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Abstract—Cooperative localization is a promising solution to
the vehicular high-accuracy localization problem. Despite its high
potential, exhaustive measurement and information exchange be-
tween all adjacent vehicles are expensive and impractical for appli-
cations with limited resources. Greedy policies or hand-engineering
heuristics may not be able to meet the requirement of complicated
use cases. In this paper, we formulate a scheduling problem to im-
prove the localization accuracy (measured through the Cramér-
Rao lower bound) of every vehicle up to a given threshold using the
minimum number of measurements. The problem is cast as a par-
tially observable Markov decision process and solved using decen-
tralized scheduling algorithms with deep reinforcement learning,
which allow vehicles to optimize the scheduling (i.e., the instants to
execute measurement and information exchange with each adja-
cent vehicle) in a distributed manner without a central controlling
unit. Simulation results show that the proposed algorithms have a
significant advantage over random and greedy policies in terms of
both required numbers of measurements to localize all nodes and
achievable localization precision with limited numbers of measure-
ments.

Index Terms—Machine-learning for vehicular localization,
cooperative localization, deep reinforcement learning, deep
Q-learning, policy gradient.

I. INTRODUCTION

LOCALIZATION of vehicles has gained importance with
the availability of increasingly automated vehicles. Mod-

ern vehicles can rely on a variety of sensors, including global
positioning system (GPS), LIDAR, radar, and stereo cameras
[1]. The use of radio technologies can play an important role
as a redundant sensor, especially in the context of emerging 5G
communication [2] and internet of vehicles [3]–[5] technologies.
As 5G can be used both for communication and localization, it is
a natural candidate for cooperative localization, where vehicles
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aid one another to determine their relative or absolute locations.
Cooperative localization has shown to improve both coverage
and accuracy [6]. Cooperation between vehicles comes at a cost
in terms of resources (power, bandwidth), which need to be care-
fully optimized due to their scarce nature [7], [8]. In addition, co-
operation leads to larger delays (and thus reduced update rates),
due to (i) the measurement process, where inter-vehicle distance
and angle measurements are collected; (ii) the information ex-
change (communication) during fusion of information, where
measurements and a priori information are combined. Conse-
quently, scheduling of transmissions for the cooperative local-
ization problem is an important challenge [9], [10]. Often, the
corresponding optimization problems do not have closed-form
solutions and suffer from poor scalability, due to their combina-
torial nature. If we take cooperation and long-term reward into
account, the problem complexity would be prohibitive for tra-
ditional approaches. A recently (re-)emerging trend in the field
of wireless communication is to rely on machine learning tools
for providing novel solutions to outperform engineered methods
[11].

Among the different branches in machine learning, deep re-
inforcement learning (DRL) is particularly attractive, as it com-
bines reinforcement learning (RL) and deep neural network
(DNN), can be applied to difficult Markov decision processs
(MDPs) where labeled data may be expensive or not available,
consider the interaction between agent and environment (i.e., the
action of agent changes the environment state) and take long-
term rewards into account [12]. Concisely, deep reinforcement
learning (DRL) involves agents observing states and acting in
order to collect long-term rewards. The decisions are determined
by a policy, which maps the state to an action. For complicated
problems with large state and action spaces, the DNN is an pos-
sible implementation of the policy. So-called DRL has seen suc-
cess across many areas [13]–[19].

DRL algorithms can be generally categorized into Q-learning
and policy gradient (PG). The former estimates the expected
long-term reward (defined as Q-value) of each action and se-
lects the action with the highest Q-value (hence the algorithm
estimates the Q-values explicitly and formulates the policy in an
indirect way) [20], [21], whereas the latter optimizes the policy
directly by improving the policy in direction of the gradient of
the total reward with respect to the policy parameters [22]. A
more detailed introduction to DRL can be found in Section III.

In context of wireless communication, DRL has been ap-
plied to a number of applications, e.g., in the areas of power
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and rate control [23]–[26]. In addition, distributed routing was
investigated in [27] using the REINFORCE method (a policy
gradient algorithm). A good overview of work up to 2012 can
be found in [28]. More recently, [29] considers a deep Q-network
(DQN) for multi-user dynamic spectrum access, and [30] applies
a DQN for scheduling in a vehicular scenario where gateways
aim to deliver data quickly without depleting their batteries.
Power control was again considered in [31], where agents make
decisions based on high-dimensional local information (interfer-
ence levels to and from neighbors) with rewards given by spec-
tral efficiency, penalized with interference. Recent advances in
machine learning in the vehicular domain were covered in [32],
and highlights intelligent wireless resource management based
on DQN.

From a more abstract point of view, the above problems can
be seen as either single-agent RL or multi-agent reinforcement
learning (MARL) [33]. For a survey on MARL, we refer the
reader to [34]. In contrast to single-agent RL, MARL presents
a number fundamental challenges [35] as the multi-agent ex-
tension leads to a so-called stochastic game. When all agents
observe the same global state, the problem reverts to an MDP,
though with larger state and action spaces. In contrast, when
independent agents are considered, the actions of other agents
affect the observed environment by an agent, thus leading to a
partially observable Markov decision process (POMDP) [33].
To make the system more Markovian, state histories are gener-
ally collected, often combined with recurrent DNNs [36]. Deep
MARL is a current topic of research [37], [38], where agents
may exchange information regarding rewards, policies or obser-
vations.

In this paper, we consider the cooperative localization prob-
lem from a MARL perspective, where each agent corresponds
to an edge in the network. The problem is cast as a partially ob-
servable Markov decision process (POMDP) with a per-agent
reward designed to localize all network nodes below a given
uncertainty threshold as quickly as possible. The problem is
then solved using DQN and PG. The obtained policies are then
applied to the identical and larger scenarios, and provide perfor-
mance improvements over both a random scheduling as well as
a greedy algorithm. The main contributions of this paper are:
� The formulation of a cooperative localization scheduling

problem in the context of a POMDP;
� The development of DQN and PG algorithms to solve the

POMDP.
In the following part this paper, Section II introduces the

system model and describes the calculation of the Cramér-Rao
lower bounds (CRLBs), which is used as metric of localization
precision. Section III presents the DRL algorithm for optimized
decentralized scheduling. The simulation results are presented
in Section IV and the conclusion is drawn in Section V.

II. SYSTEM MODEL

In this section, we introduce the considered scenario, the ap-
proach to calculate the Cramér-Rao lower bound (CRLB) and
formulate the scheduling problem.

Fig. 1. Measurement between two nodes comprises relative position: distance
lij and angle αij .

A. Network Model

We consider a network graph G = (V, E), where V =
{1, 2, . . . , N} is the set of nodes (vehicles) and E ⊆ V × V is
the set of edges (links) between nodes. Each node has a position
xi = (xi, yi), i ∈ V in a global frame of reference, where xi and
yi are the coordinates in x and y directions, respectively. Each
node is equipped with two types of sensors: a GPS-type of sen-
sor that provides an estimate of xi with covariance Σprior

i and a
radar-type of sensor that provides relative location information
for (i, j) ∈ E . Finally, we assume that nodes can communicate
with adjacent nodes.

B. Measurement Model

We consider a radar-type measurement with multiple receiv-
ing antennas. The measured quantities are thus distance lij and
angle αij , which are shown in Fig. 1 and calculated as

lij =
√

(xj − xi)2 + (yj − yi)2 (1)

and

αij = arctan

(
yj − yi
xj − xi

)
(2)

respectively. The measurement can be expressed as

zij =

(
lij

αij

)
+ nij

=

⎛
⎝
√

(xj − xi)2 + (yj − yi)2

arctan
(

yj−yi

xj−xi

)
⎞
⎠+ nij , (3)

wherenij is Gaussian measurement noise, assumed to be of zero
mean and diagonal covariance matrix Σij .
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C. Objective

Our objective is to localize all nodes of the network (i.e., to
reduce the uncertainty on the position of each node below some
threshold) as quickly as possible (i.e., with as few measurements
as possible). Let aij ∈ N be the number of times nodes i and j
perform a measurement and Σpos

i denote the posterior position
covariance of node i, then this problem can be formulated as
follows:

minimize
A

∑
(i,j)∈E

aij

s.t.
√

tr[Σpos
i (A)] ≤ κ, ∀i

(4)

where A describes actions of all agents, [A]ij = aij and κ is a
threshold (in meters).

D. Network Localization Formulations

In this section, we describe two approaches to network local-
ization and highlight the impact of measurement ordering.

1) Measure-Then-Localize: Under this first approach, the
network first performs all measurements between all pairs of
nodes and then localizes all nodes. The localization uncertainty
can be lower bounded [39] using the Fisher information matrix
(FIM) J(A), which is a 2N × 2N matrix, with 2 × 2 block

Jij(A) =

{
Jprior
ii +

∑
k �=i aikJ

meas
ik i = j

−aijJ
meas
ij i �= j,

(5)

in which Jprior
ii is the a priori information of node i (e.g., from

GPS) and Jmeas
ik is the amount of information a measurement

between nodes i and k brings. From the model, it follows im-
mediately that

Jmeas
ij = ΓT

ijΣ
−1
ij Γij (6)

where

Σij = diag[σ2
l σ

2
α] (7)

is the measurement covariance matrix with σ2
l and σ2

α the noise
variances in distance and angle measurements, respectively, and
the 2 × 2 Jacobian matrix of the range and angle measurements:

Γij =

(
(xi − xj)

T/lij

(x̃i − x̃j)
T/l2ij

)
(8)

in which x̃i = [−yi xi]
T. Finally, the equivalent Fisher infor-

mation matrix (EFIM) of node i JE
i (A) is defined as the Schur

complement of the block of J(A) without the 2 rows and 2
columns corresponding to node i, of the matrix J(A). As the
FIM provides a lower bound under the error covariance, it fol-
lows, under regularity conditions, that Σpos

i (A) � (JE
i (A))−1.

We further introduce the positioning error bound (PEB) as

PEBi =
√

tr[(JE
i (A))−1] (9)

Fig. 2. Split of C for update using Kalman principle.

so that (4) can be approximated by

minimize
A

∑
(i,j)∈E

aij

s.t. PEBi ≤ κ, ∀i
(10)

While this problem in principle allows to find the optimalA, it is
generally hard to solve due to the high-dimensional and integer
nature of A, as well as the complex dependence of JE

i (A) on
A.

Remark 1: In (10) the ordering of the measurements does
not play a role: a measurement between two nodes with high
a priori uncertainty is equally useful if it is scheduled first or
last. Moreover, when multiple measurements are taken, each
measurement contributes equally.

2) Localize-While-Measuring: A more practical way of per-
forming network localization is to consider the perspective of a
single link in the network (i, j), whereby a measurement is used
immediately to update the location estimates of both nodes, but
does not impact the location estimates of other nodes. Hence, this
leads to a sequential decision making problem to progressively
improve the EFIMs, whereby each link must decide whether or
not to activate (i.e., measure and then update the location esti-
mates) based on the current observable state of the network.

The evolution of the uncertainty is easily understood in the
inverse FIM domain. Let C(0) = (Jprior)−1 correspond to the
a priori block-diagonal covariance for all nodes. By induction,
we assume that we have performed a sequence of measurements
A(1),A(2), . . . ,A(k), where eachA(k) ∈ BN×N contains zeros
and a single one. Assume that C(k) = C is known and we wish
to determine C(k+1) = C′ after measurement A(k+1), which
involves nodes i and j.

1) We split the covariance matrix C into the following parts:
(i) covariance matrix involved in the measurement Cij ∈
R4×4, (ii) covariance matrix between involved quanti-
ties (ij) and not involved quantities (denoted by \ij)
Cij,\ij and (iii) covariance matrix of not involved quanti-
ties C\ij,\ij ∈ R4×(2N−4). Note that Ci ∈ R2×2 will de-
note the covariance of the position of node i. Without loss
of generality, we focus on the case j = i+ 1, in which
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the split is illustrated in Fig. 2 (the general case can be
obtained by reordering the node indices).

2) After a measurement, Cij will change accordingly be-
cause the measurement increases covariance between the
involved quantities; Cij,\ij is also affected because the
measurement updates the involved quantities and their co-
variance with the uninvolved quantities decreases.C\ij,\ij
is unchanged since none of its respective position esti-
mates are affected by the measurement.

3) We apply the principle of the sequential estimation to up-
date the covariance. The Kalman gain for measurement
between nodes i and j is calculated as [39, pp. 249]

Kij = CijT
T
ij

(
Σij +TijCijT

T
ij

)−1
. (11)

C′
ij = Cij −KijTijCij (12)

C′
ij,\ij = Cij,\ij −KijTijCij,\ij (13)

C′
\ij,\ij = C\ij,\ij (14)

where we have introduced

Tij =
(
Γij −Γij

)
. (15)

4) Finally, the whole updated matrix C′ is then built again
from the updated blocks.

It is to note that i and j are assumed to be adjacent in Fig. 2 for
simplicity. If i and j are not adjacent, C has to be split into more
pieces but all of them still falls into the above described three
categories. It is also to note that C is symmetric. Therefore, only
half of the elements need to be computed in order to determine
the whole matrix.

Remark 2: From the above description, it follows that now
the order of measurements plays a role, since different deci-
sion sequencesA(1)

a ,A(2)
a , . . . ,A(K)

a andA(1)
b ,A

(2)
b , . . . ,A

(K)
b

lead to different covariances C(k), even when
∑K

k=1 A
(k)
a =∑K

k=1 A
(k)
b = A. Secondly, taking multiple measurements be-

tween two nodes will improve the relative positioning informa-
tion, but will lead to more correlation. Hence, there is less benefit
compared to the Measure-then-Localize approach of consecu-
tively measuring multiple times between the same nodes.

The problem (4) can be approximated as follows:

minimize
K,A(k)

K∑
k=1

∑
(i,j)∈E

a
(k)
ij

s.t.
∑

(i,j)∈E
a
(k)
ij = 1, ∀k

C(k+1) = f(C(k),A(k+1))

tr[C(K)
i ] ≤ κ, ∀i

(16)

in which the function f(·) executes the procedure listed above.
While C(k) can be calculated in closed form after each mea-
surement, it is extremely difficult to find an optimal scheduling
scheme to reduce uncertainty below κ with the smallest number
of measurements. In particular, the long-term benefit is more

difficult to consider than the instantaneous reduction in uncer-
tainty. However, this type of problem in now in a form where
RL can be applied.

III. DEEP REINFORCEMENT LEARNING FOR

SCHEDULING OPTIMIZATION

In this section, we formulate the original scheduling problem
in the DRL framework and introduce the training algorithms
with DQN and PG.

A. Problem Formulation

1) Single Agent Case: DRL is an area in machine learning
that optimizes a policy of an agent (in the considered problem,
an agent is a link between two nodes) when interacting with an
environment with the objective to maximize the long term cumu-
lative reward. The interaction between agent and environment is
described as an MDP (S,A,P,R, γ), where s ∈ S is the state
of the agent, a ∈ A is an action of the agent, P describes the
transition density p(s′|s, a) from the current to the next state,
and R describes the instantaneous reward r(s, a) (or more gen-
erally r(s, s′, a)) and γ ∈ [0, 1] is the discount factor. In RL,
an agent can take an action a according to a policy π given a
state s. The agent obtains reward r as feedback of action a from
the environment and updates state from s to s′. In summary,
the data item (s, a, r, s′) characterizes one interaction between
agent and environment. In the next time step, a new action will
be taken, given the state s′. In order to collect enough data to
train the model, the training process involves many episodes. In
each episode, the nodes begin with their initial PEBs (one an-
chor with low PEB and other nodes with high PEBs) and reduce
their PEBs until every node achieves the objective.

2) Multiple Agent Case: If there are multiple agents inter-
acting with the environment and the reward of each agent de-
pends on the actions of other agents, the RL problem becomes
an MARL problem. In our case, all agents behave individually
but are governed by the same policy (as they have the same
objective). In formulating the agent’s policy (particularly for
DQN), the other agents are considered as part of the environ-
ment. Therefore, if the policy changes, the environment changes
as well. Since the agent’s reward depends on the actions of other
agents, the reward is issued before the next action of the same
agent (i.e., after the actions of other agents). This is a crucial
difference to the single-agent RL. When the agent does not have
access to the environment state, the MDP becomes a POMDP,
which is described by (S,A,P,R, γ,Ω,O), in which o ∈ Ω is
the observation and O describes the observation probabilities
p(o|s). The action is then a function of the observed state (as
well as the state history), not the true state. Such a situation
is relevant in our context, as each agent has access only to lo-
cal information, which in turn is affected by decisions of other
agents.

B. Solution Strategies

The objective of this section is to develop algorithms that per-
form scheduling for cooperative localization (4), such that the
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constraint of objective PEB is satisfied for every node in the sce-
nario with minimum number of measurements. As Section II-D
points out, it is extremely difficult to solve this problem analyti-
cally. Therefore, we mention two standard solutions using DRL,
which learn to make decisions according to the experience in the
form of simulated data [40]. The two solutions are based on the
two major categories of DRL, namely DQN and PG, which are
elaborated as follows.

1) DQN: DQN focuses on estimation of the expected long-
term reward of available actions, defined as Q-values, and the
implicit policy π, is to choose the action that maximizes the Q-
value. The Q-value given state s, action a and policy π in time
step T is expressed as

Qπ
T (s, a) = E

[
+∞∑
t=T

γt−T rt(st, at)|sT = s, aT = a, π

]
(17)

where E(·) is the expectation operator, T is the time step under
consideration, st andat are state and action in time step t, respec-
tively, rt(st, at) is the instantaneous reward at time step t and
given state st and action at. The optimal Q-value is given by
Q∗(s, a) = maxπ Q

π(s, a) and satisfies the Bellman equation
[21]:

Q∗(s, a) = Es′
[
r(s, a) + γmax

a
Q∗(s′, a′)|s, a

]
. (18)

The optimal policy should choose the action that maximizes the
Q value under every possible state, i.e.,

π∗(s) = argmax
a

Q∗(s, a) (19)

for any s ∈ S .
If the number of available states and actions is small, we can

use a look-up table to exhaustively list the expected Q-values for
each (state, action) pair. However, ifS orA is continuous or very
high dimensional, which is the case of the addressed problem
in this paper, the possible values cannot be presented in such a
table. In this case, this look-up table can be approximated by a
DNN with parameter set θ, denoted as Q(s, a; θ). This approach
is referred to as DQN. DQN is an off-policy method, which
allows it to use training data generated by a different policy than
the one currently being optimized.

In episode i, θi is optimized to to minimize the mean square
error (MSE) between output of the DNN and the Q-values calcu-
lated by the instantaneous rewards and Q-values obtained from
the previous training. The loss of one data item is therefore cal-
culated as

Li(θi) = Es,a

[
(yi −Q(s, a; θi))

2
]

(20)

where yi is a target value given by

yi = r + γmax
a′∈A

Q(s′, a′; θi−1), (21)

with yi = r when s′ is a terminal state. The expectation (20)
is approximated by an average over a training database and
the minimization is performed via a gradient descent method
(ADAM in our work). As in other machine learning problems,
DQN must take the exploitation-exploration trade-off [41] into
account. Therefore, we apply ε-greedy in the training. Namely,
we select a random action with the probability of ε and the action

with the highest Q-value with the probability of 1 − ε, where ε
is a small and decaying value with the episodes.

2) PG: While DQN estimates the Q-values and formulates
the policy implicitly by choosing the action with highest Q-
value or with the ε-greedy policy, PG optimizes the policy ex-
plicitly, which determines the action given a state. We represent
the stochastic policy by a DNN parameterized by θ. Under a
stochastic policy π(a|s; θ), there is a natural exploration. The
parameter θ should be optimized to maximize the expected cu-
mulative reward, defined as

J(θ) = Eτ∼p(τ ;θ)[r(τ)] = Eτ∼p(τ ;θ)

[
H−1∑
t=0

r(st, at)

]
(22)

where τ is the path of states, actions from s0, a0 to sH−1, aH−1

with H the maximum number of time slots in an episode, r(τ)
is the sum of rewards on path τ (defined as path return), p(τ ; θ)
is the probability of path τ given policy θ, which is computed as

p(τ ; θ) = p(s0)

H−1∏
t=0

π(at|st; θ)p(st+1|st, at) (23)

with p(s0) the probability of initial state s0, H the number of
time slots,π(at|st; θ) the probability of choosing action at given
state st and policy θ, p(st+1|st, at) is the probability of state
st+1 in the next time step given current state st and action at.
According to the REINFORCE algorithm [22], the gradient of
J(θ) with respect to θ is calculated as

∇θJ(θ) = Eτ∼p(τ ;θ)[(r(τ)− b)∇θ log p(τ ; θ)]

≈ 1
N

N−1∑
i=0

∑
τ

(ri(τ)− b)∇θ log π(ai,t|si,t; θ)
(24)

where b is an action-independent baseline and N is the sample
size. In this paper, b is defined as the mean path return. In each it-
eration, the gradient ascent makes paths with high rewards more
likely to appear in the future. This is equivalent to improving
expected rewards with paths generated under the new policy.

C. Formulation of Network Localization as a RL Problem

We assume that the network has a baseline schedule, where
each time an agent is scheduled, it needs to decide whether or
not to measure. Not measuring takes no time, while measuring
comes at a cost. We will now describe the network localization
problem as a POMDP.

1) POMDP Description: In the problem considered in this
paper, we assume that an agent cannot observe the global state
in order to make the proposed algorithm more practical (hence
the global state is partially observable). The state is therefore
defined to contain the local state and a limited amount of global
information (which is easy to observe). Formally, we introduce
the following POMDP:
� Agents: The agents are the links (i, j) ∈ E in the network.
� Actions: A = {0, 1}, corresponding to the decision of not

measuring (a = 0) or measuring (a = 1). Agents locally
decide whether or not to measure, where not measuring
takes up negligible time, while measuring takes significant
time.
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� States: S comprises the global state of the network, includ-
ing the true locations of all nodes (say, xi), as well as the
estimated locations (x̂i) and the global covariance matrix
C.

� State transitions: P is determined by the evolution of the
full network covariance, as described in Section II-D2. The
evolution of the estimates depends on the specific localiza-
tion algorithm. During training, the means are generated
as x̂ = x+C1/2w, in which w ∼ N (0, I2N ).

� Observations: Ω is the local observation, available to each
agent, given by the projection of S onto the following vec-
tor

o = {x̂i − x̂j ,Cij , nij} (25)

where nij is the number of neighbors of the involved nodes
that have not yet achieved the target PEB κ. This observa-
tion tells the agent how many nodes need its help and a
large nij motivates the agent to measure. Please note that
this definition of Ω fully determines O. To remain consis-
tent with the standard DRL terminology, we call denote the
observation as the local state, since it does not introduce
any ambiguity.

� Rewards: In this particular problem, we define R as fol-
lows. We first introduce an immediate (deterministic) re-
ward:

rim
ij =

{
0 a = 0

m · rfinal − cmeas a = 1
(26)

where cmeas ≥ 0 represents a fixed measurement cost,
rfinal ≥ 0 is a positioned reward given once, when a node’s
uncertainty falls below the threshold, and m ∈ {0, 1, 2} is
the number of nodes that reduce their uncertainty below
the threshold as a consequence of the action. Secondly, we
introduce a long-term (stochastic) award:

rij = rim
ij + α

∑W
w=1 r

im
w

W
(27)

where W is the number of time slots in between the times
when agent (ij) acts. Here rim

w is the immediate reward of
another agent (w �= (ij)) that acted in between two con-
secutive actions of agent (ij), and α ≥ 0 is a parameter
that encourages altruism in the agent.

Remark 3: The observable state only contains local informa-
tion (i.e., information of nodes i and j), such that a decentralized
decision process is possible. The observable state can be ex-
tended to include estimates with respect to one-hop or two-hop
neighbors, and the covariances Ck of these neighbors. Note that
the dimensionality of the observable must be made constant, so
it should either compress the neighbor’s information or consider
a fixed number of neighbors (e.g., an upper bound).

D. Implementation Considerations

The implementation is provided in Algorithms 1 and 2. We
note that we do not keep track of agent observation histories, as
each agent implements the same policy. Since the state definition
(25) is local, scenarios used for training and testing do not need
to be identical, which broadens the generality of the algorithm,

Algorithm 1: DQN Training for Decentralized Scheduling
1: Initialize DNN with random θ
2: for episode e = 1, . . . ,M do
3: Generate initial state s
4: Initialize memory D
5: for t = 1, 2, . . . H do
6: Select an agent (a link (ij))
7: Observe state st of the agent
8: Select a random action at with probability ε
9: Otherwise select at = argmaxat

Q(st, at; θ)
10: Execute at and record rt and st+1

11: Save (st, at, rt, st+1) in D
12: if t mod P = 0 then �gradient step
13: Sample random minibatch from D
14: Set yi according to (21)
15: Gradient step on (20) to update θ
16: end if
17: end for
18: end for

Algorithm 2: PG Training for Decentralized Scheduling
1: Initialize DNN with random θ
2: for episode e = 1, . . . ,M do
3: for scenario s = 1, . . . , S do
4: Generate initial state s
5: Initialize memory D
6: for t = 1, 2, . . . H do
7: Select an agent (a link (ij))
8: Observe state st of the agent
9: Select action at ∼ π(a|st; θ)

10: Execute at and record re,t,s and st+1

11: end for
12: Compute re,s =

∑H
t=1 re,t,s

13: end for
14: Set baseline b =

∑H
t=1

∑S
s=1 re,t,s/(HS)

15: Gradient step on (24) to update θ
16: end for

and can speed up training. As we will see later, it is possible to
train on a small network and test on a larger network.

Since PG operates on the cumulative reward of an entire
episode and each agent has the same policy, it is inherently global
and cooperative behaviour can emerge even with α = 0 in (26).
In contrast, DQN with α = 0 will not lead to any cooperation,
as agents cannot see the benefit of their actions for the network
as a whole. On the other hand, setting α to a large value will
lead to large variations in the stochastic reward signal and can
negatively affect learning. For that reason, we have found that
PG was far easier to implement and optimize and led to more
stable learning.

Another remark is that both algorithms are on-policy learn-
ing, i.e., they optimize the policy with data generated according
to the current policy. The data are generated with the simulator
described in Section II and according to the current policy. The
description of the CRLB calculation in Section II and definitions
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Fig. 3. Multi-lane multi-vehicle scenarios for training and testing of DQN and
PG. The boxes next to each vehicle are the vehicle index and final PEB whereas
the lines between vehicles are measurements.

of state, actions and reward in Section III provide sufficient in-
formation to reproduce the results presented in the next section.

IV. SIMULATION RESULTS

Simulation results are introduced in this section, which con-
firms the advantages of the proposed algorithms.

A. Setup

We defined two scenarios to train and test the proposed algo-
rithms, which are depicted in Fig. 3: a highway scenario with 3
lanes, considering a network of 3 vehicles per lane (Fig. 3(a))
and a highway scenario with 2 lanes, considering 5 vehicles per
lane (Fig. 3(b)). To demonstrate the generalization capabilities
of DRL, the first scenario is used for training, while both scenar-
ios are used for testing. In Fig. 3, indices and PEBs of vehicles
are denoted in the frames near the vehicle. For each scenario,
we set a random vehicle as an anchor, with low initial uncer-
tainty (the vehicle with the PEB of 0.00 in Fig. 3 is the anchor
vehicle), while all remaining vehicles are nodes with high initial
uncertainty (this high uncertainty is not shown in the figure). In
order to achieve a balance between exploration and exploitation
in DQN, ε-greedy is used during training, where ε reduces lin-
early from 1 (in episode 0) to 0 (in episode 350) and remains 0

TABLE I
SIMULATION PARAMETERS

TABLE II
DQN PARAMETERS

TABLE III
PG PARAMETERS

until the end of the training.1 Additional simulation parameters
during training are provided in Table I. The DNN parameters for
DQN and PG are listed in Table II and Table III, respectively.
These parameter values were determined empirically. 1000 in-
dependent scenarios are applied in testing to make the results
sound in a statistical sense.

During training we compute the FIM based on the true posi-
tions, while in testing the FIM is based on the estimated posi-
tions.

B. Performance Metrics and Benchmarks

The objective is for the vehicles to reduce their PEBs below
a given threshold κ by means of cooperative localization, i.e.,
radar measurement of relative positions between the vehicles and
information sharing of current position estimates, with minimum
number of measurements. Hence, the performance metrics are:

1Due to the MARL nature, the actions of other agents are part of the environ-
ment and influence the Q-values. Therefore, ε must be reduced to 0 at the end of
the training to make the environment consistent with the environment in testing.
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Fig. 4. Loss in DQN training as a function of the number of training episodes.

Fig. 5. Q-values as functions of priori location variance for a normal adjacent
vehicle and an adjacent anchor.

1) Efficiency: the number of measurements needed to bring
all PEBs below the objective and the number of vehicles
that have achieved the objective.

2) Outage Probability: the fraction of vehicles that fail to
achieve the objective.

3) Realized PEB: the PEBs that is achieved by the vehicles
upon completion of the methods.

Performance is evaluated for DQN and PG and two bench-
marks: a random policy (which decides randomly whether to
measure or not) and a greedy policy [43] (which chooses to
measure if and only if the instantaneous reward defined in (26)
is positive).

C. Training Performance

1) DQN: The training of the DQN is carried out with Algo-
rithm 1. The evolution of the loss (20) is shown in Fig. 4. The
training loss (MSE) reduces from roughly 0.6 to less than 0.02
within 50 episodes and remains stable. We now look more de-
tail to the Q-values as a function of variances of vehicles Fig. 5
shows Q-values of two actions for an agent between two normal
vehicles (denoted as “nor.” in the legend) and an agent between
an anchor and a normal vehicle. The variances of one vehicle

Fig. 6. Mean rewards in PG training.

are assumed constant (PEB is 3.4 for normal vehicle and 0 for
anchor) and the variances of the other vehicle are shown in the
horizontal axis for both x and y directions. It can be observed
that (i) except for very small values of σ2, it is preferred to mea-
sure with an anchor vehicle. Whenσ2 < 0.01 m2 (corresponding
approximately to the PEB of 0.12 m), then it is preferred not to
measure; (ii) similarly, measuring with normal vehicles, is only
performed if the variance is low enough such that the other ve-
hicle can benefit from the measurement. If the variances of both
vehicles are high, the information exchange between them would
not bring significant advantage to compensate for the measure-
ment cost; (iii) Q-values with a normal vehicles are higher than
Q-values with an anchor, because the former has two chances to
obtain rewards whereas the latter has only one.

2) PG: Unlike DQN, PG optimized the expected path return
directly (Algorithm 2), which is approximated by the mean path
return of 100 scenarios in the training, as shown in Fig. 6. We
can observe that the mean reward is improving steadily in the
training. After 2000 episodes, the probabilities of actions re-
turned by the neural network are either close to 0 or close to 1,
i.e., the stochastic policy reduces to (almost) deterministic pol-
icy. Therefore, the exploration stops and the policy can not be
optimized further.

3) Comparison Between DQN and PG: Comparing the pa-
rameters in Table II and Table III as well as the results, we can
conclude that DQN is more sample-efficient than PG. However,
the algorithm description in Section III shows that the algorithm
complexity of DQN is higher than PG because we need to design
the reward carefully to encourage cooperation between agents.
On the other hand, PG is cooperative in its nature because all
agents follow the same policy and the episode reward will in-
crease when agents cooperate. In addition, DQN requires more
careful parameter tuning than PG in our experience.

D. Testing Performance

In this section, we present the simulation results to evaluate
the performance of the DRL.

1) Detailed Example: We first consider the detailed example
of Fig. 3, which shows the measurements (black lines) and the
final PEBs of each vehicle (red text). The anchor vehicle has a
PEB of 0 m and the normal vehicles have an initial PEB of 3.4 m.
As depicted in the figure, the PEBs of normal vehicles have been
successfully reduced below the objective of 0.12 m. Note that
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Fig. 7. ECDFs of numbers of measurements for different networks.

the order of measurements cannot be illustrated in Fig. 3 due to
the limit of the paper length.

2) Statistical Analysis: In a more general and statistical per-
spective, Fig. 7 shows the empirical cumulative distribution
functions (ECDFs) of the number of measurements needed to
localize all the vehicles for the four methods for scenarios with
sizes of 3 × 3 and 2 × 5. It turns out that except the greedy
method, all methods are able to reduce the PEBs below the
threshold. We can observe that DQN and PG perform almost
equally well in both scenarios, while PG has a slightly shorter
tail in the second scenario. Both RL algorithms outperform the
random policy considerably. Since the greedy policy only con-
siders the immediate reward, it can only reduce the PEBs of all
normal vehicles below the objective if the anchor vehicle is at
the center of the first scenario (3 × 3), where all normal vehi-
cles are adjacent to the anchor and the anchor can reduce their
PEBs below the objective with one measurement. Therefore, the
ECDF of the greedy policy has 8 measurements (one measure-
ment for each normal vehicle) with the cumulative probability of
0.12 (roughly 1/9) and infinite number of measurements above
it (because the objective is never achieved with other anchor po-
sitions) in the first scenario and the measurements are constantly

Fig. 8. Fraction of vehicles that have achieved the objective as a function of
time.

Fig. 9. ECDFs of PEBs after ten measurements.

infinite in the second scenario. On the other hand, the random
policy decides whether to measure or not by chance. Therefore,
given enough time (which is the case of our test simulation), the
fraction with random policy can always tend to 1. However, this
comes with a lot of unnecessary measurements, hence a very low
efficiency. A further observation is that the advantages of both
DRL algorithms are bigger in the second scenario, indicating
that a more complicated scenario requires the sophisticated RL
more than a simple scenario.

Fig. 8 shows the fraction of vehicles that have achieved the
objective as a function of time for the four policies in the testing
scenario. It is obvious that vehicles achieve the objective faster
with both DRL algorithms than with random and greedy poli-
cies (PG performs slightly better than DQN). Due to the reason
stated above, some vehicles never achieve the objective under
the greedy policy.

To gain understanding in the realized PEB values of the 4
methods, Fig. 9 shows the ECDFs of PEBs after 10 measure-
ments in the testing scenario. The figure provides an intuitive
impression of achievable PEBs under resource constraint for
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limited numbers of measurements. Around 11% of the PEBs
are 0 (bottom left corner of the graph), which are the anchors
(1 out of 9 vehicles). Similar to the results shown before, the
two DRL algorithms have similar and better performances than
the random and the greedy policies. more than 80% of all PEBs
are reduced below 0.3 m2 with 10 measurements, which is con-
siderably better than random and greedy policies. Besides, the
random policy has a considerably higher spread than the other
three policies due to its random nature. These facts demonstrate
the advantage of the proposed algorithm in the resource-limited
situation.

From the results above, we can conclude that the proposed de-
centralized scheduling algorithms with DRL are able to reduce
all PEBs below the objective with fewer measurements (Fig. 7)
and reduce the PEBs to lower levels with limited numbers of
measurements (Fig. 9) than the random and greedy policies.
The advantage is achieved by means of optimized scheduling,
in particular, by maximizing the effect of one measurement (e.g.,
a measurement between two normal vehicles does not decrease
the PEB much and should be avoided) and cooperation between
agents (i.e., agents take rewards of other agents into account).
Although the algorithms are trained in a specific scenario, they
can operate in different scenarios, because they are designed to
be decentralized and the vehicles require only local informa-
tion for the optimal decision, which does not depend the global
scenario. Our results show that the correlation between local
state and actions is sufficient such that the proposed algorithms
outperform the base lines (random and greedy policies) consid-
erably. The reason is that the cooperation mechanism does not
depend on the scenario setup. Despite that the global information
is incomplete (e.g., how many vehicles depend on the consid-
ered vehicle globally to reduce their PEBs) and the agents do not
have a global picture as a consequence, the trained models still
prove themselves valid in a bigger scenario in a statistical sense,
which is confirmed by the simulation results. The generality of
the proposed algorithm is thus demonstrated.

V. CONCLUSION

This paper studied the problem of cooperative localization of
vehicles in the context of multi-agent reinforcement learning.
Cooperative localization is an important approach to improve
localization precision and coverage. However, the measurement
between nodes causes delays, which is particularly detrimen-
tal for vehicular applications. Hence, measurement scheduling
is an important problem. We have proposed a novel formula-
tion of the scheduling problem to account for measurement or-
dering and thereby can transform the cooperative localization
problem as a POMDP, whereby state transitions and rewards
are computed based on the PEB, which is as a general mea-
sure of localization accuracy. We have shown that the optimal
scheduling problem is difficult to solve analytically especially in
a decentralized manner, where the nodes make decisions based
on the local information without coordination of a central unit.
We propose to solve this problem with DRL, which optimizes
the policy based on the rewards it obtains after executing an ac-
tion according to the state. Two DRL algorithms, DQN and PG,

are applied to solve the problem. Simulation results show that
both methods outperform random and greedy policies in terms
of required numbers of measurements. With limited number of
measurements, the DRL algorithms also reduce PEBs consider-
ably more than random and greedy policies. We found that DQN
required more tuning of parameters and reward definition, while
PG was able to perform well in its standard form.
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