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ABSTRACT Future mobile applications are expected to demand high accuracy positioning from cellular
networks. However, most time-delay estimators used for cellular trilateration ignore the multipath channel,
resulting in a poor positioning performance. This paper investigates the use of advanced joint time-delay
and channel estimation techniques for Long Term Evolution (LTE) mobile localization, as a predecessor of
fifth generation (5G) technologies. This is especially relevant for sub-6 GHz bands, where the bandwidth
and the dedicated positioning resources are limited. Thus, joint maximum likelihood (JML) estimators are
presented in order to reach the achievable ranging accuracy, which is first assessed with the derivation of their
Cramér-Rao bound (CRB). Simulation and laboratory experiments are then used to obtain an estimation
of their achievable positioning performance. Periodic-tap JML estimators are shown to achieve the best
position accuracy with respect to state-of-the-art threshold-based and super-resolution techniques, due to
their robustness against multipath overlapping and noise effects for reduced bandwidths. A robust position
accuracy of around 10 meters for a 10-MHz system bandwidth can be achieved with periodic-tap JML
estimators in challenging urban environments.

INDEX TERMS LTE localization, time-delay estimation, channel estimation, position accuracy.

I. INTRODUCTION
There is a significant interest on cellular radio localization
from the standardization bodies, the industry and the research
community [1], due to the provision of the mobile location
for emergency services [2], the benefits of location-aware
communications [3], and the potential exploitation of
location-based services (LCS). Furthermore, future mobile
applications are expected to require a high accuracy and reli-
ability in cellular localization [4], such as autonomous vehi-
cles, float management, asset tracking, or mission-critical
applications. Nowadays, the mobile location information is
typically obtained from Global Navigation Satellite Sys-
tems (GNSS), which have global coverage and good perfor-
mance in perfect clear sky, but suffer from limited satellite
visibility in urban canyons and indoors. An attractive alter-
native is the use of the cellular network itself, by means of
proximity, trilateration or fingerprinting techniques. The cur-
rent Long Term Evolution (LTE) standard already dedicates
network resources and methods for positioning in [5] and [6],

such as the positioning reference signal (PRS), the PRS
muting and the LTE positioning protocol (LPP). In addi-
tion, indoor positioning enhancements have been studied
within the standardization process in [7], by targeting a hor-
izontal position accuracy of 50 meters for E911 emergency
services [2]. Moreover, there is an increasing interest on
the exploitation of high accuracy positioning in LTE, such
as in [8], as a predecessor of future fifth generation (5G)
networks.

The most accurate cellular-based location method in LTE
is based on time-difference of arrival (TDoA) measurements.
However, the TDoA-based position accuracy is mainly lim-
ited due to dense multipath in urban environments. Exper-
imental field measurements in [9] already show this harsh
environment, where a median position accuracy of 20 meters
is only obtained for a 20-MHz PRS. In addition, TDoA local-
ization needs a tight network synchronization, which implies
an extra implementation cost. All these considerations have
led to a limited adoption of TDoA-based localization in
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commercial LTE networks [10]. In this context, the LTE
transmissions can only be used as signals of opportunity
for positioning, as it is assessed with field measurements of
vehicular scenarios from two different setups in [11] and [12].
However, the positioning performance and applicability of
these opportunistic techniques are limited by the hearibility
problem of neighbour base stations (BSs), the estimation of
the network synchronization and themultipath channel. Thus,
multipath countermeasures are required to achieve high accu-
racy positioning with ranging-based techniques, by taking
advantage of the LTE interference-avoidance schemes and
dedicated positioning resources.

There are two main and complementary strategies for mul-
tipath mitigation, which are based on the position calculation
and the time-delay estimation (TDE). At the position level,
a survey of localization methods for line-of-sight (LoS) and
non-LoS (NLoS) conditions is provided in [13], where most
of the robust algorithms are aimed at suppressing outlier
estimations. In addition, TDoA error models can be used
as prior knowledge in the localization algorithm. In [14],
indoor field measurements are first used to characterize the
TDoA error, and this model is then applied in a particle filter.
Theoretical expressions are presented in [15] to compensate
the expected TDoA bias. Skew-t distributed ranging errors
are modelled with LTE laboratory measurements in [16],
and the resulting skew-t parameters are considered in the
statistical trilateration to mitigate the multipath effect for a
low signal bandwidth. However, the main drawback of these
techniques is the prior knowledge required on the TDoA error
distribution. At the TDE level, threshold-based time-delay
estimators have been widely adopted for multipath mitigation
due to their low complexity, as reviewed in [17] and [18].
However, they have a relatively poor positioning performance
even with a 10-MHz LTE bandwidth, as in [19]. Advanced
algorithms are based on the joint time-delay and channel
estimation. Super-resolution TDE techniques have been pro-
posed, such as in [20], and their ranging performance bounds
are studied over multipath channels in [21]. Joint maximum
likelihood (JML) time-delay estimators are presented in [22],
in order to assess the achievable LTE ranging performance
in standard multipath scenarios. However, to the best of the
authors’ knowledge, there has not been a thorough study
of the positioning performance for different types of time-
delay estimators in cellular localization. In addition, these
multipath countermeasures should require more advanced
estimation techniques than conventional estimators, in order
to achieve accurate positioning in urban scenarios.

The objective of this paper is to assess the LTE ranging
capabilities as a testbench for future 5G technologies. The
future 5G standard is expected to inherit or adopt similar
physical-layer features of LTE, such as the multicarrier mod-
ulation. Furthermore, sub-6 GHz bands are expected to have
limited resources in terms of signal bandwidth and posi-
tioning pilots. Thus, the achievable positioning performance
of joint time-delay and channel estimators is assessed with
LTE pilot signals. Three novel contributions are provided

in this paper. First, fundamental lower bounds are derived
for each type of joint time-delay and channel estimation.
Second, the performance limits of existing estimators are
evaluated for representative multipath models. Third, labora-
tory experiments are conducted to assess the achievable posi-
tion accuracy in LTE networks with practical impairments.

The outline of the paper is as follows. First, the funda-
mentals of LTE positioning are described in Section II. The
multicarrier signal and channel estimationmodels are defined
in Section III. The corresponding Cramér-Rao bound (CRB)
of these estimation models is derived in Section IV.
The joint time-delay and channel estimation is introduced
in Section V. Then, the achievable ranging accuracy is
assessed with simulations in Section VI. The ranging and
positioning performance is evaluated with laboratory mea-
surements in Section VII. Finally, the conclusions and future
work are drawn in Section VIII.

II. LTE POSITIONING
The main positioning capabilities of the LTE technology are
described in this section, by including the last updates of
the LTE-Advanced Pro standard in Release 13. The physical
layer and the positioning methods are first introduced. Then,
the focus is on LTE ranging-based localization, where the
main challenges and fundamental limits are defined.

A. PHYSICAL LAYER
The physical layer of cellular systems is defined by the down-
link or uplink channels, depending on whether the signal
transmission is from BS to mobile device or from the mobile
device to BS, respectively. In LTE, orthogonal frequency
division multiple access (OFDMA) is used for the downlink
access, and single carrier FDMA (SC-FDMA) for the uplink
access. Both access modes are based on OFDM multicar-
rier modulation. These transmission modes contain reference
signals to aid the demodulation of the data signals. These
reference signals or pilots can also be used to perform ranging
measurements, such as the synchronization signals, the cell-
specific reference signal (CRS) and the PRS in the downlink,
and the sounding reference signal (SRS) in the uplink. Indeed,
the PRS is a dedicated pilot signal for positioning, which
is designed to avoid inter-cell interference and multipath.
Although the propagation channel is the same for both down-
link and uplink multicarrier signals, the transmission power
and the interference mitigation mechanisms are different.
This paper considers only the downlink physical channel, but
it is also applicable in the uplink case for similar signal power
conditions without interference.

The resource allocation of the LTE downlink is defined in a
time-frequency grid formed by OFDM symbols and subcarri-
ers [5]. The subcarrier spacing Fsc is equal to 15 kHz, which
results in a symbol period of T = 1/Fsc = 66.67 µs. The
minimum resource allocation is called resource block (RB),
which consists of 12 subcarriers and 7 OFDM symbols
for the normal configuration mode. A cyclic prefix (CP)
is added before every OFDM symbol, in order to avoid

25186 VOLUME 6, 2018



J. A. del Peral-Rosado et al.: Position Accuracy of Joint Time-Delay and Channel Estimators in LTE Networks

TABLE 1. Standard LTE positioning methods [6].

inter-symbol interference. The resource allocation is repeated
every radio frame of 10 ms, which is divided in ten sub-
frames of 1 ms (formed by 14 OFDM symbols). The signal
bandwidth of the CRS and PRS is defined between the min-
imum and maximum frequency of the NRS pilot subcarriers,
i.e., BRS = NRS · Fsc = (12 · NRB − 4) · Fsc, where NRB is
the number of RBs. Since NRB = {6, 15, 25, 50, 75, 100}
RBs in LTE, the resulting signal bandwidth is BRS =
{1.02, 2.64, 4.44, 8.94, 13.44, 17.94} MHz. The LTE sys-
tem bandwidth is defined by the total number of active
subcarriers and the guard bands, which is BLTE =

{1.4, 3, 5, 10, 15, 20} MHz. By using carrier aggregation
(CA), multiple LTE bands can be combined up to a system
bandwidth of 100 MHz.

B. POSITIONING METHODS
The LTE technology has supported mobile positioning since
Release 9 of the standard, and it has adopted new meth-
ods in the subsequent releases [1]. The positioning methods
specified up to Release 13 of TS 36.305 [6] are assisted
GNSS (A-GNSS), enhanced cell ID (E-CID), observed
TDoA (OTDoA), uplink TDoA (UTDoA), barometric sen-
sors, WLAN positioning, Bluetooth positioning, terrestrial
beacon system (TBS) positioning, and hybrid positioning.
A summary of these methods is provided in Table 1. The
most promising LTE positioning methods in terms of hori-
zontal accuracy are those based on ranging measurements,
such as A-GNSS, OTDoA, UTDoA or TBS. However, with
the exception of A-GNSS, these methods require additional
infrastructure or mobile device modifications that have lim-
ited their deployment. In addition, network control on the
mobile position calculation poses important privacy issues.
Still, ranging-based localization is foreseen to be a piv-
otal functionality for high positioning accuracy applications
in 5G. It is for this reason that determining the achievable
localization accuracy in LTE (i.e., based onOTDoA) becomes
the cornerstone for understanding the needs of future
5G networks.

C. OTDOA-BASED LOCALIZATION
The OTDoA method is studied herein, as an example of
ranging-based LTE localization. This method is based on the
trilateration of downlink ranging measurements in order to

calculate the mobile position. For the sake of simplicity, let
us define the horizontal distance or range between the i-th BS
and the mobile as

di = c · τi = ‖xi − x‖, (1)

where c is the speed of light, τi is the propagation time delay,
‖ · ‖ is the Euclidean distance, xi = [xi, yi]T is the known
BS position, and x = [x, y]T is the unknown mobile position.
The measured distance or observed pseudorange is

ρi = c · τ̂i = ‖xi − x‖ + c · δt + ei, (2)

where τ̂i is the time-delay estimate, δt is the unknown clock
offset of the mobile with respect to the reference time, and
ei is the pseudorange error. This error can be defined as

ei = c · δti +Mi + Ii + wi, (3)

where δti is the clock offset of the i-th BS with respect to the
reference time,Mi is the multipath contribution, Ii is the inter-
ference contribution, and wi is the noise contribution. In view
of the pseudorange signal model, four main challenges can be
identified in the mobile localization problem:

1) INFRASTRUCTURE
Tight network synchronization is required to achieve accu-
rate localization with trilateration techniques. For instance,
a clock time difference between BSs of 100 ns is equivalent
to a position error of 30meters. This implies that the BS clock
offset has to be accurately calibrated. In addition, the location
of the BSs has to be precisely known in order to not introduce
further biases in the position calculation. However this infor-
mation is only provided to the LTE location server within the
network.

2) INTERFERENCE
Due to the limited time and frequency resources, LTE reuses
the same frequency band between different BSs. For instance,
the macro cell coverage is complemented in hotspots with
small cells, which may have the same cell identity (CID),
resulting in inter-cell interference. This interference is mit-
igated by using the PRS, which has a frequency reuse factor
equal to six, and the PRS muting mechanism, which coordi-
nates the PRS transmission among the different BSs.

3) PROPAGATION CHANNEL
Ranging errors are introduced by the propagation channel due
to the effect of multipath, shadowing and attenuation. Cer-
tainly, multipath is the major source of ranging bias in urban
environments, due to the blockage of the LoS signal. The
LTE standard has typically adopted tapped-delay line (TDL)
models, where a fixed power-delay profile is defined by
considering time-varying channel coefficients according to
a Rayleigh distribution [23]. These TDL models are called
Extended Pedestrian A (EPA), Extended Vehicular A (EVA)
and Extended Typical Urban (ETU), which have a delay
spread of 410 ns, 2.51 µs and 5 µs with 7, 9 and 9 fixed
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tap delays, respectively. The LoS probability of the EPA,
EVA and ETU models is equal to PLoS = {0.87, 0.81, 0.63},
respectively, by determining NLoS for those channel realisa-
tions with a first path gain (normalized by the channel gain)
below−6 dB. Although advanced channels models are spec-
ified in [24], which are based on geometry-based stochastic
channel models (GSCM) with non-fixed tap delays, the cur-
rent standardization process still uses TDL models for the
assessment of the LTE positioning capabilities. Indepen-
dently of the multipath model, the macroscopic path loss and
shadowing are considered within the received signal power,
by computing the link budget according to general parameters
defined in [24] or in [25].

4) GEOMETRY
The geometry between the BSs and the mobile device has an
impact on the precision of the position calculation, known
as dilution of precision (DOP). Cellular deployments are
designed for optimizing the data throughput at the mobile
device. This involves listening the serving BS as loud as pos-
sible while having all the neighboring BSs as silent as possi-
ble. For positioning, the requirement is completely opposite,
since it is desired that the mobile device listens as many loud
signals from as many neighboring BSs as possible, in order
to have a good DOP. Thus, the DOP typically improves as the
density of BSs increases.

D. POSITION COMPUTATION
The OTDoA position is computed by using the difference
between ranging measurements from serving and neigh-
bour BSs. The difference of pseudoranges is written as

1ρ = ρ1 − ρ, (4)

where ρ1 is the pseudorange between the serving BS and the
mobile, and ρ =

[
ρ2, . . . , ρNBS

]T is the vector of pseudor-
anges between the neighbour BSs and the mobile, being NBS
the number of BSs used for positioning. The classical solution
of this trilateration problem is formulated as the nonlinear
least squares (NLS) minimization [13], which can be solved
with an iterative method, such as the Gauss-Newton (GN)
algorithm [26].

One of the metrics used in this work to evaluate the posi-
tioning performance is the horizontal DOP (HDOP), which is
defined for NBS ≥ 3 as

HDOP =

√
tr
{(
GTG

)−1}
, (5)

where the geometry or Jacobian matrix of 1ρ is

G =



x − x1
d1
−
x − x2
d2

y− y1
d1
−
y− y2
d2

x − x1
d1
−
x − x3
d3

y− y1
d1
−
y− y3
d3

...
...

x − x1
d1
−
x − xNBS

dNBS

y− y1
d1
−
x − xNBS

dNBS


. (6)

This metric helps to evaluate the precision of the posi-
tion computation according to the geometry between mobile
device and BSs. The previous formulation can be easily
extended to the three-dimensional (3D) localization prob-
lem. However, this work focuses on the horizontal or
two-dimensional (2D) problem, since the similar height of the
BSs limits the ranging accuracy in the vertical axis.

Since the pseudoranges are typically biased due to the
presence of multipath, the CRB of the location for biased
ranging measurements has been studied in [27] and [28].
Our approach is to directly assess the OTDoA position accu-
racy with the root-mean-square error (RMSE) of the position
error εx, defined as

RMSE(εx) =
√
E
[
ε2x
]
=

√
E
[
‖x̂− x‖2

]
, (7)

where εx is equal to the Euclidean distance between the
mobile position x and the position estimation x̂. The cumula-
tive density function (CDF) of the position error is also used
to complete the positioning assessment.

III. MULTICARRIER SIGNAL AND CHANNEL MODELS
This section introduces the multicarrier signal model of the
downlink, by considering a tight network synchronization
and no inter-cell interference. Different joint time-delay and
channel estimation models are then described.

A. MULTICARRIER SIGNAL MODEL
Given a sampling frequency Fs, the discrete-time multicarrier
OFDM signal model is defined as

xd (m) =

√
2C
N

N−1∑
n=0

b (n) · exp
(
j
2πnm
N

)
, (8)

where C is the signal power, N is the total number of
subcarriers, and b (n) is the complex-valued symbol trans-
mitted at the n-th subcarrier. The sampling period is then
Ts = 1/Fs = T/N . After removing the CP and the carrier
frequency offset, the baseband received signal is

yd (m) = xd (m)~ hd (m)+ nd (m), (9)

where ~ is the circular convolution operator, hd (m) is an
unknown channel impulse response (CIR), and nd (m) is addi-
tive white Gaussian noise (AWGN). The propagation channel
model is described as

hd (m) =
L−1∑
k=0

hk · sinc (m− τk − τ), (10)

where L is the number of taps of the channel, hk is the
complex gain for the k-th path, sinc (x) = sin(π ·x)

π ·x is the
sinc function, τk is the tap delay relative to the first tap
(i.e., τ0 = 0), and τ is the time delay introduced by the
channel (i.e., the time delay of the first arriving ray).

The received signal in the frequency domain is written in
matrix notation as

r = B0τFLh+ w, (11)
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where

r = [r (−N/2+ 1) , . . . , r (N/2)]T , (12)

0 = diag
(
e−j

2π
N (−N/2+1)τ , . . . , e−j

2π
N (N/2)τ

)
, (13)

B =
√
2C · diag (b (−N/2+ 1) , . . . , b (N/2)) , (14)

h = [h0, . . . , hL−1]T , (15)

w = [w (−N/2+ 1) , . . . ,w (N/2)]T , (16)

FL is a discrete Fourier transform (DFT) matrix with N × L
dimensions, defined as

[FL]n,k =
1
√
N
· e−j

2πnτk
N , (17)

for n = [−N/2+ 1, . . . ,N/2] and k = [0, . . . ,L − 1]. The
noise contribution is defined as w (n) ∼ CN

(
0, σ 2

w
)
with a

noise variance σ 2
w.

B. ESTIMATION MODELS
The propagation channel is assumed to be unknown, thus it
has to be estimated and counteracted for accurate ranging.
Since the propagation channel is modelled as in (10), themain
parameters of the estimation model are the time delay τ , each
tap delay τk , the channel coefficients h, and the number of
taps L. Several estimationmodels can be identified depending
on the knowledge of these channel parameters, as it is intro-
duced in [22]. The number of taps are considered a predefined
parameter of the model, which can be computed with model
order estimation techniques, such as theminimumdescription
length (MDL) or Akaike methods [29].

1) (1, L) MODEL
The (1,L) model is formed by L periodic taps at predefined
taps’ delays τk , with the unknown parameters being τ and h.
The parameter vector to estimate is

θ (1,L) =
[
τ , Re

[
hT
]
, Im

[
hT
] ]T

, (18)

where the real and imaginary parts of the channel coeffi-
cients h are considered separately to obtain a real parameter
vector θ (1,L). This model aims to properly characterize
the channel response and to maintain a low estimation
complexity, by solving a one-dimensional (1D) problem.
A widely-adopted definition of the (1,L) model is based on
equi-spaced or periodical delay positions every sampling
period Ts, i.e., τk = {0, 1, . . . ,L − 1}. This periodic-tap
model provides a sampled version of the channel response,
without the need to know the physical delays of the mul-
tipath. Still, there is a model mismatch due to the incom-
plete characterization of the channel response. Particularly,
the close-in multipath, i.e., multipath close to the LoS sig-
nal, is not properly characterized by this (1,L) periodic-tap
model, which results in a degradation of the TDE perfor-
mance. A simplification of this periodic-tap model is based
on the use of only one estimation tap, i.e., L = 1 with
τ0 = 0. This single-tap model results in a low computational
burden, but its channel characterization is only appropriate for

AWGN channel or multipath with taps’ delays almost over-
lapped with the LoS signal.

2) (M, L) MODEL
The model mismatch of the (1,L) model can be reduced
by estimating a set of M taps’ delays (including the time
delay), where M < L, and by fixing the rest of taps’
delays at periodic positions. Thus, the unknown parameters
are the M taps’ delays (also the first arriving path) and the
L channel coefficients, resulting in a M -dimensional prob-
lem. As it is proposed in [22], the (1,L) periodic model can
be extended into the (2,L) hybrid model, by defining periodic
taps’ delays and introducing an additional tap with unknown
delay between 0 and Ts. Then, the parameter vector of the
(2,L) model is

θ (2,L) =
[
τ , Re

[
hT
]
, Im

[
hT
]
, τ ′

]T
, (19)

where the taps’ delays are τk =
{
0, τ ′, 1, · · · ,L − 2

}
, and

τ ′ is the arbitrary-tap delay within a sampling period relative
to the LoS signal, i.e., 0 < τ ′ < 1. This additional unknown
parameter is aimed at capturingmost of the close-inmultipath
energy. This work considers the (2,L) hybrid model instead
of a general (M ,L) model, in order to limit the computational
complexity of the TDE.

3) (L, L) MODEL
The model mismatch can be further reduced by estimating
every tap delay τk , along the time delay τ and the channel
coefficients h. The parameter vector is

θ (L,L) =
[
τ , Re

[
hT
]
, Im

[
hT
]]T

, (20)

where τ = τ +
[
0, τc,1, τc,2, . . . , τc,L−1

]
is the vector of

unknown taps’ delays plus the time delay. Since the number
of unknown parameters increases with the number of taps,
the estimation problem is L-dimensional. Although the com-
plexity of the (L,L) model increases considerably with a high
number of taps, this model is estimating the actual channel
response, and therefore it is of interest in order to assess the
actual achievable accuracy on the TDE.

IV. CRAMÉR-RAO BOUND
The best possible accuracy of unbiased estimators can be
assessed by means of the CRB for a moderate to high signal-
to-noise ratio (SNR). The CRB for the joint time-delay and
channel estimation is derived in this section for the channel
estimation models just defined.

Given the estimation of the parameter vector θ =[
θ1, θ2, . . . , θQ

]
, the minimum variance of any unbiased esti-

mator θ̂i is defined by the [i, i] element of the inverse of the
Fisher information matrix (FIM) J (θ) as

var
(
θ̂i

)
≥ CRBi,i =

[
J−1 (θ)

]
i,i
. (21)

For a Gaussian problem, such as the one under analy-
sis in (11), the [i, j] element of the FIM is given by the
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Bangs-Slepian formula [30],

[J (θ)]i,j = tr
[
C−1 (θ)

∂C (θ)
θi

C−1 (θ)
∂C (θ)
θj

]
+ 2Re

[
∂µH (θ)

θi
C−1 (θ)

∂µ (θ)

θj

]
, (22)

where the mean vector is µ (θ) = B0τFLh, and the covari-
ance matrix is assumed to be C (θ) = E

[
wwH

]
= σ 2

wI.

A. CRB FOR THE (1, L) MODEL
The FIM for the (1,L) model is computed with the
Bangs-Slepian’s formula using the signal model in (11) as

J
(
θ (1,L)

)
=

2
σ 2
w

 J11 JT21
J21 J22

, (23)

where J11 = hHAHD2Ah,

J21 =
[
Im
[
AHDAh

]
,−Re

[
AHDAh

]]T
,

and

J22 =
[
Re
[
AHA

]
−Im

[
AHA

]
Im
[
AHA

]
Re
[
AHA

] ],
beingA = BFL andD = 2π/N ·diag (−N/2+ 1, . . . ,N/2).
The CRB using the (1,L) estimation model is calculated as
in [31]

CRB(1,L)(θ (1,L)) =
σ 2
w

2

[
γ−1τ CRBT

21

CRB21 CRB22

]
, (24)

where γτ = hHAHD5⊥ADAh, being the projection matrix
defined as 5⊥A = I − A

(
AHA

)−1 AH. Thus, the CRB with
respect to τ is

CRB(1,L)(τ ) = σ 2
w/2 · γ

−1
τ . (25)

The resulting CRB is dependent on the channel coefficients h,
being independent of τ . The effect of the channel information
on the TDE is denoted by the projection matrix 5⊥A . In case
the channel response h is assumed to be known, the corre-
sponding bound is obtained by introducing 5⊥A = I, which
results in a lower bound than CRB(1,L)(τ ).
The expression of the CRB for the (1,L) model in (25)

can be applied for different predefinitions of the taps’ delays,
by computing the corresponding Fourier matrix as defined
in (17). For instance, the (1, 1) or single-tap model is a
particularization of (24) for L = 1, i.e., F1 = 1/

√
N , which

results in

CRB(1,1)(τ ) =
σ 2
w · N

2 · hH0 · h0
·

(
bHD5⊥b Db

)−1
, (26)

where

b =
√
2C · [b (−N/2+ 1) , . . . , b (N/2)]T , (27)

5⊥b = I− b
(
bHb

)−1
bH. (28)

If the channel coefficient h0 is considered to be known and
equal to one, the CRB in (26) is equal to the general expres-
sion of the CRB for time delay in [30].

B. CRB FOR (2, L) MODEL
The parameter vector θ (2,L) includes one more estimate
than θ (1,L), i.e., the delay τ ′ of a tap introduced somewhere
between the first two periodic taps, in order to better represent
the close-in multipath contribution. Since the Fourier matrix
depends on τ ′, let us define

FL,τ ′ = FL , for τk =
{
0, 1, · · · ,L − 2, τ ′

}
. (29)

This (2,L) model is an extension of the (1,L) model, thus
the Fourier matrix FL is substituted by FL,τ ′ in (23), and the
FIM using the (2,L) model results in the following parti-
tioned matrix:

J
(
θ (2,L)

)
=

2
σ 2
w


J11 JT21 J

T
31

J21 J22 J23

J31 JT23 J33



=
2
σ 2
w

 J
(
θ (1,L)

) JT31

J23

J31 JT23 J33

, (30)

where

J31 = Re
[
hHddTFH

L,τ ′B
HD2BFL,τ ′h

]
, (31)

J23 =

 Im
[
FH
L,τ ′B

HDBFL,τ ′ddTh
]

−Re
[
FH
L,τ ′B

HDBFL,τ ′ddTh
]
, (32)

J33 = hHddTFH
L,τ ′B

HD2BFL,τ ′ddTh, (33)

being d = [0, . . . , 0, 1]T. The L×1 vector d is obtained from
the derivative of the Fourier matrix FL,τ ′ with respect to τ ′,
which is written as

∂FL,τ ′
∂τ ′

= −jDFL,τ ′ddT. (34)

The CRBwith respect to τ using the (2,L) model is computed
numerically as follows:

CRB(2,L)(τ ) =
[
J−1

(
θ (2,L)

)]
1,1
. (35)

C. CRB FOR (L, L) MODEL
Considering the parameter vector θ (L,L), let us define the
Fourier matrix as FL,τ = FL for τk = τc,k . Then, the
FIM of the (L,L) model results in

J
(
θ (L,L)

)
=

2
σ 2
w

 Jτ JThτ
Jhτ Jh

, (36)

where

[Jτ ]i,j = hHdidTi F
H
L,τB

HD2BFL,τdjdTj h, (37)

[Jhτ ]i =

 Im
[
FH
L,τB

HDBFL,τ ′didTi h
]

−Re
[
FH
L,τB

HDBFL,τ ′didTi h
]
, (38)

Jh = J22, (39)
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for i = {1, 2, . . . ,L} and j = {1, 2, . . . ,L}, being di the
i-th row of the identity matrix. As in (35), the CRB with
respect to τ using the (L,L) model is computed numerically
as follows:

CRB(L,L)(τ ) =
[
J−1

(
θ (L,L)

)]
1,1
. (40)

D. ECRB
Given the CRB for the channel estimation models derived in
this section, the expectation of their CRB formultiple channel
realizations results in the expected CRB (ECRB), which is
defined as

ECRB (τ ) = Eh [CRB (τ )]. (41)

The computation of the ECRB can be done numerically
as in this work, or it can be obtained analytically as
in [32].

V. JOINT TIME-DELAY AND CHANNEL ESTIMATORS
Countermeasures against multipath are necessary in most
urban environments, due to the large number of reflections
and obstructions of the LoS signal. These multipath effects
introduce a bias on the time-delay estimation, which sig-
nificantly degrades the OTDoA positioning performance.
Most of the contributions on multipath mitigation consider
threshold-based or first-peak time-delay estimators, such as
in [17] and [18]. These estimators are based on finding the
first peak of the cross-correlation function (between received
and pilot signals) above a certain threshold, which results
in a low complexity. However, these data-aided schemes
have a poor performance against non-resolvable multipath,
such as close-in multipath, because they are only based on
the correlation function. Thus, there is the need to estimate
the channel, in order to counteract the effect of multipath.
In this sense, joint time-delay and channel estimators can
significantly improve the ranging performance, by reducing
the estimation bias of the time delay. But, few contributions
have addressed the joint estimation of the time-delay and
channel in LTE, such as in [11] and [22].

The objective of this section is to define the general
types of joint time-delay and channel estimators. Since the
propagation channel is assumed to be unknown, the joint
maximum likelihood (JML) approach is considered, to pro-
vide the best ranging performance in terms of minimum
estimation variance. Three general types of JML estimators
and one super-resolution technique are defined to counter-
act the effect of multipath, by using the estimation models
introduced in Section III-B. These estimators use the LTE
pilots dedicated for positioning, i.e., which are designed
to provide an optimal channel estimation performance and
high hearibility of neighbour BSs. These data-aided schemes
are then able to find the time delay τ and the L channel
coefficients h from the received signal r in the fre-
quency domain, by considering L taps defined at each
τk delay.

A. (1, L)-JML TDE
As it is derived in [22], the (1,L)-JML estimation of the time
delay is

τ̂ = argmin
τ

{
‖P⊥A,τ r‖

2
}
, (42)

where P⊥A,τ = I − Aτ
(
AH
τ Aτ

)−1 AH
τ is the orthogonal pro-

jection matrix onto the subspace orthogonal to that spanned
by the columns of Aτ , which is Aτ = B0τFL . This work
focuses on the periodic-tap estimation model, i.e., τk =
{0, 1, . . . ,L − 1}, in order to capture most of the multipath
energy with L estimation taps. The number of taps is assumed
to be estimated in a previous stage. Considering L = 1,
the (1, 1)-JML estimator results in finding themaximum peak
of the cross-correlation function. If there is a fine synchro-
nization and the estimation range is appropriately bounded,
this (1, 1)-JML estimator can be approximated by threshold-
based or first-peak estimators [17], [18].

B. (2, L)-JML TDE
The (2,L)-JML estimator is an extension of the (1,L)-JML
estimator that is aimed at counteracting close-in multipath.
Let us consider the hybrid-tap estimation model introduced
in [22] with τk =

{
0, τ ′, 1, · · · ,L − 2

}
for 0 < τ ′ < 1. The

(2,L)-JML TDE is then defined as[
τ̂

τ̂ ′

]
= argmin

τ,τ ′

{
‖P⊥A,τ,τ ′r‖

2
}
,

s.t. 0 < τ ′ < 1, (43)

where P⊥A,τ,τ ′ = I−Aτ,τ ′
(
AH
τ,τ ′

Aτ,τ ′
)−1

AH
τ,τ ′

, and Aτ,τ ′ =
B0τFL,τ ′ . This estimator is designed to provide a better
characterization of close-in multipath than the (1,L)-JML
estimator, at the expense of a slightly higher computational
burden.

C. (L, L)-JML TDE
The derivation of the (L,L)-JML estimator is also extended
from the (1,L)-JML estimator, resulting in an optimization
problem of order L. The (L,L)-JML TDE is then defined as

τ̂ = argmin
τ

{
‖P⊥A,τ r‖

2
}
, (44)

where P⊥A,τ = I − Aτ
(
AH
τ Aτ

)−1 AH
τ , and Aτ = B0τFL,τ .

As a result, the (L,L)-JML estimator is expected to have a
very high computational burden as L increases.

D. (L, L)-ESPRIT TDE
Super-resolution techniques have a lower complexity than the
ML approach, thus they are typically considered to solve the
(L,L) estimation problem. As in [11], the estimation of signal
parameters via rotational invariance techniques (ESPRIT)
algorithm is used to estimate the time delay with the (L,L)
model. This method is based on staggered subspaces or snap-
shots of the channel estimates, i.e., Ĥ (n) = b∗ (n) · r (n),
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which are used to form the so-called data matrix [33]. In [11],
the data matrix is defined as

X = [x0, · · · , xP−1]T , (45)

xp =
[
ĤPRS (p) , · · · , ĤPRS (p+M − 1)

]T
, (46)

whereX is a P×M matrix with P = 2 ·NRB−M , ĤPRS(p) =
Ĥ (n) for p = {0, · · · ,P− 1} and n ∈ NPRS, beingNPRS the
subset of PRS subcarrier indexes, and L ≤ M < NRB. A high
value of M reduces the impact of noise, due to an increased
number of averaged samples, but it degrades the estimation
resolution of the taps’ delays [20]. As it is described in [33],
the total least squares (TLS) is based on the singular value
decomposition (SVD) of the data matrix, which is written as
X = U6VH. First, the subspace V is partitioned as

Vs = V · [IL×L 0L×M−L]T , (47)

Vs,1 = [IM−1×M−1 0M−1×1] · Vs, (48)

Vs,2 = [0M−1×1 IM−1×M−1] · Vs. (49)

Then, these two subspaces Vs,1 and Vs,2 are staggered, and
a SVD is performed as

[
Vs,1 Vs,2

]
= Ũ6̃ṼH, where Ṽ is

partitioned in L × L quadrants, i.e.,

Ṽ =
[
Ṽ11 Ṽ12

Ṽ21 Ṽ22

]
. (50)

Given the TLS solution 9 = −Ṽ12Ṽ−122 , the time delay and
taps’ delays are finally computed as

τ̂ =
NRS

12π
· arg {ψ} , (51)

where ψ = [ψ0, · · · , ψL−1] are the L eigenvalues of 9.
Notice that (45) does not consider the empty DC subcarrier

of the LTE downlink transmission and the PRS allocation.
This results in an estimation bias due to the additional subcar-
rier that separates the two center PRS pilots. As it is verified
through simulations, this bias is practically negligible as the
signal bandwidth increases. Thus, (45) is a valid approxima-
tion for the application of the ESPRIT algorithm in realistic
LTE conditions.

VI. SIMULATION RESULTS
This section assesses the ranging performance of joint time-
delay and channel estimators in representativemultipath envi-
ronments. These estimators are the (1, 1)-JML, (1,L)-JML,
(2,L)-JML, and (L,L)-ESPRIT. The evaluation considers
the signal bandwidth, multipath delay spread, C/N0 and the
number of estimated taps, in order to provide insights on the
use of the most adequate time-delay estimator for a certain
multipath scenario.

The TDE is performed with only one OFDM symbol,
assuming a coherent multipath channel over this period.
Since one OFDM symbol is the minimum integration time,
the results provide a worst-case performance assessment.
The TDE measurements are assumed to be obtained by a
positioning receiver, which is expected to track the received

signal. Thus, a fine synchronization is considered, result-
ing in frequency offsets almost negligible and a TDE range
within one sampling period, i.e., τ ∈ [−1/2, 1/2] in
Ts units. In these conditions, the ranging performance
of widely-adopted threshold-based estimators is practically
equivalent to the performance of the (1, 1)-JML estimator.
In the case of the (L,L)-ESPRIT algorithm,M = NRB− 1 is
considered to average the maximum number of samples, and
to reduce the noise contribution.

A. ATTAINABILITY OF THE CRB
The CRB expressions derived in Section IV are first assessed
by considering a multipath channel with periodic taps. This
helps to evaluate the attainability of the CRB by using the
different estimation models. The multipath channel is then
defined as

hd (m) =
1
‖h‖

L−1∑
k=0

hk · sinc (m−1τ · k − τ) , (52)

where 1τ is the tap-delay separation, hk = e−
k
L and

h = [h0, · · · , hL−1]T. The tap-delay separation is a parame-
ter defined to assess the effect of the multipath overlapping.
The channel coefficients h are defined by fixed exponential
decaying values, in order to force a multipath realisation with
LoS conditions, since the CRB expressions do not consider
any NLoS bias.

Let us consider C/N0 = 90 dB-Hz and an LTE system
bandwidth of 10 MHz (i.e., NRB = 50), which results in
SNR = C/N0 − 10 log10 (BRS) = 20.49 dB. This is a
typical SNR level for a macro-cell deployment. Under these
assumptions, the square root of each CRB is computed as
a function of the tap-delay separation for L = {1, 4, 16}
in Figure 1. For 1τ < 1, there is a high CRB because there
is a high overlapping between multipath components and the
problem becomes ill-conditioned. For1τ > 1, the multipath
overlapping is only due to the side lobes of the sinc function
in (52). Thus, the overlapping effect is mainly significant
for 0 < 1τ < 2. In addition, the CRB increases with the
number of taps L and the number of estimated taps’ delays,
as a consequence of the larger number of unknowns to be
determined. For this reason, the highest CRB is obtained for
the (L,L) estimation model. But, the degradation of the CRB
is not linear with the number of taps’ delays to be estimated.
For instance, the square root of the CRB for (1,4), (2,4)
and (4,4) models at 1τ = 1 is approximately 0.4, 0.5 and
2.4 meters, respectively.

Let us now focus on the case of L = 4 and 1τ = 1.
The CRB is evaluated for 50 < C/N0 < 120 dB-Hz and
the three estimation models. This range of C/N0 values is
consistent with realistic levels of an LTE deployment, as it
is confirmed by the experimental results in Section VII-A.
The RMSE of the (1, 1)-JML, (1,L)-JML, (2,L)-JML,
(L,L)-JML and (L,L)-ESPRIT estimators is then com-
puted with 1000 Monte-carlo simulations. As it is shown
in Figure 1b, the JML estimators for L > 1 attain their
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FIGURE 1. Ranging performance for each estimation model and a 10-MHz
LTE system bandwidth, by considering a multipath channel with equi-
spaced taps’ delays and exponential-decaying coefficients. (a) CRB for
L =

{
1,4,16

}
and C/N0 = 90 dB-Hz. (b) CRB and RMSE for L = 4 and

1τ = 1.

corresponding CRB for the moderate- and high-C/N0 region,
and their RMSE depart from the CRB at different C/N0
depending on the estimationmodel. The (1, 1)-JML estimator
has the worst performance, due to its very limited counterac-
tion of multipath. The best performance is achieved by the
(1,L)-JML estimator. This confirms that the (1,L) model
is the best solution, if multipath can be properly charac-
terized by periodic taps’ delays. Since the (L,L)-ESPRIT
estimator is biased, it departs from the (L,L)-CRB. But,
the bias of the ESPRIT algorithm is significantly low, and it is
more computational efficient than the (L,L)-JML estimator.
Thus, the (L,L) model is only evaluated with the ESPRIT
algorithm.

Further simulations have also validated the attainability of
the JML estimators to the ECRB for 1000 multipath realisa-
tions, but these results are not shown here due to space limita-
tions. This attainability is fulfilled for moderate to high C/N0
if there is no mismatch between the estimation model and the
propagation channel model, otherwise the model mismatch
causes a degradation on the estimation performance.

B. ACHIEVABLE RANGING ACCURACY
The multipath model defined in (52) by periodic taps has
helped to assess the effect of the multipath overlapping,
the model mismatch and the number of estimated taps.

TABLE 2. Number of taps L optimized for standard EPA and ETU channel
models at C/N0 = 90 dB-Hz.

The achievable ranging accuracy of the estimators is now
studiedwith standard TDL channel models for an LTE system
bandwidth from 1.4 to 20 MHz and moderate C/N0 equal
to 90 dB-Hz. These TDL models characterize representative
urban channels for a macro-cell deployment. The EPA and
ETU models, defined in [23], are considered because their
simplicity helps to ease the reproducibility of the results, and
they are widely adopted in the LTE standardization. In addi-
tion, the use of EPA and ETU models allows a performance
assessment of the estimators with low and high delay spread
of the multipath channel, respectively.

The right selection of L helps in properly capturing the
feature characteristics of the multipath impulse response to
be estimated. The estimation model should then consider the
range of delays where the multipath energy is concentrated.
If there is no knowledge of the delay spread, L can be selected
assuming a worst-case scenario as L = dTCP · NRS/Tse,
using the normal CP length of TCP = 4.7µs indicated in the
LTE standard. The disadvantage of periodic-tapmodels is that
some of these fixed taps may barely capture any multipath
contribution. This might be caused by the sparse distribution
of the actual taps to be estimated, or to situations where the
delay spread is much shorter than the one expected. This
limitation can be circumvented by using an (L,L) model
instead, where L taps positions are estimated to better match
the actual channel. Our design criteria for L is to use the
smallest number of taps, in order to capture most of the
channel energy.

Let us consider C/N0 = 90 dB-Hz as a realistic value
for an outdoor macro-cell scenario, as it is experimentally
obtained in Section VII-A. The minimum L to achieve the
minimum ranging error is computed through Monte-carlo
simulations, and summarized in Table 2 for the LTE signal
bandwidths. The low delay spread of the EPA model results
in a lower L with respect to the high delay spread of the ETU
model. As the signal bandwidth increases, there are more
resolvable multipath components, and L increases as well to
capture the multipath contribution. The RMSE of the esti-
mators is shown in Figure 2. The best ranging performance
is obtained with the (1,L)-JML and (2,L)-JML algorithms
in most of the cases, because they are more robust against
noise with respect to the (L,L)-ESPRIT, and more accurate
than the (1, 1)-JML or threshold-based estimators. The results
show that a reduced L is effective to counteract the high
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FIGURE 2. RMSE of the different ranging estimators for every LTE signal
bandwidth at C/N0 = 90 dB-Hz, computed with 1000 Monte-carlo
simulations. (a) EPA channel model. (b) ETU channel model.

TABLE 3. 50%-CDF of ranging errors at C/N0 = 90 dB-Hz.

overlapping multipath, such as with the EPA model, while an
increased L can be used with more resolvable multipath, such
as with the sparse ETUmodel. In order to further highlight the
performance improvement due to multipath counteraction,
the CDF of the ranging error is computed, and the 50% and
95% values are summarized in Table 3 and 4, respectively,
where the values in bold correspond to the minimum ranging
error for each bandwidth. The 50%-CDF metric especially
shows the importance of using joint time-delay and channel
estimation to achieve a ranging accuracy around two times
better than with conventional estimators, in most of the cases
of Table 3. In contrast, these multipath mitigation techniques
provide almost no improvement against NLoS bias, as it is
shown with the 95%-CDFmetric in Table 4. According to the
results obtained, an LTE system with a 10-MHz bandwidth

TABLE 4. 95%-CDF of ranging errors at C/N0 = 90 dB-Hz.

provides a ranging accuracy on the order of 10 meters. This
applies to the case when standard EPA and ETU multipath
channel models are considered, and optimal joint time-delay
and channel estimation techniques are applied at the user
terminal.

The LTE position accuracy is expected to improve in
indoor femtocell scenarios or vehicle-to-infrastructure (V2I)
highway scenarios, due to a multipath channel with lower
delay spread and higher SNR level than the outdoor urban
macro-cell scenario. In addition, the ESPRIT algorithm is
expected to improve its positioning performance as the effect
of the multipath overlapping decreases, such as the large
bandwidths expected in 5G networks. A good trade-off is
achieved by the (1,L)-JML estimator for limited bandwidths,
e.g. at sub-6 GHz bands, when L is set to characterize most
of the multipath contribution.

VII. LABORATORY EXPERIMENTS
The objective of this section is to discuss the positioning
robustness in LTE, by considering the minimum number
of resources available. That is, OTDoA measurements from
three BSs (i.e., NBS = 3) using only one OFDM symbol.
In addition, tight network synchronization and negligible
inter-cell interference are assumed, in order to obtain a lower
bound of the achievable performance in practice. For this
purpose, an experimental testbed is implemented for an LTE
system bandwidth of 1.4 and 10 MHz. A controlled scenario
is emulated for static mobile positions in a typical macro-
cell deployment, and the time and frequency synchronization
errors of the testbed are removed with a calibration signal.
Thus, the assessment is based on the impact of multipath and
geometry between BSs. The (1,L)-JML and (2,L)-JML esti-
mators are used with the corresponding L values of Table 2.
Given the expected C/N0 values and the low signal band-
widths, the (L,L)-ESPRIT algorithm is not considered due
to its worse RMSE with respect to the other estimators, and
the (1, 1)-JML estimator is used to represent widely-adopted
threshold-based estimators.
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FIGURE 3. Experimental testbed at the European Navigation Laboratory
(ENL) of the European Space Agency in ESTEC (The Netherlands), in order
to emulate an LTE network deployment with 7 BSs and ISD of 500 meters.
(a) Laboratory testbed. (b) LTE network deployment.

A. LABORATORY TESTBED
The experiments are conducted at the European Navigation
Laboratory (ENL) of the European Space Agency in ESTEC
(The Netherlands). The laboratory testbed is based on the
emulation of an outdoor macro-cell network and the estima-
tion of the mobile device with a software receiver. A diagram
of this testbed is shown in Figure 3a. The experimental sce-
nario is based on the typical hexagonal cellular deployment
with inter-site distance (ISD) equal to 500 meters. The result-
ing cell layout is shown in Figure 3b, where the region with a
HDOP below 2 is also depicted. An LTE network simulator
is first used to compute the propagation losses between each
mobile position and BS, with the standard model in [25] for a
carrier frequency of 816 MHz. The three most powerful BSs
at each mobile position are only considered for emulation.

Two Spirent E2010S LTE network emulators are config-
ured to transmit downlink signals from four BSs with a

system bandwidth of 1.4 or 10 MHz. One of the BSs is
used for calibration purposes, being its signal only affected
by AWGN. The Spirent VR5 HD spatial channel emulator
applies the pre-computed propagation losses and the ETU
channel model to the three other BSs. The combined output
signals are then down-converted and sampled to baseband
by the USRP N210 with DBSRX2 daughterboard, which is
connected to a stable reference clock. Our MATLAB-based
LTE software receiver [34] post-processes the baseband sig-
nal, which is re-sampled from 10 and 25 Msps to 1.92 and
15.36 Msps for the 1.4- and 10-MHz system bandwidth,
respectively. Similarly to [16], the CRS of the calibration
BS is used to acquire and track the receiver clock offset.
Therefore, the ranging errors are only affected by multipath
and noise, and they can be directly computed from the rang-
ing estimates. This TDE is performed with the (1, 1)-JML,
(1,L)-JML and (2,L)-JML estimators within a range of one
sampling period, i.e., τ̂ ∈ [−1/2, 1/2] in Ts units. Since
the true time delay τ is precisely tracked with the calibration
signal, the ToA measured distance or observed pseudorange
of the i-th BS is then computed as ρi = di + c · τ̂i, where
τ̂i is the TDE from the CRS symbol of the i-th BS. The
OTDoA measurements are finally obtained as in (4), and
each mobile position is calculated with 10 iterations of the
GN algorithm described in [26]. The initial position estimate
used for this iterative algorithm is at the barycentre of the
three most powerful BSs.

According to the grid of points depicted in Figure 3b,
there are 599 different static mobile positions, where each
position is emulated during 20 radio frames. For each radio
frame, there is an SNR estimation obtained with the non-
data-aided technique in [35]. The probability density function
(PDF) of the resulting C/N0 estimation is shown in Figure 6.
The serving BS is more powerful than the neighbour BSs
by around 10 and 15 dB, respectively. The C/N0 levels are
above 60 dB-Hz, and the corresponding serving BS level
is typically between 80 and 90 dB-Hz, being its average
C/N0 closer to the latter value. The differences on the C/N0
estimates between both system bandwidths are mainly due to
the calibration of the USRP gain. These C/N0 estimates are
then used to calibrate the pre-computed propagation losses,
which do not consider the receiver losses.

B. RANGING PERFORMANCE
The ranging performance of the estimators is assessed
with measurements from the laboratory experiment and
benchmarked with the results obtained by simulation
in Section VI-B. In the experimental case, the ranging mea-
surements are sorted according to the expected C/N0 of the
emulated scenario. The RMSE of the TDE is then com-
puted as function of the C/N0 with a resolution of 5 dB-Hz.
In the simulated case, the RMSE is calculated with
1000 Monte-carlo realisations for each C/N0 value. The
results for a 1.4- and 10-MHz system bandwidth (i.e., 6 and
50 RBs, respectively) are shown in Figure 5. The experimen-
tal results are in line with the simulations of Section VI-B,
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FIGURE 4. PDF of the C/N0 estimates obtained with the captured
laboratory signals over ETU multipath channel. (a) 1.4-MHz system
bandwidth with 6 RBs of PRS. (b) 10-MHz system bandwidth
with 50 RBs of PRS.

FIGURE 5. Experimental and simulated RMSE of time-delay estimators
over ETU multipath channel. (a) 1.4-MHz system bandwidth with 6 RBs
of PRS. (b) 10-MHz system bandwidth with 50 RBs of PRS.

because the (2,L)-JML and (1,L)-JML estimators obtain the
best ranging performance for 6 and 50 RBs, respectively.
According to these results, the achievable ranging accuracy

FIGURE 6. PDF of the TDoA error obtained with the laboratory
experiment over ETU multipath channel. (a) 1.4-MHz system bandwidth
with 6 RBs of PRS. (b) 10-MHz system bandwidth with 50 RBs of PRS.

is close to 40 meters for NRB = 6 RBs, and slightly below
10 meters for NRB = 50 RBs. Still, there is a bias on the
achievable accuracy between experiment and simulation. For
instance, considering C/N0 = 90 dB-Hz, this difference
is between 1 and 4 meters for the JML estimators in both
bandwidth configurations. This bias is mainly due to the
ideal filter response assumed in the simulations, which is
considered to be rectangular. As it is shown in [34], the non-
rectangular filter response of the USRP affects the achievable
ranging accuracy of the estimators.

The TDoA error is now assessed for the two pairs of TDE
experimental measurements. The PDF of the TDoA errors
is shown in Figure 6, where a Gaussian-like distribution
is observed, as it could be expected from [14] and [15],
except for the (2, 5)-JML estimator in the 50-RBs case. The
(2, 7)-JML estimator for 6 RBs and (1, 4)-JML estimator for
50 RBs obtain a higher density of errors around zero than the
other estimators, resulting in a better ranging accuracy. But,
in contrast to the RMSE of the TDE, the (1, 1)-JML estimator
is the second best estimator in terms of TDoA error. This
is due to the fact that common outliers present in individual
measurements tend to cancel out when computing differential
measurements. This effect is more noticeable for 50 RBs
due to the dense multipath contribution at the estimation
boundary, as it can be seen in Figure 6b. Thus, these bounded
outlier estimations result in erroneous TDoA measurements.
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TABLE 5. Experimental positioning results with 3 BSs for mobile
locations with HDOP ≤ 2.

In this sense, this work does not use the outlier TDE mea-
surements for computing themobile position, and the position
estimation is left as not available for those situations.

C. POSITIONING PERFORMANCE
The LTE positioning capabilities are evaluatedwith the exper-
imental ranging measurements of the (1, 1)-JML, (1,L)-JML
and (2,L)-JML estimators. The OTDoA ranging measure-
ments from 3 BSs are used with 10 iterations of the
GN algorithm to compute the position. Since the position
accuracy strongly depends on the geometry between the
used BSs and the mobile device, a region of good geom-
etry is depicted in Figure 3b. This region is defined by a
HDOP ≤ 2, thus a mobile position with HDOP > 2
is here considered to have a deficient geometry. Then,
the positioning performance is assessed depending on the
HDOP at each mobile position. As it is discussed in the
previous section, the outlier TDE measurements may result
in an erroneous position estimation, and they corrupt the
assessment of the positioning performance. Thus, the position
estimation is left as unavailable if there is an outlier esti-
mation. Then, the probability of position availability is here
defined as P

(
εx < c · Ts/2, |τ̂k | ≤ 0.49 | k

)
, i.e., the position

solution is available if the position error has converged below
half sampling period (i.e., below 147 and 16.8 meters for
6 and 50 RBs, respectively), and there is no outlier TDE.
Then, the RMSE is computed considering these available
position solutions. In addition, the CDF of the position error
is calculated over the interval between 0 and half sampling
period, i.e., P (0 < εx < c · Ts/2). These positioning metrics
are shown for good geometry regions (HDOP ≤ 2) in Table 5
and deficient geometry regions (HDOP > 2) in Table 6.
The CDF of the position errors can be seen for the different
cases in Figure 7. For a small bandwidth and bad geometry,
there is no advantage to use more elaborated estimators than
(1, 1)-JML or threshold-based estimators, due to the coarse
achievable position accuracy. If there is a good geometry, but
small bandwidth, the (2,L)-JML estimator helps to achieve a
position accuracy around 80 meters on the 67% of the time,
due to its counteraction of close-in multipath. The advantage
of using advanced estimators is even more notorious for
large bandwidths, due to the reduced effect of the multi-
path overlapping. Thus, the (1,L)-JML estimator is able to

TABLE 6. Experimental positioning results with 3 BSs for mobile
locations with HDOP > 2.

FIGURE 7. Position error with experimental OTDoA ranging
measurements from 3 BSs for the mobile locations with
HDOP ≤ 2 and HDOP > 2. (a) 6 RBs. (b) 50 RBs.

achieve the best positioning performance. As it is shown in
Table 5 for a 10-MHz system bandwidth, the position accu-
racy (i.e., RMSE) of the (1, 4)-JML estimator is around
10 meters for the 73% of the position fixes, as compared to
just 31% of the occasions for the simple (1, 1)-JML estimator.
These experimental results show the position robustness of

each ranging estimator, when assuming a minimum number
of resources, i.e., 3 BSs and TDE with one OFDM sym-
bol. In addition, the results are in line with the theoretical
and simulation results obtained in Section VI. The adequate
channel characterization is essential to reduce the number of
outlier TDE measurements, in order to obtain an accurate
position solution. In this sense, the (1,L)-JML estimators
achieve a good robustness for each system bandwidth, with
a probability of position availability between 70% and 80%
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with good HDOP. Thus, the (1,L)-model can be used to
design a robust ranging estimator able to target a position
accuracy within half sampling period for a limited system
bandwidth, by assuming minimum positioning resources.

VIII. CONCLUSIONS
This paper has analysed the achievable ranging capabilities of
different time-delay estimators able to counteract multipath,
and their application to Long Term Evolution (LTE) mobile
localization. Since future fifth generation (5G) cellular net-
works are expected to adopt similar features of the LTE
physical layer, such as the multicarrier signal, this assess-
ment is considered a testbench for the design of cellular-
based localization applications with limited bandwidth at
sub-6 GHz bands, by using minimal positioning resources.
The multipath counteraction is based on the joint time-delay
and channel estimation, and their achievable ranging perfor-
mance is assessed by deriving the corresponding Cramér-Rao
Bound (CRB). The theoretical and simulation results show
that periodic-tap joint maximum likehood (JML) approaches
achieve a better ranging performance than threshold-based
and super-resolution techniques. Then, laboratory results are
provided to assess the practical performance of JML esti-
mators with a time-difference of arrival (TDoA) positioning
method, for an LTE system bandwidth of 1.4 and 10 MHz.
The experimental results show that the most robust JML esti-
mator is also based on a periodic channel estimation model,
given pre-computed number of estimation taps. The horizon-
tal position accuracy obtained by this estimator is around
10 meters for the 73% of the position fixes, with a 10-MHz
system bandwidth and good position geometry. This confirms
the feasibility to achieve a position accuracy within half
sampling period, given the appropriate design of the number
of periodic estimation taps with a JML approach. Future work
is aimed at studying the exploitation of antenna arrays for
precise and reliable cellular localization.
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