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Abstract—This paper treats the problem of joint estimation of
time-delay, Doppler frequency, and spatial (direction-of-arrival
or DOA) parameters of several replicas of a known signal in an
unknown spatially correlated noise field. Both spatially unstruc-
tured and structured data models have been proposed for this
problem and corresponding maximum likelihood (ML) estimators
have been derived. However, structured models require a high
computational complexity and are sensitive to the antenna array
response, while unstructured models are unable to achieve good
performance in some scenarios. In this paper, it is shown how the
extended invariance principle (EXIP) can be applied to obtain
estimates with the quality of a spatially structured model, but with
much lower complexity than directly utilizing a structured model
and with greater robustness to errors in the model of the array re-
sponse. EXIP improves the quality of the time-delay and Doppler
frequency estimates obtained with a spatially unstructured model
by introducing DOA estimates which are obtained in a second
step through an innovative reparametrization. Simulation results
for time-delay and Doppler frequency estimation for Global Posi-
tioning System (GPS) signals are presented and confirm that the
proposed two-step approach attains the Cramer-Rao lower bound
(CRLB) of the spatially structured model.

Index Terms—Antenna arrays, Cramer-Rao lower bound
(CRLB), direction of arrival (DOA), Doppler frequency, extended
invariance principle, high-resolution array signal processing,
maximum likelihood estimation, multipath channel, propagation
time-delay.

1. INTRODUCTION

HANNEL estimation is important in many applica-
tions such as multiple input multiple output (MIMO)
channel characterization, radar, synchronization, and for
Global Navigation Satellite Systems (GNSS) including Global
Positioning System (GPS). In this paper, we consider the
problem of time-delay and Doppler frequency estimation of
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the line-of-sight signal (LOSS) of a GPS satellite in a mul-
tipath and radio frequency interference (RFI) environment.
The quality of the ranging data provided by a GNSS receiver
largely depends on the synchronization error, that is, on the
accuracy of the estimation of the propagation time-delay of the
LOSS. When the LOSS is corrupted by several superimposed
delayed replicas (reflective multipath) and/or additional RFI,
the estimation of the propagation time-delay (and thus the
positioning) can be severely degraded in state-of-the-art GNSS
receivers [1]-[3]. In this paper, we consider the general case
where the spatial components of the RFI are unknown. Several
techniques have been proposed in the literature for solving
the multipath problem in GNSS using one antenna, see, e.g.,
[4]-[7]. For joint multipath and RFI mitigation, interesting
approaches using antenna arrays have been developed in recent
years [8]-[10].

Spatially unstructured data models have been used for such
problems in order to achieve low complexity and robustness to
array response modeling errors [11] and a solution for RFI with
an unknown spatial field was given in [12]. On the other hand a
spatially structured data model provides better results [13]-[15],
but entails rather high complexity in the parameter estimation.

In a spatially unstructured model, the impinging wavefront is
simply described by a vector spatial signature without further
parameterization. On the other hand, a spatially structured data
model parameterizes the wavefront in terms of its complex am-
plitude and direction of arrival (DOA) based on a model for the
response of the array. This obviously requires detailed knowl-
edge of the antenna response and the array geometry, while
using a spatially unstructured data model provides the advan-
tage of robustness to errors in array response model, its geom-
etry and other hardware biases [16].

Even if the antenna array response can be approximately de-
termined, the true antenna array response can be significantly
different due for example to changes in antenna location, tem-
perature, calibration inaccuracy and the surrounding environ-
ment. The effects of such model errors have been studied in
[17]-[20] among many others. In order to account for these ef-
fects and thus exploit the full resolution capabilities of a spa-
tially structured data model, a generalized model for the re-
sponse of the antenna array needs to be considered [21]-[23],
which introduces even more complexity in the parameter esti-
mation. These methods are referred to as autocalibration tech-
niques.

In [16] it was shown how the extended invariance principle
(EXIP) can be applied to refine maximum likelihood (ML) esti-
mates of a spatially unstructured data model to achieve the per-
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formance available using a spatially structured data model. The
EXIP, which was first introduced in [24], involves reparame-
terizing the ML criterion in such a way that it admits an ap-
proximate initial solution (much simpler) which is then refined
by means of a weighted least squares (WLS) fit. The optimal
weighting is the Fisher information matrix (FIM) corresponding
to the unstructured ML criterion. Furthermore, it is also shown
in [16] that the overall estimation performance of the proposed
approach can be improved by taking into account array calibra-
tion errors in the estimation of the signal parameters. In partic-
ular, it is demonstrated that information about the second-order
statistics of the errors of the array response model can be used to
“regularize” the EXIP solution and make it more robust to such
errors.

This paper extends and generalizes the approach given in [16]
to a multipath case in an unknown spatial field (e.g., noise plus
RFI). We present a two-step approach that improves the quality
of ML estimates which are obtained with a spatially unstruc-
tured model in order to derive ML estimates for a spatially struc-
tured model. The two steps are:

1) Apply the space alternating generalized expectation maxi-
mization (SAGE) algorithm to obtain ML estimates for an
unstructured model.

2) Adopt the EXIP to refine the ML estimates obtained for
an unstructured model in order to derive time-delay and
Doppler frequency ML estimates for a structured data
model.

The WLS fit in the second step involves a search only for the
DOAs of the impinging wavefronts. We will prove that the
resulting DOA estimation problem is equivalent to a complex
augmented subspace fitting (SSF) problem. As a solution for
the special case of a uniform linear array (ULA), we derive an
innovative reparametrization approach based on the iterative
quadratic maximum likelihood (IQML) algorithm [25] that
exploits the special structure of the defined complex augmented
SSF problem. This novel low-complexity approach reduces to
iteratively solving a quadratic problem with linear constraints.
The DOA estimates can be derived explicitly in closed-form
since the reparametrization of the DOA estimation problem
leads to finding the simple root of several first-order monic
polynomials.

In the proposed two-step approach only the second step in-
volves a search for the DOAs, thus it is only in this second step
that errors in the array response model need to be considered. In
order to achieve robustness of the EXIP to errors in the array re-
sponse model, a novel “regularization” of the weighting matrix
of the WLS is defined based on a “regularized” Schur comple-
ment. This regularization approach avoids the application of au-
tocalibration techniques as discussed above, which would intro-
duce additional complexity to the parameter estimation process.

There are only few publications that treat the general and
complex problem considered in this work involving all of the pa-
rameters, e.g., [13]-[15], [26]. Most of these publications only
consider white noise, but not unknown spatially colored inter-
ference or errors in the array antenna model as done in this work.
Hence, the important contribution of this paper is to propose a
computationally tractable solution that additionally is able to ac-
count for an unknown spatial field and imprecision in the array
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calibration. The proposed two-step EXIP approach is the key to
achieving these goals.

The paper is organized as follows. In Section II, the unstruc-
tured and structured data models are introduced. Section III
describes the first step of our proposed two-step approach, in
which the SAGE algorithm is used for ML parameter estimation
for the unstructured model. In Section I'V, the second step of our
proposed two-step approach is described. The EXIP is briefly in-
troduced, it is proven that the resulting DOA estimation problem
is equivalent to a complex augmented SSF problem and an in-
novative reparametrization is developed for DOA estimation.
In Section V we discuss the reduction of computational com-
plexity achieved by our approach. In Section VI, the behavior of
the proposed two-step approach is described using several sim-
ulation examples. Finally, in Section VII, we will present our
conclusions.

II. DATA MODEL

We assume that I, narrowband planar wavefronts, 1 < ¢ < L
are impinging on an array of M sensor elements. The
noise-plus-interference corrupted baseband signal at the an-
tenna output y(t) € C™*! can be modelled as a superposition
of L wavefronts s;(t) € CM*! and temporally white complex
Gaussian noise n(t) € CM*! with zero-mean and unknown
spatial covariance matrix Q € CM*M 1In the following we
will define spatially unstructured and structured models. We
assume that the number of impinging wavefronts L is the same
for the spatially unstructured and structured models.

A. Structured Model

The complex baseband signal received by the antenna array
is

L
y(t) =s(t) +n(t) = Zs;(t) + n(t) )
=1

where s(t) € CM*! denotes the superimposed signal replicas

S[(t) = a (QZS[) ’}/geﬂwwtc(t — Tg) (2)

a(¢¢) € CMX1 defines the steering vector of the antenna array
and ¢(t — 1) denotes a known signal waveform c(¢) with un-
known delay 7,. We define the parameter vector

T
6 = [Re{}T,Im{7}",¢" . 7"v"] €Dy ()

composed of the vector of complex amplitudes v =

[Y1,---,%es---,vr]T, the vector of azimuth angles ¢ =
[b1,--- e, dr]T, the vector of time-delays T =
[T1,...,7¢,...,7]T and the vector of Doppler frequencies
v=I[v1,...,v,...,vg]T corresponding to each wavefront. In

(3) the set Dy denotes the domain of the parameter vector 6.
The parameters of one wavefront are collected in the parameter
vector

0. = [Re{ve}, Im{ve}, e, 7o, 0] - 4)

The spatial observations are collected at N time instants, as
y[n] = y(n-Ts) withn =1,2,..., N, where T} is the sample
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interval and f;, = TL denotes the sampling frequency. The
channel parameters are assumed constant during the observa-
tion interval. Collecting the samples of the observation interval
leads to

Y = [y[1],y[2],...,y[N]] € CMxN )
N = [n[1],n[2],...,n[N]] € CMxN ©)
S(6) = [s[1],s[2],...,s[N]] € CM*N s
Se(80) = [se[1],8¢[2], ... ,s¢[N]] € CM*N. ®

Thus, the signal for the structured model can be written in matrix
notation as

L
YZS(0)+N= ZS[(G[)—I—N
=1
=AT(CoGD)+ N 9

where © denotes the Hadamard-Schur product,

A =[a(¢1)---a(¢e) - a(pr)] € M (10)
I =diag{y} € CI*F (11)
C=l[c(r)---c(r)--c(ry)]" € R"*N (12)

contains the sampled and shifted waveform c¢(t) for each im-
pinging wavefront

c(re) = [e(Ts = 70), ..., e(nTs — 74), . ..,e(NTs — 7)]"
(13)
and

D =[d(r)---d(r)---d(vg)]" € CN  (14)

contains the complex exponential functions conveying the
Doppler frequency of each wavefront
d(l//) _ [ej27'erS . 7ej27rwnT5 . 7ej27'rwNTs]T (15)

B. Unstructured Model

Alternatively, for the simpler unstructured model we write

se(t) = heel?™te(t — 1p) (16)
where explicit parametrization on the DOA and signal ampli-
tude is eliminated in favor of an unstructured spatial signature
h, € CM*1 We define the parameter vector

¢ = [Re{vee{H}} T Tm{vec{H}}T, 77, 07]" € D¢ (17)
with

H=[h;---h;.--hy] e CM*L, (18)
In (17), vec{-} denotes the vec operator, which vectorizes a ma-
trix by stacking its columns. The set D¢ denotes the domain of
the parameter vector £. The parameters of each wavefront are
collected in the parameter vector

]T

& = [Re{h/}", Im{h/}T, 7, 10 (19)

The signal for the unstructured model can be written in matrix
notation by introducing & and £, to (9). In general H = AT,
but the unstructured model makes no assumptions about the el-
ements or the structure of H.

III. PARAMETER ESTIMATION FOR THE UNSTRUCTURED
MODEL

In this section we discuss the first step of the proposed two-
step approach in which the parameters of the unstructured model
are estimated.

A. Maximum Likelihood (ML) Estimation

Assuming temporally white complex Gaussian noise n(t)
with zero-mean and unknown spatial covariance matrix
Q € CM*M the log-likelihood function for the unstructured
data model can be written as

(Y:m) =1(Y;€ Re{IFvec{Q}}T, Im{J7, vec{Q}}T)
= — MNln(m) — Nln (det(Q))
—tr (Q7H(Y = S(&))(Y - S(&)") (20)
where

_ [eT R T 1 e
n=[€" Re{Ifvec{Q}}T, Im{J} vec{QHT] 1)

()" denotes complex conjugate transposition, det(-) is the de-
terminant operation, tr(+) is the trace operator, J¥, is a selec-
tion matrix with dimensions w x M? which selects the
upper-triangular elements of Q from vec{Q}, and J%, is a se-
lection matrix with dimensions £ 22_ M M? that selects the
lower-triangular elements of Q excluding the diagonal from

vec{Q}.

The maximum likelihood estimator (MLE) is given by

1 = argmax {I(Y;m)} . (22)
The ML estimate of Q can be derived as [16]
A 1
Q= (Y =S(€)(Y - S(€)". (23)

B. Space-Alternating Generalized Expectation Maximization
(SAGE) Algorithm

In order to obtain the ML estimates é for the unstructured
model (22) we apply the iterative SAGE algorithm [27], [28].
Instead of directly performing a high-dimensional nonlinear
optimization procedure, the SAGE algorithm provides a se-
quential approximation of the MLE by performing a sequence
of maximization steps in spaces of lower dimension, thereby
considerably reducing the complexity. In general, there are
only a small number of algorithms available, which are used
to solve such high-dimensional nonlinear problems in channel
estimation, e.g., [13], [14], and [26]. The SAGE algorithm is
very suited for such parameter estimation problems, in partic-
ular when both time-delays and Doppler frequencies of several
superimposed signals have to be estimated [13], [15], [27].



We assume that the number of wavefronts L is known. In
order to determine L, several methods can be applied, e.g.,
simple rank tests on Y, methods using Akaike information
criterion (AIC) [29] or methods using the minimum description
length (MDL) criterion [30], [31], or other methods given in
[16] and [32]. In case of unknown colored noise fields, methods
as described in [33] and [34] can be applied. Tracking the
parameter estimates and the model order L can be performed
by methods as the SAGE Kalman filter approach developed
in [35].

The basic concept of the SAGE algorithm is the hidden data
space [27]. In our case, we choose the hidden data space as
X¢ = S¢+Ny, where N is temporally white complex Gaussian
noise with covariance 3,Q, where Zsz1 Be = land N =
Zle Ny. The stochastic mapping of the hidden data space to
the observable signal is Y = Xg—l—zj;?::l S¢+Ny . The SAGE
algorithm performs two steps, the exlfez:éteation step (E-step) and
the maximization step (M-step). Within the E-step an estimate
of the unobservable data, namely the hidden data space X, and
the spatial covariance matrix Q, is derived based on the current
update of the estimates of the parameters £ and the observable
data Y. In the M-step the estimates of the signal parameters are
updated.

Thus, the E-step can be formulated as

L
X, =Y - ) Selé)

24

=1

o £
Q= (Y S(E)(Y —s(&)". (25)

The M-Step then can be given as

Ty = arg max {||Q X ¢ (c(me) © d(in))” ||%} (26)
7 = argmax {|Q 5 X (e(f) @ d(ve))" I3} @D)
he =X (e(7) © d(2))* (28)

(~)+ in (28) denotes the Moore-Penrose pseudoinverse. The

E-step and the M-step (24)—(28) are performed iteratively
wavefront by wavefront with £ = 1,..., L until the algorithm
converges.

Initialization of the SAGE algorithm is performed by succes-
sive interference cancellation starting with é =[0,...,0]T as
described in [15]. For the covariance matrix Q the initial esti-
mate is

A 1 vH
Q= N . (29)

IV. EXTENDED INVARIANCE PRINCIPLE (EXIP)

In this section, we describe the second step of our approach,
in which the initial unstructured estimates are updated for the
structured model.

We apply EXIP in order to estimate # from an estimate of €.
The estimation of the deterministic parameters of the wavefronts
(& or 0) is decoupled from estimating the noise parameters (Q),
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as the related FIM is block diagonal. Further, the parametriza-
tion of Q is the same for both the spatially structured and un-
structured models. Thus, the EXIP approach can be described
as follows [16], [24].

Theorem 1: Assuming that there exists a mapping function f
which is one-to-one and well defined in Dy and which satisfies

E=f(0) € D¢, Ve Dy (30)
and
then
2 o T ~
0=argmin [~ F0)] W[E-F50)] G2

is asymptotically (for large V) equivalent to the structured ML
estimate @, where

2 .
343
Proof: A proof can be found in [16], [24]. [ |

The weighting matrix W € RCEM+2L)x(LM+2L) can be
found from the block of the FIM that is related to the signal pa-
rameters §. The weighting matrix W is derived in Appendix A.

The EXIP as given in (32) determines 6 such that the point
f(0) e Dg is as close to £ as possible in the metric induced by
W [24]. The mapping function f() is given as

Ol

f(6) = Im{v} (34)
v
where
Yo - [Imiioa) weinoar| O
and [0 denotes the Khatri-Rao product [36, p. 1355].

Minimizing (32) with respect to 7 and v leads to the re-
fined estimates

[;] _ [” ) [\If(rﬁ) [gxeﬁrﬂ ;
~|infvectay)] - 9

The matrix IT is defined in (72) in Appendix A. Note that in (36),
the term involving II serves as a correction term to the estimates
for the unstructured model 7 and ». Substituting (36) in (32) and
minimizing with respect to [Re{y}TIm{y}7] B yields

[ﬁnm CROTON

Re{vec{H}}

)0 [Im{vec{ﬂ}}

] . (37
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The matrix Q is a Schur complement of the weighting matrix
W and it is defined in (71) in Appendix A. Finally, introducing
(36) and (37) to (32) we can derive the resulting problem

o= { [l | (0-0%o
(¢wnew) wrwn) il ] o

The problem as given in (38) provides estimates of the DOAs
that are asymptotically equivalent to the ML estimates of the

structured model. These estimates t} are introduced in (37) and
(36) to improve the time-delay and Doppler frequency estimates
(T and ¥), which were derived in the first step using the spatially
unstructured model. Thus, the refined estimates 7 and ¥ can be
calculated. Applying the EXIP results in closed-form solutions
for 7, v and 4 as given in (36) and (37). However, a search over
the DOAs is required as given in (38). In Section IV-B we show
that the problem in (38) is equivalent to a complex augmented
SSF (cf. Theorem 2). In Section IV-C we prove that for a ULA
the problem in (38) can be solved in closed-form (cf. Theorem
3). In Section IV-D it is shown that the WLS problem given in
(32) provides a direct and natural way of taking array calibration
errors into account.

A. Complex Formulation of the DOA Estimation Problem

The problem given in (38) can be transformed to a complex
formulation based on C-widely linear operations.

Theorem 2: The problem given in (38) is equivalent to a com-
plex augmented SSF problem given as

A <2 [ vec{H}
# = argmn {tr (Pgﬁmﬂ {vec{fl*}}
vec{H} "o
[vec{H*}} it ) } (39)
with
L1 CH - -1
Pgéil(d) =Iorar — Q7 ¥(9) (‘I’ (¢)Q\I’(¢))
¥(@0" 4o

where W(¢) € C2LM*2L gnd O € C2LM*2LM yre the com-
plex augmented matrices of ¥(¢) and 2, respectively.
Proof: The complex augmented SSF problem is derived in
Appendix B. [ |
The structure of (39) results from the fact that vec{H?} is an
improper complex random vector [37, p. 35]. Thus, (39) incor-
porates not only vec{H} but also vec{H*} in the derived com-
plex augmented notation based on C-widely linear operations.

B. Solution for Uniform Linear Arrays

Here, we will derive an innovative reparametrization ap-
proach for a ULA based on IQML [25] that exploits the special
Khatri-Rao structure of the complex augmented SSF problem
(39) in order to achieve an efficient solution with low com-
putational complexity. The problem (39) derived in Theorem

2 may be solved for arbitrary array geometries by adapting,
for example, weighted subspace fitting (WSF) [38] or other
SSF techniques such as [21], [22] to a complex augmented
formulation in order to take into account the improper Gaussian
problem at hand. In the case of a ULA, this adaptation to a
complex augmented formulation could be performed based on
the novel reparametrization approach presented in the theorem
below.

Theorem 3: For a ULA the complex augmented SSF problem
as given in Theorem 2 can be solved by iteratively evaluating a
quadratic problem with linear constraints.

Proof: The proof follows two steps. First, we define a
reparametrization of the problem given in (39). Second, we will
show that the reparametrized problem can be solved by itera-
tively evaluating a quadratic problem with linear constraints.
This second step is derived in Appendix C.

Consider a centrosymmetric ULA where the array elements
are identical and equidistantly spaced by A along a line, with

a(g) = e

Jhe [1 elte . ..eJ'(Mfl)Mj|T e CM*1 (41)

where p; = —2X Asin(¢¢) and X denotes the wavelength. We
define a Toeplitz matrix B, with
be1 beo 0
BH = S e CM=1M - (42)
0 b1 beo

where By spans the nullspace of a(¢,) and we observe that

Blla(¢) =0, fort =1,...,L.

’

(43)

The variables b o and b, ; denote the coefficients of a first-order
polynomial py(z) = z bg,o + be1 with root z = el#t_ The coef-
ficients of this first-order polynomial are placed in the vector
b, = [b[,o, b[71]T S C2X1. 44)
Now we can expand this reparametrization of a(¢¢ ) to formulate

a reparametrization of ¥(¢) according to its Khatri-Rao struc-
ture. Hence, we define

=" = block diag {BY,...,BY,B,..., B

/ c C2L(ZM*1)><2L]\/I (45)

such that

m

1(¢) =0 (46)

where the operator block diag{} denotes a block diagonal ma-
trix [36, p. 1360]. Since Q7PZ € C2EMXALM-1) by rank
2L(M — 1) anii?;\ll(tﬁ) € C2LMX2L pag ra~nll< ?L, it follows
from (46) that @ *= spans the null space of Q° ¥(¢) and



Thus, we can reformulate the complex augmented SSF problem

given in (39) replacing P-, = by P_. 1 _and we get
Q2¥(4) Q@ 28
. ! F
b=argmin<tr(P. 1.Q°" vec{FI}
b Q 2= vec{H*}

where

b=[b],...,bi]T € C?ExL. (49)
In order to get a useful solution for b we must impose a con-
straint to avoid the trivial solution b = 0. Without loss of gen-
erality we choose byg = 1 Vyey, . 1y for this non-triviality
constraint. Thus, all the first-order polynomials p,(z) are to be
monic [39] and B, depends explicitly on a complex coefficient
be,1 and ¢, depends uniquely on b, 1, where p,(z) = z+b¢ 1 and
the root of this first-order polynomial is given by z = —by 1 =
el Finally, reformulating (48) and introducing the non-trivi-

ality constraint we get

b= arg Hgn {tr ((EHQ—IE)l
[‘:/eecc{{;lil*}} } ) E) }

Now, the problem as given in (50) can be solved by iteratively
solving a quadratic problem with linear constraints. The proof
is given in Appendix C. The DOAs can be directly determined

as
3 —b
¢, = — arcsin <%) .

A

m

b=y

(50)

619

C. Robustness to Calibration Errors

The WLS problem given in (32) provides a direct and nat-
ural way of taking array calibration errors into account. This is
accomplished by “regularization” of the WLS criterion, by in-
troducing an appropriate modification of the weighting matrix
[16]. Information on the array perturbations may be available
from the manufacturer of the antenna array (e.g., given in terms
of gain and phase tolerances) or from the results of several cal-
ibration measurements. The robustness of the EXIP WLS fit to
array perturbations can be improved through the use of the fol-
lowing theorem.

Theorem 4: Suppose that for the mapping of the spatially
unstructured onto the spatially structured model we have

Re{vec{H}} | _ g\ | Re{v}
[Im{vec{H}}] o (\II(¢) + ‘II) [Im{’YJ 62
where
= [Re{I,0A} —Im{I,0A}
o [Im{ILDA} Re{I;0A} } (53)
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and A € CM*TL represents the matrix of array perturbations.
Suppose that the columns of A, denoted as a,, are modeled
as zero-mean random vectors with known covariance. Then the
“regularized” weighting matrix

Q! —o 't

Wr = [—11 Q' Re{W,}~l4+IIQ 'O"

-1
} (54
with the “regularized” Schur complement 2, € C2LM*2LM
will improve the robustness of the EXIP WLS fit.

Proof: The known covariance of vec{A} is

R=F H?ﬂﬁg}ﬁﬂ [Re{vec{A}} Tm{vec{A}} ]T}

e RQLMXQLM. (55)
The difference between the nominal mapping and
the mapping including array perturbations is the term
U [Re{y}" Im{y}"] * and its covariance can be written as

Im{v}
RT'

Q'l-F [\If [Re{"}} [Re{y}™ Im{y}?] \I/T]

Il
=

(56)
with

f _ RG{F} & I[u

—Im{T'} ® I, 2LM x2LM
R .

Consequently, the “regularized” Schur complement is given by

Q, = (Q*l + ()‘1)_1 (58)

which is introduced to W,.. [ |

In order to derive €, and Q as defined in Theorem 4, an initial
estimate of I" and thus of «y is required. This initial estimate 4,
can be obtained by an initial application of the EXIP algorithm
without the regularized weighting [16]. Afterwards, one can set

20 = (07 +07 ()

and apply the EXIP with the regularized WLS approach.

(59)

V. COMPUTATIONAL COMPLEXITY

The derived two-step approach provides a solution for the
structured model 8 which involves reparameterizing the ML cri-
terion in such a way that it admits a much simpler approximate
initial solution using an unstructured model £ in the first step
which afterwards is refined by means of a WLS fit in the second
step. We have shown that the DOA estimates and a refinement
of the time-delay and Doppler frequency shift estimates in the
second step can be derived jointly (for all L) based on a complex
augmented SSF problem (cf. Theorem 2) or in case of a ULA
even in closed-form (cf. Theorem 3).

The second step of our two-step approach does not involve
any search since the estimates are obtained in closed-form.
Thus, the overall computational complexity is only due to the
first step. Essentially, this means that the proposed algorithm
has a complexity similar to the one of an estimator of the
unstructured model, which is much less than the complexity
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of a method that directly estimates the structured model. This
complexity reduction is achieved regardless of the method of
optimization (SAGE, Newton-type, etc.) considered to derive
the solution. This is the basic idea of the application of the
EXIP [16], [24].

For instance, if the algorithm proposed in Section III-B is
used to estimate the parameters of the unstructured model &,
2L one-dimensional searches per iteration are needed, i.e., one
search for the time-delay (26) and one for the Doppler frequency
shift (27) of each wavefront. On the contrary, if a similar algo-
rithm, also based on SAGE, were used to directly estimate the
structured model @, 31 one-dimensional searches per iteration
would be needed as, besides the time-delays T and Doppler fre-
quency shifts v, the DOAs (azimuth angles ¢) also have to be
estimated [13], [15].

Additionally, the proposed two-step approach provides a
direct and natural way of taking array calibration errors into
account (cf. Theorem 4), instead of applying autocalibration
methods which would introduce even more complexity in the
parameter estimation when directly solving for a structured
model (cf. Section I).

VI. SIMULATION RESULTS

In this section, the performance of the proposed two-step ap-
proach is assessed by computer simulations. For each parameter
set, 2500 Monte Carlo runs are performed and we adopt the root
mean square error (RMSE) and the Cramer-Rao lower bound
(CRLB) for statistical analysis of the behavior of the proposed
approach. The simulations consider the problem of time-delay
and Doppler estimation of the LOSS of a GPS satellite in a mul-
tipath and RFI environment.

We assume a centrosymmetric ULA with M = 8 isotropic
sensor elements with A = % We assume the antenna array re-
sponse to be known and thus no “regularization” of the WLS
weighting matrix is required as described in Section IV-C. The
one-sided bandwidth of the signal is B = 1.023 MHz. For the
known waveform c¢(t) we consider a pseudo random (PR) se-
quence with Gold codes as used for the GPS C/A code with
code period 7' = 1 ms, 1023 chips per code period each with
a time duration 7, = 977.52 ns [40]. The signal-to-noise ratio
(SNR) denotes the LOSS-to-noise ratio and the effective SNR
in dB can be obtained by [1]

C
SNR = N 10 - log1(2B) + 10 - logy(N.) (60)
0
where NQ in dB-Hz denotes the carrier-to-noise density ratio

and N, € Nis the number of code periods within the observa-
tion period. The ratio ]\— is given with respect to the modulated
L1 (Lmk 1) signal transmltted by a GPS satellite [40]. We as-
sume I\T = 40.3 dB — Hz [41] and N, = 6 which leads to
SNR = —15.03 dB.

In this analysis we consider a single reflective multipath as a
function of its relative delay to the LOSS (L = 2). In the fol-
lowing, parameters with the subscript 1 refer to the LOSS and
parameters with the subscript 2 refer to the reflection. The re-
flected multipath and the LOSS are considered to be in-phase,
which means arg(vy;) = arg(y2) and the signal-to-multipath
ratio (SMR) is 5 dB. Further, we assume a temporally white

Gaussian RFI source with interference-to-signal ratio (ISR) of
40 dB which is responsible for the spatial covariance of the noise
plus interference field. The RFI is broadband and uncorrelated
with the signals and the noise. The DOAs for the LOSS and the
multipath are ¢; = —30° and ¢ = 62° and for the RFI signal
is ¢; = 10°, which is assumed to be a point source. Further, we
define the relative time-delay between the LOSS and the multi-
path as A7 = w ‘We will consider two scenarios, denoted
by scenario A and scenario B. In scenario A we assume that
the relative Doppler shift between the LOSS and the multipath
signal is Av = |v; — vs|Ty, = 0, where Ty, = T N.. denotes
the coherent observation time. In scenario B we analyze the case
where Av = |v1 — 1»|Tn, = 0.5.

For the SAGE algorithm, the convergence condition is con-
sidered satisfied if |T(k 2 A(k)| < 0.1955 ns Veqr, .1}
and 97" — 0| < 0.01 Hz Vyer. 1y, or if k > 200,
where k& € N denotes the kth iteration of the SAGE algo-
rithm. In order to derive DOA estimates solving (38) we use

the proposed reparametrization approach based on IQML. The
NCEYRENC))
convergence condition is satisfied either if |, —¢, | <

0.01° Vyeq1,...zy or if ¢ > 200, where ¢ € N denotes the
g-th iteration of the algorithm. All the convergence conditions
above are selected to be at least smaller than 0.1 times the re-
spective CRLB of the parameters for the given scenario. The
maximum number of iterations is defined based on experience
with simulations.

A. Decision on the LOSS

For the problem of time-delay and Doppler frequency esti-
mation of the LOSS in GNSS applications, one has to decide
which parameters refer to the LOSS after estimating £ and 6.
We propose to determine the parameter vector £, which refers
to the LOSS by evaluating the decision criterion

(61)

Q

The term A is an estimate for |y,|*. Based on the cri-

2
terion given in (61) we automatically decide which 9g refers to
the LOSS, as the EXIP preserves the mapping between &, and
0,. However, in case the two wavefronts are highly correlated
for small A7, Av = 0 and arg(y;) = arg(~2), outliers in the
decision on the LOSS can occur. These outliers are caused by
non-convergence of the proposed reparametrization algorithm
(when g > 200) in case of model mismatch with respect to L.
All these outliers are excluded from the error statistics which
are presented in the following and the outlier percentage with
respect to the total number of Monte Carlo runs is presented as
a failure rate. Note that these failures only occur in scenario A
with Av = 0 and not in scenario B, where Av = 0.5. Scenario
A can be considered a worst-case scenario with respect to cor-
relation of the two wavefronts and also with respect to outliers
in the LOSS decision.

In a practical implementation these failures can be detected
for example by a consistency check over time of the DOA es-
timates of the LOSS and by tracking the LOSS based on its
parameter estimates [35], [42], [43]. Such methods need to be
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Fig. 1. Failure rate for the decision on the LOSS for scenario A.
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Fig. 2. RMSE of the time-delay of the LOSS for scenario A.

adopted for continuous LOSS tracking of spatial and synchro-
nization parameters for GNSS applications [35].

B. Scenario A

For scenario A the relative Doppler shift is Av = 0. All other
parameters are defined as outlined in the beginning of this sec-
tion. In Fig. 1 the failure rate using the proposed reparametriza-
tion approach and the EXIP is shown for scenario A. In Fig. 2 to
Fig. 7 the RMSE is depicted for all parameters of the unstruc-
tured and the structured model and for both the LOSS and the
multipath signal with respect to the CRLB of the structured and
unstructured models.

In Fig. 2 the SAGE algorithm for small A7 becomes biased
and the RMSE 7 is below /CRLB(7), since the interference
cancellation in the E-step (24) and (25) is not capable of sepa-
rating the two signals if A7 is very small [13]. In these cases the
estimate of one hidden data space, Xl ,1s an estimate for a super-
position of the two wavefronts and the other, Xz, includes only
noise. This can be clearly seen in Figs. 5 and 6 where for small
A7 the RMSE 75 and RMSE 75 are increase drastically and are

not close to \/CRLB(72) and /CRLB(). As the multipath

signal for small A7 can not be resolved by the SAGE algorithm
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Fig. 3. RMSE of the Doppler frequency of the LOSS for scenario A.
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Fig. 4. RMSE of the azimuth angle of the LOSS for scenario A.

for the unstructured model, consequently the weighting matrix
W which is calculated based on é and Q does not provide the
correct metric in order to achieve refinement of 75 and 5. This
behavior can be inspected in Figs. 5 and 6.

Even if the true DOAs of the L wavefronts were available,
the incorrect determination of W by é and Q would inhibit re-
finement of 75 and 7, when the EXIP would be applied. How-
ever, considering the estimate of the time-delay 77 of the LOSS
using the unstructured model, a significant improvement can be
achieved by applying the EXIP while introducing the DOA esti-
mates derived by the innovative IQML reparametrization. This
can be seen in Fig. 2. The reason for this behavior is that the
LOSS can be resolved by the SAGE algorithm for the unstruc-

tured model and thus W together with the DOA estimate qgl
achieve significant refinement of 74. For GNSS applications 71
is the most important parameter for positioning. Hence, the pro-
posed two-step approach is very suitable for such applications.

In Fig. 3, the RMSE of »; and 151 are shown. Notice that
+/CRLB(?1) and / CRLB(%, ) are equivalent. Thus, no refine-
ment in resolution of 74 can be expected by applying the EXIP.

This is also given for i as /CRLB(#2) and / CRLB(;) are

equivalent for scenario A as well, as shown in Fig. 6.
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Fig. 7. RMSE of the azimuth angle of the multipath signal for scenario A.

C. Scenario B

In scenario B we choose the relative Doppler to be Av = 0.5.
All other parameters are defined as outlined in the beginning of
this section. In Fig. 8 to Fig. 10 the RMSE is depicted for param-
eters of the LOSS of unstructured and the structured model with
respect to the CRLB of the structured and unstructured models.
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Fig. 8. RMSE of the time-delay of the LOSS for scenario B.
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Fig. 10. RMSE of the azimuth angle of the LOSS for scenario B.

For this scenario no outliers in the decision of the LOSS oc-
curred. The results with respect to the multipath signal are sim-
ilar to the results presented for scenario A in Section VI-B.

In Figs. 8 and 9 it can be observed that the estimator for the

parameters

of the unstructured model at best should be an effi-

cient ML estimator in order to achieve near optimum refinement



of the estimates in the second step. Thus, an asymptotically effi-
cient high-resolution method to solve the MLE of the first step,
such as the SAGE algorithm, provides a reasonable tradeoff be-
tween estimation performance and computational complexity
for the application at hand [13], [15]. .

As shown in Fig. 8, the RMSE of 71 and 7; approach

CRLB(7,) and \/CRLB(74), respectively. The LOSS is

resolved by the SAGE algorithm and hence an improvement
in resolution of 77 is achieved by applying the EXIP with the
DOA estimate of the LOSS. Also for the Doppler estimate 7y a
refinement can be achieved which can be seen in Fig. 9.

In Fig. 10 the RMSE of q@l for the proposed reparametrization

approach is given. We can see that (,51 can be derived with high
accuracy and thus a refinement of 7 and ©; can be accomplished
by applying the EXIP, as shown in Figs. 8 and 9.

VII. CONCLUSION

In this paper, a two-step approach based on the EXIP is
proposed in order to achieve estimates of a spatially structured
model in an unknown spatially colored field. This two-step
approach involves significantly less complexity than directly
solving for the parameters of the spatially structured model and
yet its performance approaches the structured model CRLB.
Furthermore, it provides a direct and natural way of taking into
account array antenna calibration errors without a significant
increase in computational complexity.

The WLS fit in the second step involves a search only for the
DOAs of the impinging wavefronts. We have proven that the
resulting DOA estimation problem is equivalent to a complex
augmented SSF problem and we have derived an efficient
low-complexity solution for a ULA based on an innovative
reparametrization approach that exploits the special structure
of this complex augmented SSF problem. In order to achieve
robustness of the EXIP to errors in the array response model, a
novel “regularization” of the weighting matrix of the WLS was
defined based on a “regularized” Schur complement.

Simulation results for time-delay and Doppler frequency es-
timation in a GPS application were presented for a two-path
case and confirm that the proposed two-step approach attains
the CRLB of the spatially structured model and thus is asymp-
totically efficient.

APPENDIX A
DERIVATION OF THE WEIGHTING MATRIX W

The weighting matrix W can be calculated following the
derivation of the FIM for the spatially unstructured model as
givenin [44, p. 70 et seq.] and extending it to handle the Doppler
frequencies of the wavefronts:

Re{Wl} —Im{Wl} RB{W3}
RG{W3}T IHI{Wg}T RG{WQ}
with
W, =2((CoD)(CoD)) Q" (63)
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Wy =2(T" 1) 0 (fez e2] © (H" Q7' H)) (64)
2(e; @ (Q7" ))dlag{( (71) © d(21))"T}
W= | 2(ef®(Q! ))dlag{( (7e) © (i)"Y} | (65)
2(e} ® (Q7* ﬂ))diag{(C(?L) ®d(vr))"T}
where ® denotes the Kronecker operator and
ea=[11]7, (66)
= [6°(”) Od(i)-- ac(*‘) Od(g)- "’“a(:f ©d(iL)
c(71) 0 6%;1)..{(7 )O ad( Vz)...c( ) O ad(VL):I (67)
oe(ry) _ [_ 20| _deqy) _ de() ]l‘
% R I (O A L R G )
(68)
200 = [j2n T, 2790 T j2mnT, @27 0enTs | j2n NT, el NT=]T.
(69)

Note that W is nonsingular and positive semidefinite, so W =
WT and ~Im{W;}* = Im{W,}. The inverse of W (Ba-
nachiewicz inversion formula [45, p. 165]) can be calculated
using

- '’
Re{Wy}-l+mQ ' "

Q—l

-1 _
W= [_nn—l

(70)

where €2 denotes the Schur complement of block Re{W5} in
w

_ {Re{Wl}
Im{W;}
. |:RG{W3}
Im{Wg}

—ém{Wl} ]
(W1}

} Re{W>} [Re{W3}" Im{W3}"'] (71)

and

II = Re{W>} ' [Re{W;5} " Im{W;}"]. (72)

As W and Re{W} are nonsingular and symmetric, it follows
that the Schur complement €2 is nonsingular and symmetric as
well [45, p. 165]. The matrix Q' can be interpreted as an es-

. . T
timate of the covariance of [Re{vec{H}}T, Im{vec{H}}T}
for the case where T and v are unknown.

APPENDIX B
PROOF OF THEOREM 2

We define two unitary real-to-complex transformation ma-
trices Ty and T following [37, p. 31 et seq.]:

U 1 Ipn jlowm 2LM x2LM
T =— . eC 73
NG |:ILJW =i Iom (73)
LI, I 2Lx2L
Ty = — . eC . 74
We introduce the terms T ;T and ToTY to (38)
according to the dimensions of W¥(¢), @ and
[Re{vec{H}}T, Im{vec{H}}T]"  without altering the

original problem. Then we can restructure the resulting
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problem by introducing the complex augmented ma-
trices T{QTY = TIQTT{{ — %Q € C2LMXx2LM L4
T, ¥($)TH = ¥(¢p) € C2PM*2L Thus
ﬁ: -(:211 {212}
_921 922
_ -2W1—W3Re{W2}_1W§I _WSRP/{WQ}_IWST
| -WiRe{Wy} Wl IWi —WiRe{W,} 'WT
(75)
- I,0A 0
V(@)= 76
@[ o] 76)

and the complex augmented vectoTr of the real composed vector
[Re{vec{ﬂ}}Tlm{vec{ﬂ}}ﬂ is

1 vec{ﬂ} Re{vec{ﬂ}} 1x2LM
i N =T - C . (77
V2 [vec{H*}] 1[Im{vec{H}} € 7n
Now we can write (38) using (75)—(77) in a complex augmented
formulation

b = argmin ! {Vveic{{g}} } ! (@-0")
(¥ @ aue) #pa)[ L

Based on (78) the complex augmented SSF problem can be
derived.

APPENDIX C
PART OF PROOF OF THEOREM 3
We define
= [ vec{H} b
= N =& = 79
etieh] =2 Lo | =0 79
with
&= block diag{[Jlﬁngﬁl],...,[JlflLJzﬁL],[Jlfllszll]*,...,
[JlﬁLJZBL]*}eczl,(Mfou‘ (80)
J1=[0Ty_]eRM-DxM 81)
Jo= [13171 O]GR(AI_I)XAI. (82)
Now, we can reformulate (50) and we obtain
- -1
min 8" (b) @" (2(b) @7 2(b)) @ A(b),
st. GHB(b) =ey (83)
with
G=I;® M € RALx2L (84)
eor, =[1...1]T € R?>1, (85)

In order to solve (83) we establish the following IQML ap-

proach based on [25] and [39]. The term O(b(,_1)) =
~—1 —1

(E"(b-1))@ 'E(b,_1))) s fixed based on the esti-

mates of b of the previous iteration step denoted by ¢ — 1. Then

we solve the quadratic problem given in (83) in order to obtain a
new estimate for b. Thus, for each iteration step we have to solve

Igl(ir)l B" (b)) ®"O(b,_1)) ®B(b(y).

st. G B(b(,) = ear. (86)

The problem given in (86) is a quadratic problem with linear
constraints and thus admits the following closed-form solution:

Bbe)) = (‘I’He(bm—l))i’)il
G (GH ((I)He(b(q,l))é)il G>_1e2L. (87)

The final problem (87) is evaluated iteratively until convergence
with respect to a convergence criterion is achieved. Initialization
can performed with e.g., by = [1,0,1,0,...,1,0]T.
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