 
value of m, the slightly closer both approximations are to the exact 
bound. For the Edgeworth approximation, this behavior is due to 
the fact that the distribution is improved as m increases. However, 
since the mα-th power of this approximation has to be computed 
in (28), the error terms are still amplified and they cause the over-
all approximation to violate the inequality in (24). This effect is not 
observed when using the EVT approximation, which is directly ap-
proximating the mα-th power of the distribution and turns out to 
preserve the upper-bound inequality in (28).

Fig. 5 shows the Cramér–von Mises distance between the 
exact bound αmα and the Edgeworth and EVT approximations 
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Fig. 4. Comparison between the exact bound for the probability of false alarm 
αmα (h) with the corresponding Edgeworth and the EVT approximation for m =
{3, 10, 25} and mα = 10 · m.

Fig. 5. Cramér–von Mises distance between the exact bound for the probability of 
false alarm α and the Edgeworth and EVT approximations {αEDG, αEVT} for the range 
of interest 0 ≤ α ≤ 0.1.

{αEDG, αEVT}, as a function of m. Since low probabilities of false 
alarm are of interest, the results in Fig. 5 have been computed 
within the range of values 0 ≤ α ≤ 0.1 (i.e. focusing on the tails 
of the distributions under analysis). As shown, the EVT approxi-
mation is always providing the closest match to the exact bound, 
with a quite constant behavior as a function of m. The results for 
the Edgeworth approximation tend to improve for large values of 
m, due to the larger accumulation of terms in (16). Nevertheless, 
the overall distance with respect to the exact bound is still larger 
than the one achieved by EVT.

The results for the second experiment with fixed mα corre-
sponding to a 1 and 15 minutes time window are shown in Fig. 6. 
The upper plot shows that for mα = 60 the Edgeworth approxima-
tion is closer to the exact bound than the EVT one, even in the 
tail. Nonetheless, the Edgeworth approximation is below the ex-
act bound for h > 2. This is an undesirable behavior that prevents 
us from using this approximation for upper-bounding Pfa. On the 
other hand, the lower plot shows how for a larger value, mα = 900, 
the Edgeworth approximation provides worse results due to the 
Fig. 6. Comparison between the exact bound for the probability of false alarm with 
the corresponding Edgeworth and EVT approximation for mα = {60, 900} and fixed 
m = 6.

Fig. 7. Comparison between the true Pmd(TF) and the proposed approximations for 
the FMA stopping time test.

impact of the mα-th power, whereas the EVT approximation actu-
ally improves when increasing mα for a fixed m.

6.5. Performance assessment of the FMA stopping test

Once the goodness of the proposed approximations for βm(h)

and αmα (h) has been presented, the next step is to assess the 
performance of the FMA test. To do so, the true Pmd(TF) and 
Pfa(TF) for the FMA test in (15) have been numerically evaluated 
and compared with the proposed approximations. The results can 
be observed first in Fig. 7 for Pmd as a function of the detection 
threshold h. It is shown that the CLT approximation clearly de-
parts from the true Pmd(TF) for probabilities smaller than 10−2. 
In contrast, the Edgeworth approximation provides a really tight 
match with the true Pmd(TF) for values down to 10−4, thus pro-
viding a two-orders-of-magnitude improvement with respect to 
the CLT. Results for Pfa are shown in Fig. 8, in which is shown 
that the Edgeworth approximation fulfills the upper-bound down 
to a probability of 10−2, only. In contrast, the EVT approximation 
permanently upper-bounds Pfa(TF) in the whole range of probabil-
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Fig. 8. Comparison between the true Pfa(TF) and the proposed approximations for 
the FMA stopping time test.

Fig. 9. Comparison between the numerical and the approximated ROC using combi-
nations of either αEVT in (39) or αEDG in (35), with βCLT in (4) or βEDG in (33).

ities. The results have been obtained using the same parameters as 
for Fig. 2 but with m = 6, mα = 60, and μ1 = 0.3.

Finally, the results from Pmd and Pfa are combined to build the 
receiver operating characteristics (ROC) shown in Fig. 9. Please note 
that this definition of ROC is different from the standard one, since 
probability of missed detection is considered here instead of prob-
ability of detection. The same parameters as in Fig. 6 have been 
used with m = 6 and mα = 300, and the true (i.e. numerical) re-
sults are compared with the different approximations presented so 
far in this work. That is, the Edgeworth and EVT approximations 
for the bound on Pfa(TF) (i.e. αEVT and αEDG), and the CLT and 
Edgeworth approximations for the bound on Pmd(TF) (i.e. βEDG
and βCLT). Results are shown in Fig. 9 for all possible pairs of 
approximations, namely {αEVT, βCLT}, {αEVT, βEDG}, {αEDG, βCLT} and 
{αEDG, βEDG}.

The best upper bound approximation to the FMA test perfor-
mance is sought, and for the case under study, the best upper 
bound is provided by the pair {αEVT, βEDG} as seen in Fig. 9. This is 
the pair providing the uniformly closest upper bound to the true 
FMA performance. Some other pairs provide a closer upper bound, 
but just for a finite range of missed detection or false alarm prob-
abilities. This is therefore a clear example showing the interest in 
the use of the proposed Edgeworth and EVT approximations for in-
homogeneous detection problems, which span outside the domain 
of the specific application on GNSS SQM considered herein.

7. Conclusions

This work has focused on inhomogeneous quadratic tests, 
which comprise the sum of dependent chi-square and Gaus-
sian random variables and arise in many diverse fields such as 
biomedicine, finance or engineering. The main drawback of these 
tests is that their statistical characterization has no closed-form 
expression, and this poses serious troubles for their application in 
detection problems where error probabilities need to be computed. 
In order to circumvent this limitation, closed-form approximations 
for the probability of miss detection and probability of false alarm 
have been proposed making use of results from EVT and Edge-
worth series expansions. Light has been shed on their practical 
computation and their performance have been assessed in a prac-
tical case study dealing with transient change detection in GNSS 
signal quality monitoring. Simulation results have been obtained 
using realistic parameters in order to assess the goodness of the 
proposed approximations, and the superior performance with re-
spect to the widely adopted approximation relying on the CLT. 
While the application was kept in the context of GNSS, the re-
sults are general and guidelines are provided for their application 
to any other field where inhomogeneous quadratic tests need to 
be evaluated.

Appendix A. Proof of Corollary 2

Lemma 3. Let H p(z̃) be the Hermite polynomial of degree p, then(
d

dz̃

)p

φ(z̃) = (−1)p H p(z̃)φ(z̃). (49)

Proof. First, note that φ(z̃) .= e−z̃2/2/
√

2π , and then

e−z̃2/2 = √
2πφ(z̃),

ez̃2/2 =
(√

2πφ(z̃)
)−1

.
(50)

On the other hand, the Hermite polynomials are defined as

H p(z̃)
.= (−1)pez̃2/2

(
d

dz̃

)p

e−z̃2/2. (51)

Hence, substituting (50) into (51) yields

H p(z̃) = (−1)p(φ(z̃))−1
(

d

dz̃

)p

φ(z̃), (52)

which leads to (49). �
The proof of Corollary 1 follows straight away from the Taylor 

series expansion of f Z (z̃) and the orthogonal properties of the Her-
mite polynomials [24]. However, some further manipulations are 
required to proof Corollary 2. Starting from the distribution defini-
tion, it follows that

F Z (z)
.=

z∫
−∞

f Z (u)du

≈ �(z̃) +
∞∑

p=3

C p

p!
z∫

φ(ũ)H p(ũ)du,

(53)
−∞
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where ũ
.= (u − μZ )/σZ and the first term follows by the defini-

tion of the standard Gaussian distribution. The integral is solved by 
integrating (49),

z∫
−∞

φ(ũ)H p(ũ)du = σz

z∫
−∞

(−1)p
(

d

dũ

)p

φ(ũ)dũ

I = σz(−1)p

[(
d

dũ

)p−1

φ(ũ)

]z

−∞
,

(54)

where the first equality follows by applying a change of variable. 
On account of (49) it follows that

z∫
−∞

φ(ũ)H p(ũ)du = σZ (−1)2p−1 H p−1(z̃)φ(z̃)

= −σz H p−1(z̃)φ(z̃),

(55)

and then (32) follows by substituting this result into (53).
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