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Abstract
Multipath signals formed by signal reflection coming from objects in the vicinity of Global Navigation Satellite System 
(GNSS) receivers result in a degradation of the tracking performance and an increase in the positioning error. By estimating 
the parameters of both line-of-sight signal and the multipath signals, superior multipath mitigation, spoofing suppression, 
and localization can be attained. We propose using the multiple sparse Bayesian learning method together with the joint 
angle and delay estimation technique in GNSS multipath environment to fully exploit the sparsity present in both the spatial 
and the temporal domains. We also extend the techniques to the estimation of fractional Doppler frequency besides the angle 
and delay. To counteract the intrinsic drawbacks of sparse representations, two different algorithms based on on-grid and 
off-grid estimators are proposed to either reduce the complexity or enhance the resolution such that the proposed multipath 
mitigation approach can be adapted to various GNSS practical situations. Subsequently, a third algorithm with improved 
resolution is obtained by applying the Space Alternating Generalized Expectation–Maximization algorithm to refine the 
MSBL-based joint angle and delay estimates. Simulation results indicate that the three proposed algorithms can effectively 
resolve the GNSS multipath signals and have better performance than existing methods even in severe situations, like the 
cases of signals with low carrier-to-noise-power-density ratio and spatially and temporally correlated multipath.

Keywords GNSS multipath signals · Multiple sparse Bayesian learning · Joint angle and delay estimate · Off-grid 
estimation

Introduction

The GNSS acronym generally refers to diverse Global Satel-
lite Navigation Systems such as GPS, Galileo and Beidou, 
and their augmentation systems. GNSS can provide accurate 
position, velocity and time to users, but it is vulnerable to a 
variety of propagation effects. Multipath propagation is often 
the dominant error source in GNSS, and it may cause signifi-
cant tracking performance degradation and positioning error 
increase (Van Nee 1992). In particular, the pseudo-range 
error produced by multipath can reach meters or even hun-
dreds of meters in traditional GNSS receivers (Kalyanara-
man et al. 2006; Kos et al. 2010) posing a serious concern 
to the system accuracy and reliability.

Multi-antenna GNSS receivers combat the multipath 
problem in the spatial domain (Maqsood et al. 2010), which 
provides the required degrees of freedom for direction-
of-arrival (DOA) estimation and multipath separation or 
cancelation. Due to a significant leap forward in radio fre-
quency and antenna implementations, significant research 
and development efforts have been devoted to estimating 
multipath parameters in GNSS utilizing multi-antenna 
receivers. Many methods may be classified as either maxi-
mum likelihood-based and subspace-based approaches. 
Referring to the former, the most classical yet the most used 
method is the maximum likelihood (ML) estimator (Seco 
Granados 2000; Seco Granados et al. 2005). Stemming 
from the ML, the RELAXation algorithm (Li et al. 1997; 
Jia et al. 2017) is proposed to estimate angle and waveform 
iteratively. Later, the interesting Space Alternating General-
ized Expectation–Maximization (SAGE) approach (Fleury 
et al. 1999; Antreich et al. 2008, 2011) was also proposed 
for the multipath estimation problem. Most of these meth-
ods provide a good estimation performance but require a 
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compromise between performance and complexity. Besides 
the ML-based approaches, the other type of methods are 
the subspace-based approaches, which rely on decompos-
ing the signal into the signal and noise subspaces. Some 
examples are the multiple signal classification (MUSIC) 
method (Schmidt 1986) and the estimating signal parameters 
via rotational invariance (ESPRIT) (Roy and Kailath 1989) 
method. While they are suboptimal in general, they are less 
computationally intensive than the ML-based approaches. In 
order to tackle the limitations of subspace-based approaches 
with coherent signals, the forward–backward averaging and 
spatial smoothing methods (Pillai and Kwon 1989) have 
been used. To further increase the discrimination, the joint 
angle and delay estimation method (JADE) (Vanderveen 
et al. 1997; Veen et al. 1998; Chang et al. 2018; Hong et al. 
2018) has been proposed to obtain the parameters by using a 
collection of estimates of the space–time channel. However, 
it is important to point out that most of these methods cannot 
work well in the case of highly correlated multipath (Fleury 
et al. 1999; Misra and Enge 2011). This case refers to the 
situation where the delay difference of these impinging rays 
is smaller than half a chip or their angle difference is smaller 
than the array beamwidth. Moreover, such methods still suf-
fer degradation when fewer snapshots, lower C

/
N0 as well as 

incompletely compensated Doppler frequency offsets (DFO) 
existed in the situation.

Besides the methods above, an alternative approach 
obtained by formulating the problem using sparsity (For-
tunati et al. 2014; Gerstoft et al. 2016) gained noticeable 
interest recently. For instance, convex optimization methods 
such as the least absolute shrinkage and selection opera-
tor (Tibshirani 1996) or the basis pursuit algorithm (Chen 
et al. 2001) are effective once the signal representation is 
sufficiently sparse. Alternatively, the iterative adaptive 
(IAA) method (Du et al. 2009) and the IAA apply ampli-
tude and phase estimation (Yardibi et al. 2010) and update 
the spatial power estimates and weighting vectors based on 
weighted least squares algorithm. Furthermore, the sparse 
Bayesian learning (SBL) (Tipping 2001) and its extension, 
the multi-snapshot SBL (MSBL) (Wipf and Rao 2007), use 
a Bayesian rule together with the expectation–maximiza-
tion iteration to eliminate the user parameters. The attrac-
tive points of SBL (Zhang and Rao 2001) are that its global 
minima are always the sparsest ones and it has few local 
minima. Although SBL-based methods have a lot of ben-
efits, the on-grid estimation leads to the off-grid effects that 
most of the true parameters do not strictly fall onto the grid 
point (Fortunati et al. 2014). The bias between the real value 
and the nearest grid tends to zero only as the number of the 
grid points tends to infinity and vice versa, but the number 
of grid points cannot be arbitrarily increased for the sake 
of computational cost. To significantly improve the DOA 
estimation performance without dense sampling grids, the 

off-grid DOA estimation method (Zhu et al. 2011) and off-
grid sparse Bayesian inference (OGSBI) (Yang et al. 2012) 
method have been proposed. Also, the perturbed MSBL-
based algorithm (Chen et al. 2018) has been put forward to 
solve the DOA estimation problem with a mutual coupling 
matrix.

Although the joint angle and delay estimation MSBL-
based methods (JADE-MSBL) are appropriate for solv-
ing the multipath discrimination problem and enhancing 
parameter estimation accuracy, such methods still face an 
important limitation in practical GNSS environments. More 
specifically, if more precise parameter estimation is needed, 
JADE-MSBL methods result in a highly correlated matrix 
and huge complexity as a result of using dense sampling 
grids introduced by the joint on-grid estimation. In addition, 
different joint DOA and delay estimation algorithms are con-
sidered to satisfy the various implementation and accuracy 
needs of practical GNSS receiver. For example, the quality 
of GNSS pseudo-range observable stems directly from the 
accuracy of the delay estimate rather than from the DOA 
estimate, but on the other hand, accurate DOA estimates 
are crucial in the implementation of multipath mitigation 
via spatial filtering. The different preferences and trade-offs 
between the accuracy of the DOA and delay estimates have 
not been comprehensively considered in previous works.

Inspired by the robustness against multipath of MSBL 
and the required accuracy of the different GNSS parameters, 
three new methods for the joint DOA and delay estimation 
problem for GNSS multipath signals are proposed. First, we 
formulate the spatial–temporal sparse models. Second, the 
MSBL algorithm is derived to jointly estimate DOA and 
delay and achieve improved robustness against multipath, 
adaptiveness to low C

/
N0 values and ability to work with a 

small number of snapshots. Combinations of the on-grid and 
off-grid MSBL estimation, with a possibly different treat-
ment of the spatial and temporal domains, are particularly 
designed to greatly reduce the computational overhead or 
accurately estimate parameters. Third, considering several 
practical GNSS situations, three algorithms are presented to 
meet the various performance requirements. The algorithm 
for joint on-grid DOA and off-grid delay MSBL estimation 
(JAODE-MSBL) is proposed for the situation where the 
delay is to be more accurately estimated than the DOA. We 
put forward the joint off-grid DOA and on-grid delay MSBL 
estimation (JOADE-MSBL) algorithm for the reverse case. 
Additionally, the SAGE is a viable option for further refining 
the results of JADE-MSBL to obtain both precise DOA and 
delay, resulting in the method called JADE-MSBL&SAGE. 
Finally, we compare the three proposed algorithms in many 
aspects with the state-of-the-art methods to prove their abil-
ity to resolve the multipath signals and the superiority in 
parameter estimation, especially in some severe multipath 
conditions for GNSS receiver.
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Notations: Matrices are denoted by capital letters in bold-
face (e.g., A ), and vectors are denoted by lowercase letters in 
boldface (e.g., a ). ℂM×N denotes the set of M × N matrices 
with the entries being complex numbers. IN ∈ ℂ

N×N denotes 
an identity matrix. E{ ⋅} denotes the expectation operation. 
CN(�,�) denotes the complex Gaussian distribution with the 
mean being � and the variance matrix being � . ‖ ⋅ ‖2

F
 , ‖ ⋅ ‖2

2
 , 

⊗ , ⊙ , Tr{ ⋅ } , vec{ ⋅ } , diag{ ⋅ } , ( ⋅ )−1 , ( ⋅ )T , ( ⋅ )H denote 
the Frobenius norm, the �2 norm, the Kronecker product, the 
Hadamard product, the trace of a matrix, the vectorization of 
a matrix, the diagonalization of a matrix, the inversion, the 
matrix transpose and the Hermitian transpose, respectively.

Signal model

This section contains two subsections describing two dif-
ferent aspects of the signal model. The first one presents a 
general spatial–temporal model for GNSS signals in a mul-
tipath situation. The second subsection explains how the 
model can be adapted for a sparse joint spatial and temporal 
representation.

Joint spatial and temporal data Model for GNSS 
multipath signals

Without loss of generality, we take the GPS system as our 
target application system. Consider the wavefield gener-
ated by K multipath rays arriving from DOAs � with corre-
sponding time delays � and DFO v , where � ≐

[
�1,… , �K

]T , 
� ≐

[
�1,… , �K

]T , and v ≐
[
v1,… , vK

]T . Under the narrow-
band approximation, the vector y(t) at the output of an 
M� element array for one specific satellite signal can be 
expressed as

with y(t) ≐
[
y1(t),… , yM�

(t)
]T , a

(
�k
)
 is the steering vector 

and �k is the amplitude of the kth ray. The term c
(
t − �k

)
 

denotes the C/A code waveform of the kth ray with delay 
�k , and its corresponding DFO is vk . The Gaussian noise 
contribution, uncorrelated with the signals, is represented 
as e(t) ≐

[
e1(t),… , eM�

(t)
]T . In this context, we assume that 

number of rays K is already known, and some specific crite-
ria (Akaike 1974; Wax and Kailath 1978) can be applied to 
determine the number of rays.

Note that the Doppler frequency error is mainly caused 
by the relative movement between the satellites and receiver, 
and it can be as large as nearly 5KHz when the GPS signals 
are impinging the antenna. However, the Doppler differences 

(1)y(t) =

K∑

k=1

�ka
(
�k
)
c
(
t − �k

)
ej2�vkt + e(t)

of the multipath components among themselves and the line 
of sight (LOS) are usually small (Irsigler 2010; Xie and 
Petovello 2015). For a GNSS receiver, the DFO is always 
coarsely estimated via the signal acquisition (O’Brien 2009; 
Van Nee and Coenen 1991), and the vk can be expressed 
by vk ≐ vc + �k, k = 1,… ,K , where vc is the acquired fre-
quency that all the multipath components and the LOS share 
the same value. �k is the residual frequency part which is 
called fractional Doppler frequency offset (FFO). The 
received signal with vc compensated could be represented as

where �k is usually constrained in one frequency searching 
step.

Collecting L samples in each C/A code period, the 
observed signal during the nth period can be expressed as

where Ts is the sample interval and l = 1,… , L, n = 1,…N . 
Likewise, the sampled shifted waveform c

(
�k
)
 and the FFO 

vector are

To obtain the spreading gain and reduce the computa-
tional complexity, a transformation matrix to the codespace 
B ≐

[
c
(
𝜏1
)
,… , c

(
𝜏M𝜏

)]T  can be applied on each code 
period. According to the information obtained from the 
acquisition phase, the set of the uniformly distributed delays 
𝝉 ≐

[
𝜏1,… , 𝜏M𝜏

]
 is centered on the correlation peak and span 

both sides, and the number of codebeams satisfies M𝜏 ≪ L . 
Moreover, vectorization operator spreading in the column is 
carried out to the temporally beamformed data and we get 
ys(n) ∈ ℂ

M�M�×1 as

with r
(
𝜏
m𝜏
, 𝜏

k
, 𝛿

k

)
≐ c

H
(
𝜏
m𝜏

)(
c
(
𝜏
k

)
⊙ d

(
𝛿
k

))
, m𝜏 = 1,… ,M𝜏 ,

k = 1,… ,K , the element of the matrix R(𝝉 , 𝝉 , 𝜹) ∈ ℂ
M�×K , 

and  the  a r ray  mani fo ld  mat r ix  def ined  as 
A(�) ≐

[
a
(
�1
)
,… , a

(
�K

)]
 . Since FFOs are relatively small 

compared to DFOs and only have a negligible impact on the 
DOA and time delay estimation, we assume that FFOs are 
neglected in following sparse models for the sake of simplic-
ity. Such a simplified model has been widely studied in the 
existing literature (Seco Granados et al. 2005; Juang 2008; 

(2)ẏ(t) =

K∑

k=1

𝜸ka
(
�k
)
c
(
t − �k

)
ej2��kt + ė(t)

(3)Yb(n) ≐
[
ẏ
(
((n − 1)L + 1)Ts

)
,… , ẏ

(
((n − 1)L + L)Ts

)]

(4)c
(
�k
)
≐
[
c
(
Ts − �k

)
,… , c

(
LTs − �k

)]T

(5)d
(
�k
)
≐
[
ej2��kTs ,… , ej2��kLTs

]T

(6)
ys(n) = vec

(
Yb(n) ⋅ B

H
)

= (A(𝜽)⊗ R(𝝉 , 𝝉 , 𝜹))𝜸s + es(n)
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Fohlmeister et al. 2017). The validity of this FFOs assump-
tion and robustness against FFOs will be comprehensively 
discussed in Section “Numerical Results.”

Sparse spatial and temporal data model

To exploit the sparsity in both spatial and temporal 
domains, we extend ys into a joint two-dimensional spatial 
and temporal sparse model by using the concept of sparse 
representation. In addition, we propose three approaches 
to extend JADE-MSBL. The first one is derived starting 
from the premise that the accuracy of the delay estimate 
should be prioritized over the accuracy of the DOA esti-
mate because the delay accuracy directly influences the 
precision of GNSS pseudo-range observable. The second 
approach relies on the assumption that the accuracy of 
the DOA estimates is to prioritize because the DOA is 
needed to create a beamformer that can mitigate spoofing 
or multipath. The last approach focuses on obtaining both 
accurate DOA and delay estimates. In accordance with 
these different requirements, we come up with a series of 
joint spatial domain and temporal domain sparse models 
where on-grid and off-grid models are adopted.

Let �̃ ≐
[
𝜃1,… , 𝜃N𝜃

]
 be the uniformly fixed sampling 

spatial grids with fixed DOA interval r� in the range [
−90

◦

, 90
◦
]
 . Similarly, let �̃ ≐

[
𝜏1,… , 𝜏N𝜏

]
 be the uniformly 

fixed sampling time grids with fixed delay interval r� in the 
range 

[
−2Tc, 2Tc

]
 where Tc denotes the time duration per 

C/A code. Thus, we can construct an on-grid DOA and 
delay basis matrix

where the 
(
m� , n�

)
 element of A ∈ ℂ

M�×N� is C ∈ ℂ
M�×N� , 

the mth
�

 element of the steering vector a
(
𝜃n𝜃

)
 with 

m� = 1,… ,M� , n� = 1,… ,N� , and the 
(
m� , n�

)
 element of 

C ∈ ℂ
M�×N� is r

(
𝜏m𝜏

, 𝜏n𝜏

)
 with m� = 1,… ,M� , n� = 1,… ,N�.

The off-grid delay vector, �� ≐
[
�1,… , �N�

]T  contains 
the components 𝛽n𝜏 ≐ 𝜏k − 𝜏n𝜏k , which are assumed to be 
uniformly distributed in the interval 

[
−

1

2
r� ,

1

2
r�

]
 with 𝜏n𝜏k 

being the nearest grid point to the kth signal. We can con-
struct an on-grid DOA and off-grid delay basis matrix as

where B� ∈ ℂ
M�×N� is the first-order derivative of C with 

respect to 𝜏n𝜏 , which is composed of b𝜏
(
𝜏m𝜏

, 𝜏n𝜏

)
 with 

n� = 1,… ,N� ,m� = 1,… ,M� and b𝜏
(
𝜏
m𝜏
, 𝜏

n𝜏

)
≐

𝜕r(𝜏m𝜏 ,𝜏n𝜏 )

𝜕𝜏
n𝜏

.
Similarly, for off-grid DOA vector �� ≐

[
�1,… , �N�

]T , 
it is formed by 𝛽n𝜃 = 𝜃k − 𝜃n𝜃k , which are assumed to be 
uniformly distributed in the interval 

[
−

1

2
r� ,

1

2
r�

]
 , with each 

𝜃n𝜃k being the nearest grid point to the kth signal. Thus, an 

(7)� = A⊗ C

(8)��𝜏
= A⊗

(
C + B𝜏diag

(
�𝜏

))

on-grid DOA and off-grid delay basis matrix can be rep-
resented as

where B� ∈ CM�×N� is the first-order derivative of A with 
respect to 𝜃n𝜃 , which is composed of b𝜃

(
m𝜃 , 𝜃n𝜃

)
 with 

m� = 1,… ,M� , n� = 1,… ,N� and b𝜃
(
m𝜃 , 𝜃n𝜃

)
=

𝜕a
(
m𝜃 ,𝜃n𝜃

)

𝜕𝜃n𝜃

.

We extend the above single measurement vec-
tor to multiple, specifically N  , measurement vec-
t o r s  a s  Y ≐

[
ys(1),… , ys(N)

]
∈ ℂ

M�M�×N  a n d 
E ≐

[
es(1),… , es(N)

]
∈ CM�M�×N . Then, the joint on-grid 

DOA and on-grid delay estimation sparse model is given 
by

w i t h  c o m p l ex  s o u r c e  a m p l i t u d e s  m a t r i x 
X ≐

[
xs(1),… , xs(N)

]
∈ ℂ

N�N�×N where X is row sparse 
since only a few entries of X are nonzero, and they tend to 
appear in the same positions in each column. In (10), � can 
be replaced by either (8) or (9) to represent the other two 
models, which can be expressed as

Equations (11) and (12) are the joint on-grid DOA and 
off-grid delay and joint off-grid DOA and on-grid delay 
sparse model, respectively.

Joint angle and delay estimation based 
on multiple sparse Bayesian learning

The three different signal models lead to three different 
methods: the JAODE-MSBL providing more accurate delay 
estimates, the JOADE-MSBL for more precise DOA esti-
mates, and the JADE-MSBL&SAGE providing both accu-
rate DOA and delay estimates. JAODE-MSBL is described 
first, and the other two algorithms are outlined later.

Joint on‑grid angle and off‑grid delay estimation 
based on multiple sparse Bayesian learning

The problem of joint on-grid DOA and off-grid delay esti-
mation consists in finding not only the set of nonzero indi-
ces of X but also the off-grid shifts �� for the delays. An 
algorithm based on the MSBL methodology is presented 
below.

(9)𝚽�𝜃
=
(
A+ B𝜃diag

(
�𝜃

))
⊗ C

(10)Y = �X + E

(11)Y = ���
X + E

(12)Y = ���
X + E
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Likelihood and prior

Given that the additive noise E in (11) is assumed to be 
complex Gaussian with mean value zero and variance �2 , 
the data likelihood for the sources X given the observa-
tions Y is complex Gaussian as

A Gamma hyperprior (since it is a conjugate prior of 
the Gaussian distribution) is adopted for the unknown pre-
cision, �n ≜ �−2 , and it can be expressed as

w i t h  t h e  hy p e r p a r a m e t e r s  a  a n d  b  ,  a n d 
B
(
�
n
||a, b

)
≐ [Γ(a)]−1ba�a−1

n
e
−b�

n being Γ(a) = ∫ ∞

0
xa−1e−xdx 

the Gamma function.
For the prior of X , we assume that columns are uncor-

related between them and each one follows a zero-mean 
complex Gaussian distribution with DOA-delay-dependent 
variance � =

[
�1,… , �N�N�

]T and � = diag(�),

A  t w o - s t a g e  h i e r a r c h i c a l  p r i o r : 
p(X;�) = ∫ p(X|�)p(�;�)d� is adopted with hyperparam-
eter 𝜌 > 0

which promotes the row sparsity of X , that is to say, it favors 
that most rows of X are zero.

For the off-grid parameter vector �� , a non-informative 
uniform prior is used

where we have

To estimate DOA and delay, we can formulate the fol-
lowing problem to maximize the posterior probability 
given the received signal

(13)p
(
Y||X, �n, ��

)
=

N∏

n=1

CN

(
ys(n)

|||���
xs(n) , �

−1
n
IM� ,M�

)

(14)p
(
�n;a, b

)
= B

(
�n
||a, b

)

(15)p(X|�) =
N∏

n=1

CN
(
xs(n)

||0,�
)

(16)p(�;�) =

N�N�∏

ng=1

B

(
�
(
ng
)|||1, �

)

(17)p
(
�� ;r�

)
= U

(
−
1

2
r� ,

1

2
r�

)

(18)U(c, d) =

{ 1

d−c
, c ≤ x ≤ d

0, otherwise

(19)
{
X̂, �̂�n, �̂�, 𝜷𝜏

}
= arg max

{X,𝜆n,𝜶,𝜷𝜏}
p
(
X, 𝜆n,𝜶, 𝜷𝜏 |Y

)

The problem of posterior probability above cannot be 
solved directly; hence, the expectation maximization (EM) 
method is applied to MSBL. By combining the stages of 
the hierarchical Bayesian model, the joint probability den-
sity function (PDF) is

with the distributions on the right-hand side as defined by 
(13), (15), (16), (14) and (17), respectively.

Posterior

Given the likelihood of the array observations (13), and the 
priors (15) and (16), the posterior PDF for the source ampli-
tudes X can be found using the Bayes rule conditioned on 
�n and � as

It is easy to show that the posterior distribution of X is 
a complex Gaussian distribution, since both p

(
Y||X;�n, ��

)
 

and p(X;�) are Gaussians, with posterior mean � and covari-
ance �

where n = 1,… ,N . The Woodbury matrix identity can be 
applied to obtain � = � − ��

H
��
�
−1
y
���

� , where the array 
data covariance �y is

which is derived from (6).

Expectation and maximization

From the formulations mentioned above, hyperparameters 
�n,�, �� are needed to be known to calculate � and � . To 
address the estimation of hyperparameters, an EM algorithm 
is implemented. It treats X as a hidden variable and turns 
to maximizing E

{
p
(
X,Y, �n,�, ��

)}
 with respect to each 

hyperparameter. Following a similar procedure as Tipping 
(2001) described, denoting U = [�(1),… ,�(N)] , it is easy 
to obtain the following updates of �n and � by maximizing 

(20)
p
(
X,Y, �n,�, ��

)
= p

(
Y||X, �n, ��

)
p(X|�)p(�)p

(
�n
)
p
(
��

)

(21)p
(
X||Y; �n,�, ��

)
∝ p

(
Y||X;�n, ��

)
p(X;�)

(22)
�(n) =E

{
xs(n)

||Y, �n,�, ��

}

=�n��
H
��
ys(n)

(23)
� =E

{(
xs(n) − �(n)

)(
xs(n) − �(n)

)H||Y, �n,�, ��

}

=

(
�n�

H
��
���

+ �
−1
)−1

(24)�y = E
{
ys(n)y

H
s
(n)

}
= �−1

n
I +���

��
H
��
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E
{
ln p

(
Y||X, �n,�, ��

)
p
(
�n
)}

 a n d  E{ln p(X|� )p(�)} , 
respectively

where E
�
���Y −���

X
���
2

F

�
=
���Y −���

U
���
2

F

+ �
�
n
g

� N�N�∑
n=1

�
�
n
g

�
 with 

�
(
ng
)
= 1 − �−1

(
ng
)
Σ
(
ng, ng

)
 ,  and  E

{
‖‖‖X

(
n
g
, ∶
)‖‖‖

2

2

}

=
‖‖‖U

(
n
g
, ∶
)‖‖‖

2

2
+ �

(
n
g
, n

g

)
 with ng = 1,… ,N�N�.

As for the off-grid vector ��  , we can obtain 
the following likelihood function by maximizing 
E
{
log p

(
Y||X, �n,�, ��

)
p
(
��

)}
 , what results in the follow-

ing expression after ignoring the terms independent of ��:

where C1 is a constant term independent of �� . P� is a posi-
tive semi-definite matrix

with �𝜏 =
((
A ⋅ mat�T (n)

)
⊗ IM𝜏

)(
IN𝜏

⊗ B𝜏

)
JN2

𝜏
×N𝜏

 and 
mat�(n) ∈ ℂ

N�×N� being a reshaped matrix of �(n) . JN�N�×N�
 

is defined by JN𝜃N𝜏×N𝜏
≐ 1N𝜃

⊗ IN𝜏
 . JN2

�
×N�

 is with the ele-
ment of 

(
N�

(
m� − 1

)
+ m�

)th row and mth
�

 column being one, 
m� = 1,… ,N� , and other elements being zero. Besides, the 
detailed derivation of (27)-(29) is shown in Appendix.

For the purpose of estimating �� , we have

(25)
�n =

M�M�N + a − 1

E

{
‖‖‖Y −���

X
‖‖‖
2

F

}
N + b

(26)
�
(
ng
)
=

√

N2 + 4�E

{
‖‖‖X

(
ng, ∶

)‖‖‖
2

2

}
− 1

2�

(27)

E

�
1

N

N∑
n=1

���ys(n) −���
x
s
(n)

���
2

2

�

=
1

N

N∑
n=1

���ys(n) −���
�(n)

���
2

2
+ Tr

�
���

��
H

��

�

= �T

�
P��� − 2vT

�
�� + C1

(28)
P𝜏 = ℜ

�
1

N

N∑
n=1

�
H
𝜏
�𝜏

�
+

ℜ

�
JT
N𝜃N𝜏×N𝜏

�
�⊙

�
A⊗ B𝜏

�H�
A⊗ B𝜏

��
JN𝜃N𝜏×N𝜏

�

(29)
v𝜏 = ℜ

{
1

N

N∑

n=1

{(
ys(n) − (A⊗ C)�(n)

)H
�𝜏

}}T

−ℜ

{{
diag

((
A⊗ B𝜏

)H
(A⊗ C)�

)}T

JN𝜃N𝜏×N𝜏

}T

(30)𝜷� = arg min
𝜷�∈

[
−

1

2
r� ,

1

2
r�

]
{
𝜷T
�
P�𝜷� − 2vT

�
𝜷�

}

To simplify the above calculation, by (30) and 
�

���

{
�T
�
P��� − 2vT

�
��

}
= 2

(
P��� − v�

)
 we have 𝜷� = P−1

�
v� 

in case of P� being invertible.
After describing in detail the derivation of the JAODE-

MSBL method, we sketch how the other estimators are 
obtained since the derivation follows similar steps to the 
previous ones, so we highlight only the differences.

Joint off‑grid angle and on‑grid delay estimation 
based on multiple sparse Bayesian learning

Following the sparse model (9) and (12) for JOADE-MSBL, 
the solutions of �n and � can be obtained by adopting the 
same steps of (25) and (26). We can compute the off-grid 
DOA estimate vector �� following the same procedure 
described in (27)-(30) with the corresponding changes in 
the expressions:

with the matrix P� and the vector v� given by

In  t he  above  fo r mu la t i on ,  �𝜃 =

(
B𝜃 ⊗ I

M𝜏

)
(
I
N𝜃

⊗ (C ⋅ mat�(n))
)
J
N

2

𝜃
×N𝜃

 .  JN�N�×N�
 is  def ined by 

JN�N�×N�
≐
[
ON�×N�

(1),… ,ON�×N�

(
N�

)]T , and the nth
�

 matrix 
ON�×N�

(
n�
)
 is with the nth

�
 column being one and the other 

entries being zeros. JN2
�
×N�

 is with the element of (
N�

(
m� − 1

)
+ m�

)th row and mth
�

 column being one where 
m� = 1,… ,N� and other entries being zero. The JAODE-
MSBL and JOADE-MSBL algorithms are summarized in 
Table 1.

(31)

E

�
1

N

N∑
n=1

���ys(n) −���
x
s
(n)

���
2

2

�

=
1

N

N∑
n=1

���ys(n) −���
�(n)

���
2

2
+ Tr

�
���

��
H

��

�

= �T

�
P��� − 2vT

�
�� + C2

(32)
P𝜏 = ℜ

�
1

N

N∑
n=1

�
H
𝜏
�𝜏

�
+

ℜ

�
JT
N𝜃N𝜏×N𝜏

�
�⊙

�
A⊗ B𝜏

�H�
A⊗ B𝜏

��
JN𝜃N𝜏×N𝜏

�

(33)
�𝜃 = ℜ

{
1

N

N∑

n=1

{(
ys(n) − (A⊗ C)�(n)

)H
�𝜃

}}

−ℜ

{{
diag

((
B𝜃 ⊗ C

)H
(A⊗ C)�

)}T

JN𝜃N𝜏×N𝜏

}



GPS Solutions           (2021) 25:64  

1 3

Page 7 of 14    64 

Joint on‑grid angle and on‑grid delay estimation 
based on multiple sparse Bayesian learning 
and sage

Thanks to the robustness against correlated multipath, 
JAODE-MSBL and JOADE-MSBL are powerful methods 
to obtain either accurate delay or DOA estimates. However, 
high resolution in both DOA and delay may be needed in 
specific GNSS use cases. The SAGE algorithm provides 
a way to achieve super-resolution and unbiased estimates, 
but it has the drawback that it only guarantees local opti-
mality, which makes it extremely sensitive to initial values. 
Therefore, a combination of SAGE and JADE-MSBL is 
proposed whereby JADE-MSBL provides with SAGE the 
precise initialization values; meanwhile, SAGE returns the 
finer estimates.

As Fleury (1999) described, the basic concepts of SAGE 
are the hidden data space breaking down the multi-dimen-
sional optimization problem into several smaller ones, and 
the parameter estimation for each path by sequentially con-
ditioning on a subset of parameters while keeping the param-
eters of the complement subset fixed.

According to model (2), we introduce a definition of 
sk(t) ≐ �ka

(
�k
)
c
(
t − �k

)
ej2��kt with d(t) = ej2��kt . After col-

lecting N code periods and we get

and SN,k ∈ ℂ
M�×LN  , EN,k ∈ ℂ

M�×LN  , cN
(
�k
)
∈ ℂ

1×LN  and 
dN

(
�k
)
∈ ℂ

1×LN . The stochastic mapping of the hidden data 
space to the observed signal is Y

N
= X

N,k +
K∑

k�=1,k�≠k

�
S
N,k� + E

N,k�

�
  

where XN,k ≐ SN,k + EN,k . After estimating the hidden data 
space in the so-called expectation step (E-step) with

(34)YN =
[
y(1),… , y(L),… , y((N − 1)L + 1),… , y((N − 1)L + L)

]
∈ ℂ

M�×LN

(35)X̂N,k = YN −

K∑

k�=1,k�≠k

ŜN,k�

where SN,k = a
(
𝜃k
)
𝛾k
(
cN

(
𝜏k
)
⊙ dN

(
𝛿k
))

 . The maximization 
step (M-step) is used to estimate in each hidden data space

which are performed. Obviously, the estimated hidden data 
space in (35) is the vulnerable step that requires precise 
estimates to ensure the correct path elimination, and these 
estimates can be the on-grid estimated DOAs and delays 
obtained with JADE-MSBL. The JADE-MSBL&SAGE 
algorithm is outlined in Table 2.

While the number of iterations required by the three 
proposed algorithms to achieve the root mean square error 
(RMSE) floor depends on the situation, and in particular, on 
the correlation between signals, a relatively low number of 
iterations between 10 and 25 suffices.

(36)z
(
𝜃k, 𝜏k, 𝛿k

)
= aH

(
𝜃k
)
X̂N,k

(
cN

(
𝜏k
)
⊙ dN

(
𝛿k
))H

(37)�̂�k = argmax
𝜃k

{
|||z
(
𝜃k, 𝜏k, 𝛿k

)|||
2
}

(38)𝜏k = argmax
𝜏k

{
|||z
(
�̂�k, 𝜏k, 𝛿k

)|||
2
}

(39)𝛿k = argmax
𝛿k

{
|||z
(
�̂�k, 𝜏k, 𝛿k

)|||
2
}

(40)�̂�k =
z
(
�̂�k, 𝜏k, 𝛿k

)

MθLN

Table 1  JAODE-MSBL and JOADE-MSBL algorithms to estimate the DOAs and delays

Initialization �, �
n
, �� or ��

Repeat

1 Calculate �, � and ���
 or ���

 using the current values of the hyperparameters according to (22), (23), 
(24), and (8) or (9), respectively;

2 Update �
n
 and �  according to (25) and (26) with the sparse model ���

 or ���
;

3 Find Kthe largest peaks in � and calculate the corresponding DOAs and delays grid numbers, respec-
tively;

4 Update �� or ��according to (27), (28) and (29) or (33), (34) and (35);
5

Calculate the error 
� = ‖‖�new − �old‖‖

2

2

/
‖‖�old‖‖

2

2

Until(convergence)
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Numerical results

This section investigates the performance of JAODE-MSBL, 
JOADE-MSBL, JADE-MSBL&SAGE, SAGE and spatial 
smoothing-JADE-MUSIC (SS-JADE-MUSIC) for various 
GNSS multipath cases.

For all the proposed approaches based on sparse repre-
sentation, the scanning DOA grid is uniformly distributed 
in the range from -90° to 90° with DOA interval of r� = 2◦ 
between adjacent grid points. Likewise, we use a uniform 
scanning delay grid range from −2Tc to 2Tc , with delay inter-
val r� = 0.1Tc . As for the initialization, we set � = 0.01 and 
a = b = 1 × 10−4 . In addition, �n and � are initialized as 
�n =

100

var{Y}
 with var{Y} denoting as the element-wise vari-

ance of Y and �= 1

M�M�N

N∑
n=1

���𝚽
Hys(n)

��� . Off-grid vectors are 

set as �� = 0 or �� = 0 . The convergence condition is satis-
fied with � ≤ 10−3 or the number of iterations exceeding 500.

Unless noted otherwise, SAGE is implemented by two 
different initializations: the ideal one (SAGEi) and the prac-
tical one (SAGEp). The former is that both DOAs and delays 
are initialized in a uniformly random way within a very 
range around the true value of the parameters. The ranges 
for the DOA and delay are 

(
−

3

4
r� ,

3

4
r�

)
 and 

(
−

3

4
r� ,

3

4
r�

)
 , 

respectively. To account for a more realistic environment, in 
SAGEp the initial DOAs are unknown and the initial delays 
are constrained to be in a 

[
−2Tc, 2Tc

]
 range centered on the 

true delay, since in practice a rough estimation of the delay 
is available thanks to the acquisition step. For comparison 
purposes, two-dimensional (2D) SAGE for DOA and delay 
is applied to all cases, and the 3D-SAGE for DOA, delay and 
FFO is used in the cases C and D, as described below.

JADE-MUSIC subspace method is implemented as 
described in Vanderveen et al (1997) and Chang et al (2018). 
Spatial smoothing with 6 sliding elements and forward aver-
aging are adopted to facilitate the decorrelation of the mul-
tipaths and the LOS.

Before presenting our results, there are some settings 
needed to be explicitly stated. We assume a uniform linear 
array with M� = 8 sensors and half-wavelength interelement 
spacing. We use N = 10 periods of C/A codes in total, so the 
total duration of the observed signals is 10 ms. The sample 
interval is Ts =

1

P
Tc where the sample rate P is 4 and Tc is 

the duration of each chip in one C/A code period, that is 
Tc =

1

1023
ms . We consider two paths K = 2 in total: the LOS 

signal (LOSS) and a single reflective multipath. The two 
paths are in phase, which means arg

(
�1
)
= arg

(
�2
)
 , and the 

direct-to-multipath ratio is ||�1||
/||�2|| = 0.8.

In this analysis, RMSE is averaged over Nl = 1000 Monte 
Carlo realizations for each C

/
N0 point, and the RMSE is 

defined as RMSE(�) ≐

�
1

KNl

Nl∑
nl=1

K∑
k=1

�
𝜏k − 𝜏k

�2 , with similar 

expressions for RMSE(�) and RMSE(�) . The relevant Cra-
mér-Rao lower bounds are computed referring to Antreich 
et al (2008) and Seco Granados (2000).

– Case A Temporally correlated rays
  In this case, we consider the LOSS and the multipath 

signal are separable in spatial domain. These two corre-
lated rays impinge from DOAs �1 and �2 equal to −0.7° 
and 30.2°, and the corresponding delays �1 and �2 are 
0.03Tc and 0.38Tc . The FFOs of both LOSS and mul-
tipath signal are assumed zero, �k = 0, k = 1,… ,K.

  Figure 1 compares the RMSEs of the three proposed 
algorithms, 2D-SAGE, SS-JADE-MUSIC and the CRLB 
as a function of the C

/
N0 under the separable DOAs case. 

As expected, 2D-SAGEi performs well thanks to the help 
of the exact initialization. In addition, both of 2D-SAGEp 
and SS-JADE-MUSIC are strongly degraded at moderate 
and low C

/
N0 values.

  For the proposed algorithms, the low and inaccurate 
C
/
N0 region is narrowed down to only 3 dB-Hz wide 

from 30 dB-Hz to 33 dB-Hz. Then, two estimations of 
on-grid one and off-grid one begin to show a differ-

Table 2  JADE-MSBL&SAGE algorithm to estimate the DOAs and delays

Initialization �, �
n

Repeat

1 Calculate �, � and � using the current values of the hyperparameters according to (22), (23), (24) and (7) 
respectively;

2 Update �
n
 and � according to (25) and (26) with the sparse model; �

3 Find the K largest peaks in and �  calculate the corresponding DOAs and delays grid numbers, respectively;
4

Calculate the error
� = ‖‖�new − �old‖‖

2

2

/
‖‖�old‖‖

2

2

Until (convergence)
5 Initialize SAGE with the estimated DOAs and delays from JADE-MSBL;
6 Search for the finer DOAs, delays, FFOs and amplitudes sequentially in a small range with each hidden data 

space according to (35), (36) (37), (38), (39) and (40)
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ence. For the DOA of JAODE-MSBL and the delay of 
JOADE-MSBL, the off-grid effects become evident when 
C
/
N0 is greater than 42 dB-Hz which means that even 

if C
/
N0 increases, the residual biases are determined by 

the granularity of the grid, namely 1
2
r� or 1

2
r� . In contrast, 

the DOA of JOADE-MSBL and delay of JAODE-MSBL 
adopting off-grid estimation outperform 2D-SAGEp and 
SS-JADE-MUSIC. Nevertheless, the performance of 
off-grid estimation reaches an error floor in high C

/
N0 

because of the first-order Taylor series expansions. Since 
JADE-MSBL provides accurate on-grid estimations and 
SAGE further refines the results, JADE-MSBL&SAGE 
has more precision than the other proposed algorithms 
at the price of increased complexity. In general, these 
simulation results show that our proposed methods are 
more appropriate than the existing one in the range of 
typical C

/
N0 values for the GNSS signals, that is from 

35 dB-Hz to 50 dB-Hz.
– Case B Both spatially and temporally correlated rays
  In order to gain deeper insight into the performance of 

the proposed algorithms in both spatially and temporally 
correlated case, the DOAs �1 and �2 of the LOSS and 
the multipath signal are set to 0.3° and 6.8°, while the 
delays �1 and �2 remain 0.03Tc and 0.38Tc , respectively. 
This means that the angular difference between the two 
rays is less than half of the first beamwidth of the antenna 
array, and the delay difference is less than half a chip. 
The FFOs are the same as case A.

  Figure 2 results confirm that it is difficult to resolve 
the two paths if the angle and delay difference are both 
close enough unless the C

/
N0 is high enough. Worse still, 

2D-SAGEp can hardly distinguish the paths in any case. 

2D-SAGEi always behaves good but the RMSE reaches 
a floor level at high C

/
N0.

  JADE-MSBL-based algorithms show strong robust-
ness to multipath. In spite of the fact that JAODE-MSBL 
and JOADE-MSBL also experience an error floor in 
the DOA and delay RMSEs, respectively, both of them 
behave well, especially from 30 dB-Hz to 48 dB-Hz. 
In particular, as far as the delay estimate is concerned, 
JAODE-MSBL performs as good as 2D-SAGEi, even 
reaching the 10−2Tc level, which corresponds to a deci-
meter error level in the pseudo-range at 42  dB-Hz. 
Moreover, JADE-MSBL&SAGE provides more reliable 
estimates, what means that the on-grid initial estimates 
obtained with JADE-MSBL are more accurate than the 
idealistic initialization values assumed in 2D-SAGEi.

– Case C Both spatially and temporally correlated rays 
within FFOs.

  Under the situation of DFOs completely compensated, 
the proposed algorithms indeed perform well no mat-
ter how spatially and temporally correlated the rays are. 
However, in practice, DFOs of each path are neither iden-
tical nor completely compensated, and hence, some FFOs 
remain to be estimated. In Case C, we consider FFOs 
within ±500Hz , and we analyze the performance and the 
robustness against FFOs.

  First, we use the same settings as in case B, but adding 
to each path an FFO of �1 = 400Hz and �2 = −300Hz , 
respectively.

  As can be seen in Fig. 2, 3 D-SAGEi losses its resolv-
able ability due to the lack of FFO estimation step. This 
phenomenon also happens in 3D-SAGEp, but the rea-
son is the inaccurate initialization. On the other hand, 

Fig. 1  RMSEs of the DOAs 
(left panel) and the delays (right 
panel) for case A
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3D-SAGEi performs very well and the initial FFOs 
values are very accurate and different among them. 
Besides, as the large FFO difference between the LOSS 
and the multipath signal improves the resolution, SS-
JADE-MUSIC performs better than that in case B but 
still suffers a clear degradation at low C

/
N0 . On the 

contrary, although JOADE-MSBL and JAODE-MSBL 
only perform a 2D estimation, both of them have almost 
the same performance as that in case B, which stands 
out their robustness to FFOs. Moreover, unlikein case 
B, JADE-MSBL&SAGE no longer tends flat to be flat at 

high C
/
N0 , but it is close to CRLB since the large FFO 

difference decreases the similarity of the two paths.
  For the sake of testing the discrimination of the LOSS 

and the multipath signal within small FFO difference, 
here we change the FFOs to �1 = 400Hz and �2 = 380Hz , 
respectively.

  In contrast to the case C with separable FFOs, the 
closer the FFOs are, the harder it is to resolve the two 
paths as shown in Fig. 4. The most obvious limitation is 
experienced by SS-JADE-MUSIC, which does not obtain 
moderately accurate estimates until around 50 dB-Hz. 

Fig. 2  RMSEs of the DOAs 
(left panel) and the delays (right 
panel) for case B

Fig. 3  RMSEs of the DOAs 
(left panel) and the delays (right 
panel) for case C with large dif-
ference of FFOs
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Moreover, 2D-SAGEi and 3D-SAGEp still perform 
poorly. It is worth remarking that the delay estimation 
accuracy of JADE-MSBL&SAGE remains almost con-
stant above 45 dB-Hz, remaining basically the same as 
that of 3D-SAGEi. This is because it is difficult to distin-
guish the two paths when they have similar DOAs, delays 
and FFOs simultaneously.

– Case D the RMSEs via varied DOA or delay difference
  All the cases above consider fixed DOAs and delays. 

In this case, we study the performances as a function of 
the delay or the DOA differences.

  In case D, the DOAs �1 and �2 are set to 0.2° and 10.2°. 
This means that the DOA difference is smaller than the 

first beamwidth of the array. The delay difference is 
denoted as Δ� ≐ ||�1 − �2

|| , ranging from 0 to 1Tc , and the 
C
/
N0 is 45 dB-Hz.

  Figure 5 illustrates the RMSEs of DOAs and delays 
as a function of the relative delay. All the proposed algo-
rithms follow the trend of CRLBs except, as expected, the 
JAODE-MSBL for DOA and JOADE-MSBL for a delay 
due to the on-grid estimation. The irregular behaviors 
of the CRLB are due to the very small DOA difference 
between the rays. It is worth noting that in general JADE-
MSBL&SAGE is much closer to the CRLB than JAODE-
MSBL does in delay and JOADE-MSBL does in DOA. 
Only for some points of Δ� around 0.25Tc the RMSE of 

Fig. 4  RMSEs of the DOAs 
(left panel) and the delays (right 
panel) for case C with a small 
difference of FFOs

Fig. 5  RMSEs of the DOAs 
(left panel) and the delays (right 
panel) for case D as a function 
of Δ�
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JADE-MSBL&SAGE is slightly above JAODE-MSBL. 
This occurs because SAGE suffer sometimes from poor 
separation capability of highly correlated rays.

  Next, we consider another case with two temporally 
correlated rays with a delay difference of 0.25Tc while 
the DOA difference Δ� ≐ ||�1 − �2

|| varies from 0° to 30° 
and the C

/
N0 is 45 dB-Hz.

  Figure 6 presents the RMSEs of DOA and delay as a 
function of the relative DOA. As expected, in general, the 
error decreases as the relative DOA increases. In Fig. 6, 
the RMSEs of JAODE-MSBL and JADE-MSBL&SAGE 
become very close to the CRLB when the two DOAs are 
non-spatially separable. The delay RMSE of JOADE-
MSBL remains constant because of the grid granularity. 
In contrast, the DOA RMSE of both JOADE-MSBL and 
JADE-MSBL&SAGE follows the CRLB, while JAODE-
MSBL has some specific errors in the very particular 
cases when the true values of DOA coincide with the grid 
points.

Conclusion

We have investigated the joint DOA and delay estimation 
problem in a GNSS multipath environment. The MBSL 
method, possibly with off-grid extensions, has been 
applied to jointly estimate DOA and delay for GNSS mul-
tipath signals. The off-grid and on-grid estimation have 
also been considered concurrently. Thus either a more 
accurate delay estimation algorithm (JAODE-MSBL) or 
a more precise DOA estimate algorithm (JOADE-MSBL) 
have been proposed for different GNSS practical applica-
tions. Additionally, as an alternative to off-grid estimation, 
we have proposed the algorithm JADE-MSBL&SAGE, 

whereby SAGE takes advantage of the initial values to 
refine the estimates. Our simulation results confirm that 
the three proposed algorithms can well handle the dis-
crimination and estimation of the multipath signals and 
perform significantly better than the present methods in 
some severe cases, especially at low C

/
N0 and with both 

spatially and temporally correlated rays. Such good char-
acteristics can be attributed to the robustness of JADE-
MSBL in front of multipath and low C

/
N0 conditions, and 

also to the resolution enhancement provided by off-grid 
estimation. The linear approximation used in off-grid esti-
mation produces an error floor happened only at very high 
C
/
N0 values.

Appendix

We calculate (27) through the following two equalities 
where the sampling point is omitted for short:

where C1 and C2 are the parts irrelevant to �� . Equation (42) 
can be obtained by the following two parts:

(41)

‖‖‖ys −��𝜏
�
‖‖‖
2

2

= ‖‖ys − (A⊗ C)� − �𝜏�𝜏
‖‖
2

2

= �T

𝜏
�
H

𝜏
�𝜏�𝜏 − 2ℜ

{(
y
s
− (A⊗ C)�

)H
�𝜏

}
�𝜏 + C1

(42)

Tr

{
��𝜏

��
H

�𝜏

}

= 2ℜ
{
Tr

{
(A⊗ C)�

(
A⊗

(
B𝜏diag

(
�𝜏

)))H}}

+Tr

{(
A⊗

(
B𝜏diag

(
�𝜏

)))
�
(
A⊗

(
B𝜏diag

(
�𝜏

)))H}
+ C2

Fig. 6  RMSEs of the DOAs 
(left panel) and the delays (right 
panel) for case D as a function 
of Δ�
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Note that �T
�
Q�� belongs to real domain under the cir-

cumstance of a positive semi-definite matrix Q and thus 
leads to a result �T

�
Q�� = ℜ

{
�T
�
Q��

}
= �T

�
ℜ{Q}�� due to 

the real-valued �� . Then we have the positive semi-definite 
matrix P� . As for the solution to (31), the derivations can 
be referred to that of (27).
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