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Abstract

studied encoding-decoding schemes.

This paper deals with the power limitations in a wireless sensor network scenario. Concretely, we propose to use a
conditional downsampling encoder (CDE) at the sensing nodes as an energy-efficient solution for the communication
problem. It exploits the knowledge about the signal structure, which is assumed to be time-correlated, in order to
decrease the sampling rate and hence to reduce the number of transmissions within the network. We analytically
assess the performance of the CDE in terms of quadratic distortion, from which we derive closed-form expressions
when it is combined with one of the two decoders: the step decoder and the predictive decoder. Moreover, we
propose two methodologies to design the CDE in order to guarantee a given coding rate. We also compare the CDE,
both analytically and experimentally, with other classical decimator techniques, which are the deterministic
downsampling encoder and the probabilistic downsampling encoder. Numerical simulation validates our analytical
results. Moreover, we compare the obtained quadratic distortion and extract the conclusions of the capabilities of the

1 Introduction

1.1 Motivation and previous work

Wireless sensor network (WSN) design is currently one
of the most challenging topics in the communications
field. In particular, WSNs are severely energy-constrained
because they consist of many small, cheap, and power-
limited nodes, whose batteries cannot be recharged in
most cases. Hence, the application of energy-efficient
algorithms turns out to be crucial.

Following with this motivation, many energy-efficient
strategies can be found in order to mitigate the energy
costs and hence increase the lifetime of the WSN. Without
the aim of being exhaustive, we point out some examples:

e Energy-aware routing for cooperative WSNs and ad
hoc networks [1,2]. These techniques seek the
optimum path that minimizes the total spent energy
in multihop WSNss.

e Signal processing techniques for minimum-power
distributed transmission schemes [3,4]. Using
distributed beamforming techniques, the nodes can
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decrease the transmitted power at the same time that
they increase the total throughput of the network.

e Data-aware techniques to reduce energy by efficient
information processing [5,6]. By means of signal
processing techniques, the network exploits the
inherent structure and properties of the measured
signal in order to sample the data and therefore
reduce the associated energy costs.

Our study falls in the third category and may be com-
plementary to the other approaches. Actually, we propose
to encode the sensed data removing redundancy in the
time domain. Many transmission schemes use non-causal
transmissions such as block coding. In these cases, the
source collects a number of contiguous time samples in
order to compress them by removing part of (or all) the
redundancy among them. Within this group of encoders-
decoders, a large amount of different techniques can be
found. Albeit these transmissions are very appropriate for
high-rate transmissions and/or delay-tolerant communi-
cations, these non-causal transmission schemes may not
be applicable in some scenarios because block transmis-
sions are not always allowed due to delay constraints
and/or low symbol rates of the source.

For delay-sensitive applications such as real-time mon-
itoring in WSNs, where the reconstruction of the signal

© 2013 Barceld-Llado et al,; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.



Barcel6-Llado et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:101

http://asp.eurasipjournals.com/content/2013/1/101

must take place at the same time instant as the corre-
sponding input measurement, causal source codes are
more convenient. Hence, a source code is said to be
causal if the nth decoded sample depends on the output
signal only through its first # components or, in other
words, depends on the past and present outputs but not
on future ones. Quantizers, delta modulators, differential
pulse code modulators, and adaptive versions of these are
all causal in the above sense. The basic properties of causal
source codes have been introduced in 1982 in [7], and
related works have been expanded so far. The work in [8]
extends the general results of [7] for the case where side
information, i.e., extra information that is correlated with
the source, is available at the encoder and the decoder.
In addition, a causal source code is called a zero-delay or
sequential code if both the encoder and the decoder are
causal (note that for the causal source code definition, the
assumption of causality is only at the decoder) [9,10].

In the literature, there are several zero-delay coding
systems. One of the most common zero-delay coding sys-
tems is the well-known differential pulse code modulation
(DPCM). In a nutshell, the current sample to be coded
is predicted from previously coded samples. This pre-
diction is used as a reference, and it is compared with
the current sample. Hence, the output of the encoder is
the prediction error. The inverse operation takes place at
the decoder side. According to [11], DPCM was first intro-
duced in a US patent by C. Cutler in 1952. Since then,
many results have appeared. In particular, the autoregres-
sive (AR) model has received special attention for the
study of zero-delay coding schemes. Some of the early
works on AR models date back to the 1960s. The works in
[12,13] analyze the quadratic rate distortion of DPCM (the
reader can find an extended description of the rate distor-
tion in Chapter 13 of [14]). The work in [15] extends these
results assuming a Gaussian distribution of the predicted
error. Other works proposed algorithms for non-uniform
quantizers optimized in order to minimize the distortion
rate [16].

Later works, as the one in [17], try to particularize the
results obtained by the DPCM also for the case of low
bit rates. In such cases, the system performance becomes
worse. Then, the classic DPCM encoder is modified in
order to achieve better performance in terms of rate
distortion for a low-bit-rate regime.

Recent works on this field have tried to unify the
theoretical limits of the DPCM (and other zero-delay
schemes) for AR models with other information the-
ory concepts. The authors in [11] provide analyti-
cal results for the existing duality between the rate
distortion of an AR process with the capacity of
the inter-symbol interference channels. By contrast,
other works such as [9] follow an information theoretical
approach that adjusts the upper and lower limits of the
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rate distortion for generic zero-delay schemes using the
mutual information as a measure of the achievable rate.

1.2 Our contribution

Our proposed work also follows the same sequen-
tial transmission approach exposed above. Concretely,
the approach of this paper is similar to that of [6],
where the authors seek for the optimal sampling in
a WSN scenario with correlated sources. However, we
present the problem from a more realistic energy-
efficient perspective. According to the results in the
literature about energy consumption in sensor networks
[18], the main source of energy spent in a sensor is
the power dedicated to maintain the sensor awake. Con-
cretely, most energy is consumed by the elements of the
front-end [19]. Therefore, our goal is to reduce the num-
ber of total transmissions in order to keep the sensors in
sleep mode as long as possible.

Note that for the complete characterization of the per-
formance of real communication systems, several metrics
should be evaluated, e.g., the robustness against noise in
terms of the signal-to-noise ratio, the quantization error
as a function of the codification scheme, or the bit error
rate related to a selected modulation. However, in this
paper, we only focus on the the study of the downsam-
pling distortion (see Section 2.2) as a figure of merit of the
quadratic reconstruction error introduced by a downsam-
pling technique at the fusion center. The study of other
performance metrics, although interesting, is out of the
scope of this paper.

In particular, we study downsampling techniques in
which the samples of an input signal are either blocked
or transmitted following a given criterion. For that pur-
pose, we propose a downsampling encoding scheme
called conditional downsampling encoder (CDE). A CDE
benefits from the existing time correlation in the mea-
sured signal in order to sequentially elaborate the dec-
imator pattern. Typically, the readings in WSNs are
space-time-correlated, and hence, strategies in the two
domains can potentially improve the accuracy of the sig-
nal recovered at the receiver side. However, note that
considering not only the time correlation but also the
space correlation at the sensing nodes would require
intensive inter-node communication. Since this approach
would penalize in terms of signaling, complexity, and
energy consumption, we have discarded it. Basically, the
CDE predicts the current sample using a linear esti-
mation and takes this prediction as a reference. Then,
the transmission is blocked if the prediction error does
not exceed a given threshold and transmitted otherwise.
It is clear that a key step of the CDE design is to deter-
mine the threshold that ensures a sample rate reduction of
a factor y. Therefore, two different threshold designs are
proposed in this paper.
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Clearly, the CDE presents some similarities with the
DPCM in the sense that both schemes use (linear) pre-
diction as a reference in order to encode the input sig-
nal. However, they present important differences as well,
which can be summarized as follows:

e A DPCM produces an outcome sample for each
input sample. In other words, it does not change
the sample rate. On the contrary, the CDE (and also
the deterministic downsampling encoder (DDE) and
the probabilistic downsampling encoder (PDE))
reduces the sample rate. This behavior is very
convenient in some energy-constrained scenarios,
such as WSN, since the total number of
transmissions is reduced by a factor y, increasing the
energy efficiency of the network.

e While a DPCM works at the symbol level, the CDE
does at the sample level. Thus, the downsampling
encoder-decoder schemes studied in this paper are
not exclusive to the DPCM or other zero-delay
coding techniques. Actually, they can be used on top
of them when the signal is transmitted.

In addition, we compare the performance loss of CDE
with different encoding-decoding pairs when the number
of samples is reduced by a factor y. In particular, we study
the following two downsampling criteria: (1) a DDE and
(2) a PDE.

A DDE works as a decimator, i.e., it reduces the num-
ber of samples following a deterministic pattern. Hence,
the DDE selects only one in y ~! samples, where y ! is
typically a natural number.

A PDE slightly differs from a common decimator since
it reduces the number of samples following a probabilistic
pattern, i.e., one sample will be transmitted with prob-
ability y and otherwise blocked with probability 1 — y.
This method eliminates the restriction of y ~! to be a nat-
ural number. However, we analytically show that a DDE
outperforms a PDE in terms of quadratic distortion.

On the other hand, the decoder at the fusion center
recovers the original sampling rate by upsampling the sig-
nal. We study two possible decoders: (1) a step decoder
(SD) and (2) a predictive decoder (PD). A SD recon-
structs the missing samples by replicating the last decoded
sample. This does not require any side information knowl-
edge. On the contrary, the PD reconstructs the missing
samples by linear prediction (as in the CDE case). We
analytically show the improvements in terms of quadratic
distortion when the samples are predicted rather than
simply replicated.

Hence, we give analytical expressions for the quadratic
distortion of the following downsampling encoding-
decoding pairs: DDE-SD, DDE-PD, PDE-SD, and PDE-PD.
Furthermore, we also provide accurate approximations
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for the quadratic distortion of CDE-SD and CDE-PD.
Numerical simulations support our proposed analytical
expressions.

1.3 Organization of the paper

The rest of the paper is organized as follows: In Section 2,
we introduce the assumptions and the scenario considered
throughout the paper. Section 3 presents the proposed
CDE as well as the other encoding-decoding schemes
under study. The analytical expressions of the down-
sampling distortion for the proposed CDE are detailed
in Section 4. Also, two different design strategies are
presented in this section. The analytical expressions of
the downsampling distortion for other encoding-decoding
schemes are detailed in Section 5. Simulation results
are shown in Section 6. Conclusions and suggestions for
future research are drawn in Section 7.

2 System model and assumptions

Let us consider a WSN configured in star topology that
monitors a given physical scalar magnitude such as tem-
perature or humidity. The network is composed of two
types of nodes: (1) a set of S sensing nodes that transmit
wirelessly the measurements to (2) one fusion center that
manages, gathers, and processes the measurements from
the sensing nodes.

2.1 Assumptions on the signal model
We consider the signal modeled as an S-dimensional
stochastic process, namely?,

X =[x(1)xQ2) ... x\)], (1)

where x(1) =[x1(n) x2(n) ...x5(m)]T and x;(n) denotes
the measurement of the sth sensor at the sample time
n and N denotes the number of time samples in the
observation window. Let x;(#) be a real and time-discrete
autoregressive model of order 1 (AR-1), variance orxz, and
sampled at a rate R, which is commonly assumed in the
signal processing literature in order to model real sources
[20]. It is defined as

xs(n) = pxs(n — 1) +z(n), forn=1,2,... (2)

The autoregression coefficient is denoted by p €[0,1]
and assumed to be constant during the transmission.
The random process z(n) is a sequence of Gaussian-
distributed and independent random variables with zero
mean and variance 022.

Without loss of generality, we also assume that the vari-
ance of the measurement xs(n), i.e., axz, is equal to 1.
Therefore, the variance of the noise is well known, and it
is 022 =1- p2.
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2.2 Assumptions on the system model

We do not assume any coordination among sensing nodes.
Hence, each one will act non-cooperatively. It reduces the
required signaling in comparison to cooperative commu-
nications and also allows us to focus our analysis only in
the communications between one sensing node and the
fusion center without loss of generality. The transmis-
sion model under consideration is a generic one, and it is
illustrated in Figure 1.

Note that for simplicity, we have replaced the notation
x5(n) by x(n). Furthermore, we require that the signal x(#)
is transmitted in a zero-delay manner from the source to
the destination. Throughout this paper, we understand for
zero-delay transmission when for each sample at time n,
the receiver will have a reconstruction of the signal x(n).
Furthermore, for time instant #, we are not interested
in x(m — 1) anymore, so delay-tolerant strategies (such
as block encoding schemes) are not feasible. Following
this constraint, we will look for encoders that allow us to
reduce the sample rate sample-by-sample in real time.

Hence, we consider a non-linear encoder with a cod-
ing rate y at the sensing nodes. In our particular case, the
encoder selects which samples from x(#) are going to be
transmitted with a rate of v, and the rest will be discarded.
The selected samples are represented by y(n); therefore,
note that y(n) is only defined for those time slots in which
the encoder decides to transmit.

Moreover, we consider non-linear decoders in order to
recover an approximation of x(n), i.e., X(n), from y(n)
at the fusion center. Roughly speaking, the decoder will
construct x(n) copying the samples of y(n) when the
transmission exists and predicting the rest otherwise.

Definition 1. For a given pair of encoder-decoder, the
sink will receive x(n) with a given downsampling distor-
tion. It defines the quadratic distortion introduced by the
given downsampling encoder-decoder pair e-d as

D(e,d) = E [(x(n) — %(n))*]. (3)

3 Dowsampling transmission schemes
3.1 Different encoding alternatives

We compare our proposed CDE with two selected down-
sampling encoders among many other possibilities. These
are (1) the DDE and (2) the PDE. They have been chosen
since they are simple and because many other strategies
can be derived from them.

In order to describe the selected encoders, we first need
to introduce the following definition:

Definition 2. The transmission support function of
an encoder e, named g.(n), is an indicator func-
tion which takes the value 1 when the transmission
exists and 0 otherwise.
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3.1.1 Deterministic downsampling encoder
This encoder is the simplest and acts as a typical decima-
tor. Its transmission support function is

1 when #nmody1=0
0 otherwise.

gopE(n) = { (4)

Note that for uniform downsampling, the DDE is only
defined for compression rates y of the form y~! e N.

3.1.2 Probabilistic downsampling encoder

This encoder solves the limitation of DDE that y ! is a
natural number. Basically, the symbol x(7) will be trans-
mitted following a given probabilistic pattern. Thus, the
transmission support function is

1 with probability p

0 with probability 1 — p. ®)

gppe(n) = {

It is straightforward to see that in order to guarantee
a compression rate of y, the value of the transmission
probability p should be p = y.

3.1.3 Conditional downsampling encoder

Previous encoders do not assume any memory or prior
information of the signal of interest x(#). On the contrary,
the CDE uses the available information in order to decide
whether the signal should be transmitted or not. In partic-
ular, we analyze the cases where the available information
is either the last decoded sample x(n — 1) or a linear pre-
diction using the linear Wiener filter (LWF) solution in
[21] with a given observation vector X(n). The available
information is compared with the signal of interest x(n). If
the absolute value of the difference is higher than a given
threshold A, the encoder will transmit the signal. Oth-
erwise, if the difference is below A, the transmission is
blocked. Mathematically, for the first case,

1iflx(n) —x(n—1)] > A
8CoE(n) = { 0 otherwise. (©)
For the LWF prediction, the CDE is
1 if |x(n) — x(n)| > A
8CDE () = { 0 ot|herwise. | @)

Although this scheme is quite simple, it has two
main complications: (1) the LWF predictor assumes the
knowledge of the correlation parameters R and r or
at least good estimates of them, and (2) the threshold
A should be designed in such a way that it ensures a
coding rate of y. The first problem adds some com-
plexity to the system but can be efficiently solved using
existing correlation estimators [22]. The second one is
addressed later in Section 4.
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decoder sink
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the desired signal x(n) after the decoder.
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Figure 1 Block diagram of a generic encoder-decoder transmission scheme. The source is generating the desired signal x(n) at a rate R
(samples/s). The signal y(n) is the encoded version of x(n), and it is transmitted at a rate y R, where y < 1. The signal x(n) is the reconstruction of

3.2 Different decoding alternatives

As for the encoding strategies, we select two decoders
from a bunch of possible solutions. The first one is prob-
ably the simplest and does not require any knowledge of
the correlation parameters, while the second one exploits
the signal correlation in order to achieve higher prediction
accuracy.

3.2.1 Stepdecoder

It is the simplest decoder. It just copies the value of y(n)
into x(n) when g.(n) = 1 or maintains the last decoded
value x(n — 1) if g.(n) = 0. The decoder function is
described as

a0 = {5 U0 pen ®

x(n) = x(n — 1) otherwise.

This approach is very typical when the source is sensing
a given time-correlated phenomenon. Since it is assumed
to be slow changing, the magnitude is maintained until we
receive an update.

3.2.2 Predictive decoder

If we take advantage of the time correlation properties of
x(n), we can obtain lower downsampling distortion than
for the SD case. The behavior is similar to the previ-
ous decoder SD, but in this case, when g.(n) = 0, the
PD predicts x(n) using LWF instead of replicating x(n).
Mathematically,

| x(m) =y(n) ifge(n) =1
dep () = { x(n) = x(n) otherwise. ©)

4 Downsampling distortion of the conditional
downsampling encoder

4.1 Signal prediction using incomplete observation

vectors

Let the observation vector X(n) € RYN, where X(n) =

[X(n — 1)x(n — 1) --- (n — N)]T, be an incomplete ver-

sion of x(n). The vector X(n) is constructed using the N

last decoded samples. This is because the decoder does

not necessarily know all the values of x(#) and only knows

the decoded ones. Hence, some values of X(#) are replicas

of x(n), and the rest are predicted values x(n).

Definition 3. Let the vector X; be an instance of X(n)
where the last true sample was received at time n — t.
Mathematically,

[it(n)]j = {x(” - ifj<t o

x(n—j) ifj =¢.

Theorem 1. IfX;(n) is used as the observation vector of the
LWE the mean square error (MSE) is degraded as

MSE; = 1 — p*. (11)

Proof. It is proved by induction. First let us assume the
case where the vector X3 (n) is of the form X;(n) =[x(n —
1) x(n — 2)...x(n — N)]7, that is, all the positions in the
vector correspond to true measurements except for the
first one. In this case,
E [|x(n) — W% (m)|*] = E[lx(n) — pi(n — DI?]
= E[lx(n) — pwx1(n = D?]
=1—2p°E[x(n)x(n — 2)]

+p*E[x(n — 2)x(n — 2)]=1—p*.
(12)

For the case where X3(n) is of the form X3(n) =[x(n —
Di(mn—2)x(m—3)...x(n—N)]T, the MSE is degraded as

E[lx(n) — wk3(m)1*] = E[|x(n) — pi(n — D]
E [lx(n) — pw/%a(n — D]
E [lx(n) — p*w%1(n — 2)?]
=1—20°E[x(n)x(n — 3)]

+ pCE[x(n — 3)x(n — 3)]
=1—2p6+p6=1—p6.

(13)

It is straightforward to conclude that for the general case
where X;(n) is of the form x;(n) =[x(n —1)...x(n — t +
Dx(n —t)...x(n — N)]T, the MSE is degraded as

E[lx(n) — w% (m)*] = 1 - p*. (14)

O

Corollary 1. For a given p, the MSE is only a function
of the position of the last true measurement in the obser-
vation vector for an AR-1 process. Furthermore, it is not
dependent on the dimension N of X;(n).
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Proof. The proof of the first statement is straightforward,
and it is enough to verify that the MSE obtained by X;(#)
and X;(n), where
X =[&n—1)...x(n—1t)...2(n—N)]T,
is the same. Then, let us consider, for example, t = 2,
E [lx(n) — W%y (m)*] = E [|x(n) — pi(n — D]
= E[lx0n) —w%a () ]=1-p".
(16)
Moreover, for observation vectors that only contain esti-

mated measures (i.e., t > N), the MSE also follows (11). It
can be observed that if £ = N + 1, then the MSE is

(15)

E [lx00) — wHRn4100/2] = E[|x0n) — p"a01 = N) ]
= E[lx(m) — " W% (n—N) ]

= E[lx(n) —p"x(n— N-1)]
—1 - p2WN+D,

(17)

O

Similarly, if the last transmitted sample x(n — ¢) is
directly used as a reference or prediction, the MSE when
the observation vector is X; is degraded as

E[(x(n) — x(n — £))*] = E [x*(n)] — 2E[ (x(m)x(n — £))]
(18)
+E[x*(n -]
=1-2p"+1=2(1-p".

Hence, the probability that the last true sam-
ple of the vector X(n) is in the position ¢ depends
directly on the downsampling criteria used at
the encoder. Therefore, in order to compute the
downsampling distortion for the CDE, we need to
compute the probability of occurrence of the event
t, or what is the same, the probability that the
observation vector X is actually X;. Next, we illus-
trate the CDE problem using a Markov chain (MC)
model.

4.2 The Markov chain solution for the incomplete
observation vector case

Let a MC model be a discrete time process where
a random variable E(n) is changing in time. The
MCs have the property that to be in a state ¢, ie,
E(n) = t, only depends on the previous state, i.e.,
E(n — 1). This property is very interesting in order
to model AR-1 processes. Moreover, a MC is said
to be homogeneous when the probability of transition
between the states of E(n) is invariant in time, i.e.,

pij=PEm=j|E(i—1)=i) €[ 0, 1]where i,j=0, 1,...,T—1.
(19)
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Definition 4. Let the matrix T € R”*7 denote the tran-
sition matrix of a homogeneous MC process of T states
where

[T];j=pijforij=1,...,T—1 (20)

and each row represents a probability distribution, so
[TT],1=1.

Definition 5. Let the vector p € R” denote the station-
ary probability vector of a homogeneous MC process of T’
states and any vector that holds the stationary conditions

pl =p'Tandp’1=1 (21)

where p =[Py Py ... P7_1]7 contains the probabilities to
be in each state £ = 0,1, ..., T in the stationary regime of
the MC process.

4.3 The Markov chain model for the CDE

In this section, we analytically evaluate the performance
of the proposed CDE with both PD and SD decoders in
terms of the downsampling distortion.

The CDE can be modeled following the infinite Markov
chain in Figure 2. The state E(n) = 0 means that in time
n, the transmission exists. Similarly, the state E(n) = ¢,
for ¢ # 0, means that the sample n — ¢ was the last to be
transmitted. The transition matrix (with dimension 7" —
00) that describes the process of the CDE is

poo po1 O

Tepe = | P10 0 P12 (22)

From the stationary condition in (21), we can obtain the
following relations:

t

Py = pr—1,1P—1; thus, Pr = Py Hpi—l,i;
i=1

(23)

where by definition Y °; P; = 1 — Py. Moreover, after
some algebraic manipulations,

(24)

It is easy to observe that there are infinite solutions
for the transition probabilities p;;. Thus, we address the
design and the corresponding performance in the follow-
ing sections.

4.4 Approximations for the downsampling distortion of
the CDE-PD and CDE-SD

Following the scheme in (7), our aim is to design the

threshold value A in order to guarantee that the source

only transmits a fraction y of the total samples. For the-

general case, we may have different values of A according
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Po,0

Figure 2 Infinite Markov chain that models the encoder CDE.

to each state ¢t of the MC. Therefore, we define the thresh-
old A; as the threshold value applied to the state ¢.

The condition in (7) modifies the probability density
function (pdf) of the error.

Definition 6. Let the conditional pdff(x| |x| < A¢) be the
pdf of x conditioned to |x| < A;. Mathematically,

ﬂmM<A»=ﬁma%ﬂ@n(§§) (25)
t
where f (x) is the original pdf of x and B(A;) € (0,1) is
Ag
B(Ay) = R fx)dx. (26)

Moreover, the rectangular function T1(x) is defined as fol-
lows: IT(x) = 0if |[x] > 0.5, TT(x) = 1if [x] < 0.5, and
IT(x) = 0.5 if |[x| = 0.5. This definition is summarized in
Figure 3.

Lemma 1. Let x ~ N(0,02). Then, the variance of the
conditionalpdff(x“ﬂ < Ap)is

2 a1 A
Vﬂr(x“xl<A[):—(_A10232°2[+§V2ﬂ6637f( t))

V2mo? & 202
(27)
Proof. Let «’ define the random variable
&~ x| lxl < A, (28)

where x; ~ N(0,02). Hence,

var(x') = var(x|jx| < A;) = / f (x| |x] < Ap)dx.

7 (29
Using the relation
_f@A,B)
SfAlB) = P(B) (30)
we obtain
var(x') = /Oo ﬂmdx (31)
—oo  Pllxl < A}

The term P{|x| < A} in the denominator is

At
Pl < 8 = [ fds = pao. (52)
—A;
So,
oo
var(x') = B~H(Ay) / K2f (x, 1% < Ap)dx. (33)
—00
Applying the same relation as that in (30), we obtain
[e¢]
var) = ~1(A) / RFOPUx| < Adxldx,  (34)
—00
where the term P{|x| < At‘x} is

X
P{lx| < Agfx} =TI (E)

Thus,

(35)

At
var(x) = 71 (A) [ &*f (x)dx
—A;

2 (2ot ) aags (A )
_ﬁ(A,)«/2717( Ao e +2 2rolerf «/_>

t
202
(36)

that comes from the relation

€
2 —ax? ;. € g2 1 /7
/(; xe % dx——%e e +l—L /a—gerf(e\/a). (37)

O

Definition 7. We
h(?|A) : R — Ras

h(o?|Ay) = var(x||x| < Ap).

define the conditional function

(38)

4.4.1 The pair CDE-PD

The knowledge of some prior information about the signal
can notably reduce the MSE at the decoder compared to
other classical methods. This is because only the samples
with lower MSE are predicted, i.e., the ones that satisfy
lx(n) — wlk:(n)| < Ay since they introduce less noise
power at the decoder.
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Lemma 2. Let MSESPEPP be defined as the mean square
error when the observation vector is X;(n). Then, the
MSECPEPD s an approximation of MSECPETP (ie., the
error introduced by the CDE-PD pair at the state t) and
defined as

MSECPE-PD _ (1 i p2MSEfPlE—PD|At) ~MSECPE-PD
(39)

Proof. For t = 1, the error MSESPEPP follows the condi-
tional variance® such that

MSECDEPD =E[(x(n) —wlg(m))? ’lx(n) —wl ()] < Al]
= E[(px(n—1) + z(n)— px(n — 1)) || px(n — 1)
+ z(n) — px(n — )| < Aq]
=E[z(n)?||z(n)| < A1]

=/ 2(n)’f (z(n)| 12(m)] < A1)dz(n). (40)

Using Definition 7 and since z(n) ~ N (0,02) where
02 =1— p?, the MSETPF P is

MSESPEPP = 11 (1 — p?|Aq). (41)

For t = 2, the available knowledge is twofold: (1) we
know that |x(n) — wl%2()| < Ao, and (2) we also know
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thatin £ = 1 the error was |z(n — 1)| < A1. Therefore, the
MSESPEPD can be written as

MSESPEP = E [ :0n) — w7 %2 ()? [|x() (@2)
— wIk0)| < A lztn = D] < A ],

=E[(px(1 = D+200—pw! 1 01 = 1)? [lx(0)

— owTRi (= 1)| < Ag, |2(n — 1) < Al],

= E[(pz(n — 1) + z(m)* || pz(n — 1)
+ z(n)| < Ag,lz(n — 1| < A |.

The expectation in (42) can be computed as
oo
MSESPEPP = / / (z(n)+pz(n — 1))*f (z(n) +pz(n — 1)
—0o0

lz(n — D] < Ay, |pz(n — 1)
+z(n)| < Ax)dz(n)dz(n — 1). (43)

This expression is actually the computation of the vari-
ance of a bivariant truncated normal distribution. The
solution of a singly truncated bivariate distribution can
be found in [23]. For higher orders, i.e., t > 2, the solu-
tion refers to the calculation of the variance of a truncated
multivariate normal distribution [24]. Although a solution
already exists in the literature, it turns out to be quite
complex. Moreover, its complexity increases in ¢. For that
reason, we are considering the following approximation:

{pz(n— 1) + z(n)||z(n — D| < A1} )
~ N (0,E[(pz(n — 1) + z(m)*||z(n — 1)| < A1]),

O
—f(z“r\ < Ay)

,At

measurements is transmitted.

Ay

Figure 3 Qualitative representation of the conditional pdf f(x| [x] < A¢). Due to the measurements that |xs(n) — w/X.(n)| < A¢ are not
introducing error since they are not estimated. The parameter A; should be chosen in order to guarantee that a fraction y of the total
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but in the general case, it does not necessar-
ily follow a Gaussian distribution. The variance
E [(pz(n -1 +z(n))2‘|z(n -1 < Al] can also be
expressed as
E[(pz(n — 1) + z(m))?||z(n — 1)| < A1]
=E[z(m)] + p’E [z(n — D]|z(n — 1)| < A1],
—1-p° _’_p2MSE1CDE-PD’ (45)
so, the MSE introduced at ¢ = 2 is approximated by
MSESPEPD ~ (1 R p2MSE1CDE‘PD|A2) . (46)
It is easy to conclude that for the general case ¢, the

MSECPEPD g

MSEFPEPP = MSECPEPP =y (1 - p?+ p2MSECDF P A).

(47)
O
Hence, the D(CDE,PD) is approximated by
o
D(CDE,PD) ~ Z P,MSECPEPD, (48)

t=0
However, this is still an open problem. It is because the

values of P; are not determined yet. We study this issue
afterwards in Section 4.5.

4.4.2 The pair CDE-SD

If x(n) is constructed from a linear prediction using the
LWE, the MSE in prediction is directly 62 = 1 — p2.
However, using other strategies, the error will increase as
we have seen in (18). In particular, the pair CDE-SD con-
structs x(n) as the last transmitted sample, i.e., x(n) =
x(n — t). This prediction scheme introduces an error not
only due to z(n) but also due to x(n).

Lemma 3. The MSE?DE*SD is an approximation of
MSE?DE*SD (i.e., the error introduced by the CDE-SD pair

at the state t) and it is defined as
MSESPESP = 1 (1 — o2+ MSECD | A,) < MSEFPE-SP.
(49)

Proof. Similarly to the CDE-SD, for ¢ = 1 the error
MSE?DE*SD follows the conditional variance such that

MSESPETSP = E [(x(1) — x(n — 1))?[|x(n) — x(n—1)| < A{]
=E[(z(n) — (1 = p)x(n — 1))*||z(n)
— (1= px(n—1)| < Aq]
=E[Zm)?[IZ(n)] < A1]

= / Zm>2f(Z (m)||Z ()| < AdZ (n), (50)
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where z'(n) = z(n) — (1 — p)x(n — 1) contains both the
error contribution due to z(n) and x(n) with the variance
0}? equal to

o2 =E[(z(m) — (1 — p)x(n — 1)?] E [z(n)]

5 (51)
+ A= p)°Ex(n — 1] =21 — p).
Therefore, the MSE?DE_SD is
MSESPESD — j(2(1 — p)|Ay). (52)

For ¢ = 2 the available information is twofold: (1) we know
that [x(n) — x(n — 2)| < Ay, and (2) we also know that
in t = 1 the error was |Z/(n — 1)| < Aj. Therefore, the
MSEgDE_SD can be written as

MSESPEP = E [ (x(n) — (1 — 2))?||x(n)
— x(n—2)| < Ag, |7 (n—1D)| < Aq]
=E[(pz(n — 1) +z(n) — (1 = p*)a(n - 2))*|
201 — 1) + 2(m) — (1 = p*)x(n — 2)|

< Ay, lZ(n—1)| < A1]. (53)

To solve the MSESPE=5P in a recursive way may be harder

than for the CDE-PD case. It is because we cannot apply
directly the conditional function since the expectation in
(53) is not of the form h(axz|A) =E [x2 ’ |x] < A]. Hence,
to simplify, we propose a lower bound for (53) such that

MSESPESP > E[(Z/(n — 1) + z(m)?|12/(n — 1)
+ z(n)| < Ao, |Z(n—1)| < Al].

One can easily check that it is in fact a lower bound since

(54)

E [(20m) — (1= p)x(n—1))*] <E[(02(m) —(1—p*)x(n — 1))°]

(1-0%) =20 -p). (55)

Our proposed lower bound is very close to the real value

for high values of p. Using the same approximation as in

the CDE-PD case, and after some simple algebra, we can
find the lower bound of (53) as

MSESPESP = (1 — o2+ MSEPE 5P| A5) < MSESPEP,

(56)

It is easy to conclude that for the general case ¢, the

MSECPE=SD g

MSEFPESP =1 (1 p? + MSECOF~P| A) < MSEFPE P,

(57)
O
Hence, the D(CDE,SD) is lower-bounded by
o
D(CDE, SD) > » ~ P,MSE;"F 5P, (58)

t=0
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As for the case of the CDE-PD pair, this is still an open
problem, and it is studied afterwards in Section 4.5.

4.5 Design of the CDE-SD and the CDE-PD

From the design point of view, our aim is to obtain a set of
Ay’s that assure a coding rate at the CDE of y. However,
there are infinite solutions as we pointed out in (24). That
is why we propose two possible approaches to face with
the design of Ay:

e TFixed A4 ie, Ay = Aforall t.
e Variable A; in order to maintain constant transition
probabilities, i.e., ps_1; = p forall t.

4.5.1 Fixed A¢ design
This is probably the simplest approach to design the CDE
since the encoder does not have to change the value of A;
according to the current state since A; = A for all £.

First, we want to make explicit the existing relation
between A and p;_1,, as

A
pee® = [ fiwas, 59)

where f;(x) is the pdf of the error at state ¢.

Following the assumption in (44), the variable x(n) —

x(n) follows a Gaussian distribution with zero mean and
variance MSEtCDE (A), where

CDE, o\ | 1= 0% +MSESPE=SP(A)  if CDE-SD
MSE7(8)= { 1— p? 4 p2MSESPEPD (A) if CDE-PD.
(60)

Thus®,
o A
pr-1t(A)=1— 2/ fiwydx = erf | ———1,
A 2MSESPE(A)

(61)

where erf(x) is the error function of x. Using the result
in (24), we can numerically approximate A that assures
Py = y as the unique solution of

T i

Znerf A =1—)/

i=1 \t=1 IMSESPE(A) Y

Jfor T — o0.

(62)

The solution of A for the different values of y and p can
be graphically seen in Figure 4.

4.5.2 Variable A design

This approach allows for a slightly easier computation of
the values of A;. The main difference with the previous
design scheme is that we can use the result in the following
lemma:
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Lemma 4. The uniform solutions of the non-zero transi-
tion probabilities and for the stationary probability vector
are

Poo=V; Pr-1.=1—y,fort=1,2,...; P, =y(1 — y)..
(63)

Proof. Let us first impose that P = y. Hence, for the
uniform probability case p;_1; = p, and using (24)

So, if poy = 1 — y, we obtain that pop = y. In order
to compute the probability of each state, and considering
(23), we get

Pe=yp' =yd -y (65)
O

Hence, A; is directly
Ar=1/2MSESPE(A;_perf (1 —y) ,fort = 1,2,...,
(66)
where MSEgDE'{SD'PD} = 0; hence, MSESPE = 1 — p?

(as in (60)).
To graphically validate our design framework, we have
proposed the following experiment:

Experiment 1. We have simulated the CDE-SD and the
CDE-PD for y =[1/8 1/4 1/2] and for p €[0,1]. The
signal has been generated following the AR-1 process of
5,000 samples (for each value of p). We have computed the
probability of transmission Py obtained using our threshold
design framework.

From Experiment 1, we have plotted the probability of
transmission Py as a function of p and for each value of
y. We have used the variable A; design. In Figure 5, we
have compared the obtained results with the target coding
rate y, and we have observed that for the case of CDE-
PD, the fitting is very accurate. For the case of CDE-SD,
it is slightly worse. It is due to the approximation in (53).
However, we have said that this approximation improves
for p — 1. This behavior can be observed in Figure 5.
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Figure 4 Numerical solution of A for the fixed A design. The values of y are y = {0.125,0.25,0.5}, the values of p are p = {0.25,0.5,0.75},and

the value of T is 100. The red cross marks are the A solutions for a given p and y.

5 Downsampling distortion of other typical 5.1
strategies

The pair DDE-SD
The index ¢ denotes the time spacing between the last

In order to measure the performance of the CDE, we also  available sample with the current one. Thus, we can com-
evaluate the performance of different encoder-decoder pute the MSEPPESP using the result in (18) for each
pairs in terms of the downsampling distortion. These are  observation vector X;. Therefore, the downsampling dis-

DDE-SD, DDE-PD, PDE-SD, and PDE-PD.

tortion will be the sum of the MSE contributions for each

0.8 T T T T T T T T
—A—CDE-SD, v =0.125
— A -CDE-PD,y =0.125
—=—CDE-SD, v =0.25

0.7 — 8 -CDE-PD, vy =0.25 H
—e—CDE-SD, v =0.5
— 6 -CDE-PD,y =0.5

0.6 - i

Probability of Transmission Py

0.1

P

Figure 5 Experimental results from Experiment 1. The empirical probability of transmission is compared with the target coding rate y for the

CDE-SD and CDE-PD schemes. We have used the variable threshold design.
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state. Applying the definition of stationary probability
vector in Definition 5, we extract that P; = P; for all
i,j =0,1,...,T. Since we impose a coding rate of y, the
probability of transmission, i.e., Py, is Po = 1/T = y. The
stationary probability vector is p = y 1. Hence, the down-
sampling distortion for the DDE-SD can be computed

as
T-1 2Tfl 2Tfl
D(DDE,SD) :ZPtMSE?DE’SD =?Z (1-p")]=2— ?Z ot
t=0 t=0 t=0
2 T-1 1/y _ 1
S P A S WY (67)
Tp—1 p—1

5.2 The pair DDE-PD

The knowledge of the correlation parameters is avail-
able at the PD, and hence, it can predict the non-
transmitted samples using the LWF. Following Theorem 1,
the MSEPPEPP — 1 — p% Hence, the downsampling
distortion for the DDE-PD can be computed as

T-1 T-1
1
D(DDE,PD) = Z P;MSEPPEPD — o Z(l - p*)
t=0 t=0
1 T-1
_ 2t
=l-7 Z P
1 -1 2y —1
R Y il S N /1)
T p2—1 p2—1

5.3 The pair PDE-SD
The PDE can also be modeled following the infinite MC
in Figure 2. Hence, the transmission matrix Tcpg has the
same structure than T¢cpg in (22), and the expressions (23)
and (24) are valid as well. However, the rest is different.
For simplicity, we assume that all p;_1 are equal, i.e.,
the uniform probability case. The results of Lemma 4 also
apply here. It gives us two main advantages:

1. Itis the easiest solution to be implemented in
practice. The source decides either to transmit or not
regardless of what the current state t is.

2. It reduces the problem to a closed-form solution.

Using the results for the MSE; in (18) corresponding to
the decoder SD, we obtain
oo
=) PMSE;PFSP

t=0

=Y ya-y2(1-p')
t=0

D(PDE,SD)

gk

=2y ) (A—=p)i-p'A-p))

)
p(l—v)

t

Il
)

2V<1—(1—y) -
=2|1-— 69
( l—p(l—y)> ©9)
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5.4 The pair PDE-PD

The MSE associated to the state ¢ obeys Theorem 1. The
downsampling distortion for the PDE-PD can be com-
puted as

[ee}
> PMSE}PEFP

t=0
e}

=) yAd—p)(1-p%)
t=0

y Y (A=p'=p*a—-yp))
t=0

D(PDE,PD) =

. ( 1 B 1 )

“Y\ita-y 1-p2a-y)
v
1-p21—-y)

6 Performance evaluation

In this section, we evaluate and compare the performance
of the different encoder-decoder pairs as a function of
the downsampling distortion. Moreover, we introduce an
experimental evaluation in order to confirm the validity of
our theoretical results. For that, we have generated a sig-
nal x(n) as a sequence of 5,000 samples using the AR-1
model in (2) and for different values of the autoregressive
parameter p €[0, 1] with resolution 0.01. The results are
computed for y =[1/8, 1/4, 1/2].

6.1 The pair DDE-SD and the pair DDE-PD

We analyze the downsampling distortion for the DDE-SD
and DDE-PD pairs. We compare the theoretical results
with the experimental results. So, Figure 6 confirms the
validity of our theoretical model for the downsampling
distortion.

Also, we compare the difference in performance accord-
ing to the decoder used. The PD takes into account the
signal correlation information in the decoding process,
and hence, the total performance is increased notably for
low values of p. On the contrary, if p — 1, both decoders
perform similarly since x(1n) — p‘x(n—t) ~ x(n) —x(n—t).

In Figure 6, we can also graphically evaluate the impact
of y. In our scenario, the signal x(n) is transmitted by
the DDE in {8, 4, 2} times following a uniform pattern.
It is easy to see that the larger the y, the lower is the
distortion. However, there exists a trade-off between the
downsampling distortion and the compression rate.

6.2 The pair PDE-SD and the pair PDE-PD

The downsampling distortion for the PDE-SD and the
PDE-PD is plotted in Figure 7. However, the conclusions
that can be extracted from these results with respect to the
accuracy of the proposed analytical model and the behav-
ior of p and y with respect to the downsampling distortion
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are similar to the ones established in Section 6.1. For the
sake of clarity, we compare the downsampling distortion
results of the different pairs later in Section 6.4.

6.3 The pair CDE-SD and the pair CDE-PD
The performance of the previous encoder-decoder pairs
can be notably improved by conditional transmission at
the encoder site. In particular, we study and compare the
downsampling distortion of the two design approaches,
i.e., the fixed A, design and the variable A; design (with
uniform transition probabilities), depicted in Figures 8
and 9, respectively. As in the previous pairs, we compare
both the experimental results with the theoretical results.
However, in that case, our theoretical results are limited
to an approximation rather than the real system perfor-
mance. Even so, we can observe that the approximations
are very accurate for all the different simulations. For the
case of CDE-PD, the approximation is so close to the sys-
tem performance that the difference cannot be observed
because it is masked by the small amount of noise due to
the simulation. For the case of CDE-SD, the difference is
slightly bigger because of the approximation in (55).
Another conclusion is that the downsampling distor-
tion is notably higher for the fixed design. It is because
their transition probabilities p;—1; are increasing in ¢,
and it facilitates to achieve higher states ¢ in the MC
with higher probability (i.e., higher MSE;’s). On the con-
trary, the variable design concentrates the states in lower
t values.
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From a practical point of view, the CDE is simpler if
it follows a fixed design since the encoder only needs to
know the value of A and also it does not need to track
the current state £. However, from a computational point
of view, the variable approach is simpler since it can be
computed analytically, instead of numerically.

6.4 Comparison of the downsampling distortion

Finally, we compare the performance of the different
encoder-decoder pairs. Although Figure 10 does not pro-
vide any extra information, it allows us to better compare
the performance of the different schemes. For the sake of
simplicity, we only compare the theoretical results for the
case of y = 0.25.

It can be observed that the performance of the DDE
and PDE are similar. However, the deterministic encoder
works slightly better since it only uses the lowest y !
states of the finite MC while PDE uses higher states
that are related to higher errors. However, the main
disadvantage of the DDE in front of the PDE is its
lack of flexibility since the uniform solution is only
valid for natural values of y~!. Furthermore, the PDE
with uniform transition probabilities does not need to
track the current state ¢ of the process, and hence, it
is simpler.

The big hop in performance is observed for the CDE.
This encoder eliminates the transmissions of the samples
with the most redundant information. Thus, only the most
‘unpredictable’ samples are transmitted.

Downsampling distortion

—A_DDE-SD,

— A DDE-PD,

—5— DDE-SD,
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Figure 6 Experimental and theoretical downsampling distortion of the pairs DDE-SD and DDE-PD as a function of p. The coding rates are
y = {0.125,0.25,0.5}. Different markers denote different values of y; curves in blue represent the SD, whereas curves in red represent the PD; solid
lines represent experimental results, and dashed lines represent theoretical results.
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Figure 7 Experimental and theoretical downsampling distortion of the pairs PDE-SD and PDE-PD as a function of p. The coding rates are
y = {0.125,0.25,0.5}. Different markers denote different values of y; curves in blue represent the SD, whereas curves in red represent the PD; solid
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7 Conclusions

In this chapter, we have evaluated the performance of dif-
ferent encoding-decoding strategies in order to reduce the
number of transmitted samples and hence to decrease the
power spent in transmission. We have presented them as

an energy-efficient solution for the wireless sensor net-
work communication problem. In particular, we define
the downsampling distortion function in order to evaluate
the performance in terms of the trade-off between com-
pression rate and distortion at the fusion center of the
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Figure 8 Experimental and theoretical approximation of downsampling distortion of CDE-SD/CDE-PD pairs following a fixed A design.
The coding rates are y = {0.125,0.25, 0.5}. Different markers denote different values of y; curves in blue represent the SD, whereas curves in red
represent the PD; solid lines represent experimental results, and dashed lines represent theoretical results.
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Undersampling distortion
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Figure 9 Experimental and theoretical approximation of downsampling distortion of CDE-SD/CDE-PD pairs following a variable A
design. The coding rates are y = {0.125,0.25,0.5}. Different markers denote different values of y; curves in blue represent the SD, whereas curves
in red represent the PD; solid lines represent experimental results, and dashed lines represent theoretical results.
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combination of three downsampling encoders, which are
the DDE, the PDE, and the CDE, with two decoders: the
SD and the PD.

We have obtained closed-form expressions for the pairs
DDE-SD, DDE-PD, PDE-SD, and PDE-PD and accurate
approximations for CDE-SD and CDE-PD. Moreover, we

have proposed two strategies in order to design the
threshold of the condition in the CDE, i.e., the fixed
threshold design and the variable threshold design.

The simulation results validate our theoretical results.
Furthermore, we have compared the performance of the
different pairs and showed the impact of taking into

Downsampling distortion
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Figure 10 Comparison of the downsampling distortion of the different encoding-decoding pairs as a function of p. The coding rate is
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account the signal model in the encoding-decoding pro-
cess. Hence, the pair CDE-PD (with variable threshold
design) outperforms by far the rest of the studied strate-
gies. However, extending the CDE analysis for higher
order AR models or even for other time-correlated signal
models remains as an open problem.

Endnotes

2 Notation. Boldface uppercase letters denote matrices,
boldface lowercase letters denote column vectors, and
italics denote scalars. (-)7, (-)*, (-)/! denote transpose,
complex conjugate, and conjugate transpose (Hermitian),
respectively. [ X];; and [ x]; are the (ith, jth) element of
matrix X and the ith position of vector X, respectively.
[ X]; denotes the ith column of X. | - | is the absolute
value. ||a|| represents the Euclidean norm of a. Let a refer
to the estimated value of variable 4. E[ -] is the statistical
expectation. Function erf(-) represents the error function.

b The conditional variance of a continuous random
variable X given the condition Y = y is defined as
var(X|Y =) = E[X?|Y = y] = [Z &*f (XY = y)dx,
where f(X|Y = y) is the conditional pdf of X given ¥ = y.

¢ It comes from the definition of the cumulative density
function of a Gaussian variable such that

[C o f@)dx = % (1 —i—erf( a

202
Competing interests
The authors declare that they have no competing interests.

Acknowledgements
This work is supported by the Spanish Government under project
TEC2011-28219 and the Catalan Government under grant 2009 SGR 298.

Received: 14 January 2013 Accepted: 30 April 2013
Published: 10 May 2013

References

1. CKToh, Maximum battery life routing to support ubiquitous mobile
computing in wireless ad hoc networks. Commun. Mag., IEEE. 39(6),
138-147 (2001)

2. OYounis, S Fahmy, HEED: a hybrid, energy-efficient, distributed clustering
approach for ad hoc sensor networks. Mobile Comput. IEEE Trans. 3(4),
366-379 (2004)

3. RMudumbai, D Brown, U Madhow, H Poor, Distributed transmit
beamforming: challenges and recent progress. Commun. Mag., IEEE.
47(2), 102-110 (2009)

4. KZarifi, S Zaidi, S Affes, A Ghrayeb, A distributed amplify-and-forward
beamforming technique in wireless sensor networks. Signal Process., IEEE
Trans. 59(8), 3657-3674 (2011)

5. SPradhan, JKusuma, K Ramchandran, Distributed compression in a dense
microsensor network. Signal Process. Mag., IEEE. 19(2), 51-60 (2002)

6. NSun,JWu, Optimum sampling in spatial-temporally correlated wireless
sensor networks. EURASIP J. Wireless Commun. Netw. 2013, 5 (2013)

7. D Neuhoff, R Gilbert, Causal source codes. Inf. Theory, IEEE Trans. 28(5),
701-713 (1982)

8. TWeissman, N Merhav, On causal source codes with side information. Inf.
Theory, IEEE Trans. 51(11), 4003-4013 (2005)

9. M Derpich, Improved upper bounds to the causal quadratic
rate-distortion function for Gaussian stationary. Inf. Theory, IEEE Trans.
58(99),3131-3152 (2012)

10. H Viswanathan, T Berger, Sequential coding of correlated sources. Inf.
Theory, IEEE Trans. 46, 236-246 (2000)

Page 16 of 16

11. R Zamir, Y Kochman, U Erez, Achieving the Gaussian rate distortion
function by prediction. Inf. Theory, IEEE Trans. 54(7), 33543364 (2008)

12. JB O'Neal, Delta-modulation quantizing noise-analytic and computer
simulation results for Gaussian and television input signals. Bell Syst. Tech.
J.45,117-141 (1971)

13. EN Protonotarios, Slope overload noise in differential pulse code
modulation systems. Bell Syst. Tech. J. 46, 2119-2161 (1967)

14. TM Cover, JA Thomas, Elements on Information Theory. (Wiley, New York,
1991)

15.  JB O'Neal, Signal-to-quantizating-noise ratio for differential PCM. IEEE
Trans. Commun. Technol. 19, 568-570 (1971)

16. N Farvardin, J Modestino, Rate-distortion performance of DPCM schemes
for autoregressive sources. Inf. Theory, IEEE Trans. 31(3), 402 -418 (1985)

17. O Guleryuz, M Orchard, On the DPCM compression of Gaussian
autoregressive sequences. Inf. Theory, IEEE Trans. 47(3), 945-956 (2001)

18. RRugin, A Conti, G Mazzini, in Proceedings of the 15th International
Conference on Software, Telecommunications and Computer Networks,
2007. SoftCOM 2007. Experimental investigation of the energy
consumption for wireless sensor network with centralized data collection
scheme (Split-Dubrovnik, 27-29 Sept 2007), pp. 1-5

19. Q Wang, Traffic analysis, modeling and their applications in
energy-constrained wireless sensor networks: on network optimization
and anomaly detection. (Mid Sweden University, 2010) . http://urn.kb.se/
resolve?urn=urn:nbn:sexmiun:diva-10690. Accessed 15 July 2012

20. T Hashimoto, S Arimoto, On the rate-distortion function for the
nonstationary Gaussian autoregressive process. Inf. Theory, IEEE Trans.
26(4), 478-480 (1980)

21. S Haykin, Adaptive Filter Theory, 4th edn. (Prentice Hall, Upper Saddle River,
2001)

22. JBarcelo-Llado, A Morell, G Seco-Granados, Enhanced correlation
estimators for distributed source coding in large wireless sensor
networks. IEEE Sensors J. 12(9), 2799-2806 (2012)

23. S Rosenbaum, Moments of a truncated bivariate normal distribution. J. R.
Stat. Soc. Ser B (Methodological). 23(2), 405-408 (1961)

24. BG Manjunath, Wilhelm S, Moments calculation for the double truncated
multivariate normal density (Social Science Research Network 2009). http://
dx.doi.org/10.2139/ssrn.1472153. Accessed 20 Aug 2012

doi:10.1186/1687-6180-2013-101

Cite this article as: Barcelé-Llado et al: Conditional downsampling for
energy-efficient communications in wireless sensor networks. EURASIP
Journal on Advances in Signal Processing 2013 2013:101.

Submit your manuscript to a SpringerOpen®

journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com



http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-10690
http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-10690
http://dx.doi.org/10.2139/ssrn.1472153
http://dx.doi.org/10.2139/ssrn.1472153

	Abstract
	Introduction
	Motivation and previous work
	Our contribution
	Organization of the paper

	System model and assumptions
	Assumptions on the signal model
	Assumptions on the system model

	Dowsampling transmission schemes
	Different encoding alternatives
	Deterministic downsampling encoder
	Probabilistic downsampling encoder
	Conditional downsampling encoder

	Different decoding alternatives
	Step decoder
	Predictive decoder


	Downsampling distortion of the conditional downsampling encoder
	Signal prediction using incomplete observation vectors
	The Markov chain solution for the incomplete observation vector case
	The Markov chain model for the CDE
	Approximations for the downsampling distortion of the CDE-PD and CDE-SD
	The pair CDE-PD
	The pair CDE-SD

	Design of the CDE-SD and the CDE-PD
	Fixed t design
	Variable t design


	Downsampling distortion of other typical strategies
	The pair DDE-SD
	The pair DDE-PD
	The pair PDE-SD
	The pair PDE-PD

	Performance evaluation
	The pair DDE-SD and the pair DDE-PD
	The pair PDE-SD and the pair PDE-PD
	The pair CDE-SD and the pair CDE-PD
	Comparison of the downsampling distortion

	Conclusions
	Endnotes
	Competing interests
	Acknowledgements
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <>
    /GRE <>

    /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
    /HUN <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.440 793.440]
>> setpagedevice


