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Downlink Single-Snapshot Localization and
Mapping With a Single-Antenna Receiver
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Abstract— 5G mmWave MIMO systems enable accurate esti-
mation of the user position and mapping of the radio environment
using a single snapshot when both the base station (BS) and
user are equipped with large antenna arrays. However, massive
arrays are initially expected only at the BS side, likely leaving
users with one or very few antennas. In this paper, we propose a
novel method for single-snapshot localization and mapping in
the more challenging case of a user equipped with a single-
antenna receiver. The joint maximum likelihood (ML) estimation
problem is formulated and its solution formally derived. To avoid
the burden of a full-dimensional search over the space of the
unknown parameters, we present a novel practical approach
that exploits the sparsity of mmWave channels to compute an
approximate joint ML estimate. A thorough analysis, including
the derivation of the Cramér-Rao lower bounds, reveals that
accurate localization and mapping can be achieved also in a
MISO setup even when the direct line-of-sight path between the
BS and the user is severely attenuated.

Index Terms— mmWave, localization, mapping, MIMO,
multiple-input single-output (MISO), 5G cellular networks, AOD,
SLAM.

I. INTRODUCTION

THE advent of fifth-generation (5G) mobile cellular
communications is paving the way for a technological

revolution [1], [2]. Millimeter wave (mmWave) signals and
massive multiple-input multiple-output (MIMO) technologies
are regarded as key pillars of emerging 5G systems, thanks to
the expected high data rates and spectral efficiency [3]–[5].
Large bandwidths and massive antenna arrays make also
possible very precise estimation of location-related informa-
tion such as time-of-flight (TOF), angle-of-arrival (AOA),
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and angle-of-departure (AOD), which can enable applications
requiring accurate localization [6]–[8].

The localization capabilities of mmWave MIMO systems
have received significant attention. In [9] the Cramér-Rao
Lower bound (CRLB) for the problem of 3D localization is
derived, highlighting the main differences in the achievable
accuracy between uplink (UL) and downlink (DL) channels.
The theoretical analysis revealed that mmWave MIMO sys-
tems can provide cm-level accuracy even when the positioning
process is supported by a single base station (BS). Over the
last years, a number of localization algorithms have appeared
in the literature [10]–[13].

Differently from conventional radio-frequency systems, the
peculiar characteristics of mmWave MIMO channels make
it possible to estimate position-related parameters for each
received non-line-of-sight (NLOS) path [14]; remarkably, the
Fisher information analysis in [15] demonstrated that NLOS
components provide additional information over the line-of-
sight (LOS) path, which can be fruitfully leveraged to improve
the localization performance. In addition to accurately localiz-
ing one or more users, mmWave MIMO can be also exploited
to progressively build a map of the radio environment over
time, a problem that can be categorized as a simultaneous
localization and mapping (SLAM) problem (for more details
on the topic, please refer to [16], [17]). A few papers have
recently started to address this problem, specifically to exploit
NLOS paths for both position estimation and mapping in
mmWave MIMO [18]–[21]. Thanks to the high temporal and
spatial resolution, the TOFs, AOAs and AODs originating from
multipath propagation can be directly linked to the positions
of BSs, users, and physical scatterers or reflectors at each time
instant, allowing the SLAM problem to be solved using only
a single snapshot of the environment.

While mmWave MIMO enables high positioning and
mapping accuracy with a single snapshot, it requires the
deployment of large-scale antenna arrays at the user side,
considerably increasing the complexity and cost of the overall
system. In contrast, mobile users using smartphones, as well
as wearable/portable IoT devices, will be initially equipped
with one or very few antennas [22]. Localization and mapping
using a single antenna at both transmit and receive side,
namely single-input single-output (SISO), has been addressed
in the context of ultrawide-band systems. Differently from the
MIMO case, only TOF or RSS information can be used in the
estimation process, which in turn requires multiple snapshots
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corresponding to different positions of the user to lead to an
identifiable SLAM solution [23], [24]. A recently-introduced
alternative consists in adopting the emerging technology of
reconfigurable intelligent surfaces (RISs), whose advantage is
that the reflection angle of the NLOS path impinging on it can
be modified by the transmitter, so injecting a degree of control
in the physical propagation environment. This technology
indeed opens the doors to unprecedented opportunities, but
it will take even longer to have it widespread in commercial
systems [25]–[27].

Aimed at partially closing the knowledge gap between
MIMO and SISO systems, in this paper we investigate the
challenging problem of single-snapshot localization and map-
ping in the forthcoming multiple-input single-output (MISO)
case of a mmWave system, i.e., the user is equipped with
a single-antenna receiver while the BS has a transmit array.
Specifically, we exploit the TOF and AOD information associ-
ated to the DL signals transmitted from a single BS, allowing
single-snapshot localization and mapping, even in the pres-
ence of NLOS paths. The use of DL as opposed to UL
signals leads to better signal-to-noise ratio (SNR) conditions
for the estimation problem [28]. Although the MISO setup
may appear as a mere simplified version of the MIMO case,
there are fundamental differences that should be carefully
taken into account when facing the SLAM problem. First,
MISO channels are characterized by fewer position-related
measurements per path (only AODs and TOFs), being the MS
unable to estimate the AOAs of the impinging signals. One the
one hand, this directly affects the fundamental identifiability
of the SLAM problem, as it will be discussed in Sec. III-D.
On the other hand, from an algorithmic perspective the lack of
AOAs information does not allow a direct application of the
same estimation approaches used in the MIMO case, where
both the angular dimensions (AODs and AOAs) are jointly
exploited for channel estimation. The main contributions of
this work are as follows:

• A fundamental Fisher information analysis is conducted,
which allows to understand the problem from a the-
oretical perspective, extending the CRLB analysis for
the LOS-only scenario in [29] with a thorough eval-
uation of the achievable performance when the NLOS
paths are explicitly taken into account in the estima-
tion process. Remarkably, we will show that accurate
single-snapshot localization and mapping is still possible
in a MISO setup, but in contrast to the MIMO case,
map information does not increase the user position
information;

• The derivation of the maximum likelihood (ML) estima-
tor for localization and mapping is provided, showing
the equivalence of channel-domain and position-domain
formulations. Furthermore, we show that mapping of
the scatterers positions depends also on the estimation
accuracy of LOS parameters, in line with the Fisher
information analysis.

• A low-complexity estimator is proposed, by exploiting the
sparsity of the mmWave channel. We design an efficient
two-step algorithm which allows the computation of an
accurate approximate solution of the joint ML estimation

problem, but avoiding the need of a full-dimensional
search in the space of the unknown parameters.

A thorough simulation analysis demonstrates that the pro-
posed joint ML algorithm enables a very accurate estimation
of the user position and mapping of the scatterers locations,
with performances attaining the theoretical lower bounds even
when the LOS path is severely attenuated.

The rest of the paper is organized as follows. In Sec. II,
we introduce the system model and describe in details the
reference scenario. In Sec. III, we derive and analyze the
fundamental bounds on the estimation of the channel and
location parameters in the considered MISO setup. Then,
in Sec. IV we formulate the joint ML estimation problem
in the channel domain and propose a novel low-complexity
localization and mapping approach; furthermore, we discuss
the equivalence with the joint ML estimator in the position
domain. The performance of the proposed approach is then
assessed in Sec. V. We conclude the paper in Sec. VI.

II. SYSTEM MODEL

The reference scenario addressed in this paper consists of
a MISO system in which a BS, equipped with NBS antennas,
communicates with a mobile station (MS) equipped with a
single antenna receiver. The system operates at a carrier fre-
quency fc (corresponding to wavelength λc) and uses signals
having bandwidth B. Without loss of generality, the BS is
located in the origin, i.e., pBS = [0 0]T, while we denote by
p = [px py]T the unknown position of the MS.

A. Transmitter Model

We consider the transmission of orthogonal frequency divi-
sion multiplexing (OFDM) signals. Particularly, we assume
that G signals are broadcast in DL sequentially, with the
g-th transmission consisting in M simultaneously transmitted
symbols over each subcarrier n = 0, . . . , N − 1, i.e., xg[n] =
[x1[n] · · · xM [n]]T ∈ CM×1, with Pt = E

[‖xg[n]‖2
]

the
transmitted power and E[ · ] denoting the expectation operator.
After precoding, the symbols are transformed to the time-
domain using an N -point Inverse Fast Fourier Transform
(IFFT). A cyclic prefix (CP) of length TCP = DTS is added
before the radio-frequency (RF) precoding, with D number of
symbols in the CP and TS = 1/B the sampling period.

The signal transmitted over subcarrier n at time g is
expressed as zg[n] = F g[n]xg[n], with F g[n] ∈ CNBS×M

denoting the hybrid analog/digital beamforming matrix applied
at the transmit side. Specifically, assuming the availability of
NRF RF chains at the BS, we can denote F g[n] = F RFF

g
BB[n]

where F RF ∈ CNBS×NRF is the analog RF precoder while
F g

BB[n] ∈ C
NRF×M is the digital (baseband) precoder [30],

[31]. In absence of a priori knowledge about the user location,
the M beams in the beamforming matrix are typically set to
ensure a uniform coverage of the considered area. Further-
more, a total power constraint ‖F g[n]‖F = 1 is imposed to
the transmit beamforming [32]. Given the typical sparsity of
the mmWave channels, less beams than antenna elements can
be considered, i.e., M ≤ NBS [33], [34].

Authorized licensed use limited to: Universitat Autonoma De Barcelona. Downloaded on July 12,2021 at 19:22:55 UTC from IEEE Xplore.  Restrictions apply. 



4674 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 20, NO. 7, JULY 2021

Fig. 1. Geometry of the considered two-dimensional localization and
mapping scenario.

B. Channel Model

We assume that a direct LOS link exists between the BS and
the MS, and that additional NLOS paths due to local scatterers
or reflectors may also be present. Since we are dealing with a
single-snapshot localization and mapping problem assuming
far-field propagation, the difference between the reflective
characteristics of scatterers and reflectors (with large flat
surfaces) can be neglected; notice however that such aspects
should be taken into account when moving towards multi-
snapshot or near-field localization. For the sake of the analysis,
we also assume that the system has been synchronized during
an initial phase using, e.g., a two-way protocol [35], [36].
The different position-related parameters of the channel are
depicted in Fig. 1. These parameters include θk and τk, denot-
ing the AOD and TOF related to the k-th path, respectively.
In the following, k = 0 corresponds to the LOS link and
k ≥ 1 denotes the NLOS paths. Moreover, we denote by
sk = [sk,x sk,y]T the unknown position of the scatterer giving
rise to k-th NLOS path, for which dk,1 = ‖sk − pBS‖ = ‖sk‖
and dk,2 = ‖p−sk‖, with ‖·‖ denoting the Euclidean distance.
We consider by convention s0 ≡ p, making all expressions
well-defined also for k = 0. Assuming K+1 paths, the 1×NBS

channel vector associated with subcarrier n is given by

hT[n] = ζT[n]AH
BS (1)

where we leveraged λn = c/( n
NTS

+ fc) ≈ λc ∀n (with
c denoting the speed of light), i.e., the typical narrowband
condition. The array response matrix is given by

ABS = [aBS(θ0), . . . ,aBS(θK)] (2)

and [ζ[n]]k =
√

NBSαke
−j2πnτk

NTS , where αk = hk/
√

ρ
k
, with

ρk the path loss and hk denoting the complex channel gain
of the k-th path, respectively. Without loss of generality,
in the following we consider a Uniform Linear Array (ULA)
without mutual antenna coupling and with isotropic anten-
nas, whose steering vector can be expressed as aBS(θ) =

1√
NBS

[
1 ej 2π

λc
d sin θ · · · ej(NBS−1) 2π

λc
d sin θ

]T
where d = λc

2

denotes the ULA interelement spacing.

C. Received Signal Model

The received signal related to the n-th subcarrier and
transmission g, after CP removal and Fast Fourier Transform
(FFT), is given by

yg[n] = hT[n]F g[n]xg[n] + νg[n] (3)

where νg[n] is the additive circularly complex Gaussian noise
with zero mean and variance σ2. The objective of the paper is
to determine the unknown MS position p as well as to map the
location of the scatterers sk, k ≥ 1 present in the environment
from the set of all received signals

Y =

⎡
⎢⎣

y1[0] · · · yG[0]
...

. . .
...

y1[N − 1] · · · yG[N − 1]

⎤
⎥⎦ . (4)

III. MISO: FUNDAMENTAL BOUNDS IN MULTIPATH

SCENARIO

In this section, we aim to gain a fundamental understanding
of the MISO localization and mapping problem, in particular
in terms of identifiability, the role of the NLOS paths. To this
end, we apply the framework of Fisher information theory
[37], which has been widely used in the context of localization
[38]. In particular, we derive the analytical expressions of the
Fisher Information Matrix (FIM) and its inverse, related to
the estimation of the MS position p and scatterers positions
sk. As a first step, we evaluate the theoretical bounds on the
estimation of the channel parameters (i.e., AODs, TOFs, and
channel gains). Subsequently, such bounds are transformed in
the position domain and further analyzed to gain insights on
the achievable performance in terms of joint localization of
the user and mapping of the environment. We will show that,
in contrast to a MIMO setup, NLOS paths with unknown ori-
gin can only degrade the localization performance of the MS.

A. FIM on Channel Parameters

Let γ ∈ R4(K+1)×1 denotes the vector of the unknown
channel parameters γ = [γT

0 · · ·γT
K ]T, where each γk consists

of the channel complex amplitude, TOF and AOD for the k-th
path and is given by γk = [rk φk τk θk]T, with rk and φk

modulus and phase of the complex amplitude αk = hk/
√

ρ
k

def=
rkejφk , respectively. Defining γ̂ as an unbiased estimator of
γ, the mean squared error (MSE) is lower bounded as

EY |γ
[
(γ̂ − γ)(γ̂ − γ)T

] 
 J−1
γ (5)

where EY |γ [ · ] denotes the expectation parameterized as func-
tion of the unknown vector γ and Jγ is the 4(K+1)×4(K+1)
FIM defined as Jγ = EY |γ

[
−∂2 log f(Y |γ)

∂γ∂γT

]
. Notice that

the existence of J−1
γ only requires that certain regularity

conditions are satisfied [37]. The FIM can be structured as

Jγ =

⎡
⎢⎣

Λ(γ0,γ0) · · · Λ(γ0,γK)
...

. . .
...

Λ(γK ,γ0) · · · Λ(γK ,γK)

⎤
⎥⎦ (6)

where the 4 × 4 matrix Λ(γh,γ�) is given by

Λ(γh,γ�) = EY |γ

[
−∂2 log f(Y |γ)

∂γh∂γT
�

]

=

⎡
⎢⎢⎣

Λ(rh, r�) Λ(rh, φ�) Λ(rh, τ�) Λ(rh, θ�)
Λ(φh, r�) Λ(φh, φ�) Λ(φh, τ�) Λ(φh, θ�)
Λ(τh, r�) Λ(τh, φ�) Λ(τh, τ�) Λ(τh, θ�)
Λ(θh, r�) Λ(θh, φ�) Λ(θh, τ�) Λ(θh, θ�)

⎤
⎥⎥⎦

(7)
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with h, � = 0, . . . , K . Substituting Y from (4) in (7) and
accounting for the noise statistics yields

Λ(γh,γ�) =
2
σ2

G∑
g=1

N−1∑
n=0

�
{(

∂mg[n]
∂γh

)H
∂mg[n]

∂γ�

}
(8)

with �{·} denoting the real-part operator and the noise-
free observation at subcarrier n, transmission g is mg[n] =√

NBS

∑K
k=0 αk exp

(
−j2πnτk

NTS

)
aH

BS(θk)zg[n]. We report in

Appendix the value of each entry of Λ(γh,γ�). Two paths
h and � are said to be orthogonal when Λ(γh,γ�) = 04×4

[39], with 0L×L a L × L matrix of zeros.

B. FIM on Position Parameters

In this section, we derive the FIM in the position domain
by applying a transformation of variables from the vector of
channel parameters γ to a new vector of location parameters
η = [ηT

0 · · ·ηT
K ]T, where η0 = [r0 φ0 px py]T and ηk =

[rk φk sk,x sk,y ]T, for k ≥ 1. Specifically, by exploiting the
geometric relationships between the parameters in γ and η,
we have

τ0 = ‖p‖/c (9)

θ0 = atan2(py, px) (10)

τk = ‖sk‖/c + ‖p− sk‖/c, k ≥ 1 (11)

θk = atan2(sk,y, sk,x), k ≥ 1, (12)

where the function atan2(y, x) is the four-quadrant inverse
tangent, and the angles are measured counterclockwise with
respect to the x-axis.

The FIM in the position space η is obtained by means of
the 4(K + 1) × 4(K + 1) transformation matrix T as

Jη = TJγT
T (13)

where

T
def=

∂γT

∂η
=

⎡
⎢⎣
T 0,0 . . . TK,0

...
. . .

...
T 0,K . . . TK,K

⎤
⎥⎦ . (14)

Each submatrix T h,�, h, � = 0, . . . , K , is given by

T h,�
def=

∂γT
h

∂η�

=

⎡
⎣∂rh/∂r� ∂φh/∂r� ∂τh/∂r� ∂θh/∂r�

∂rh/∂φ� ∂φh/∂φ� ∂τh/∂φ� ∂θh/∂φ�

∂rh/∂s� ∂φh/∂s� ∂τh/∂s� ∂θh/∂s�

⎤
⎦

=

⎡
⎣δh� 0 0 0

0 δh� 0 0
0 0 ∂τh/∂s� ∂θh/∂s�

⎤
⎦ (15)

where δh� is the Kronecker symbol and

∂τ0

∂p
=

1
c

[
px

‖p‖
py

‖p‖
]T

∂θ0

∂p
=
[ −py/p2

x

1 + (py/px)2
1/px

1 + (py/px)2

]T

∂τh

∂p
=

1
c

[
px − sh,x

‖p− sh‖
py − sh,y

‖p− sh‖
]T

∂τh

∂sh
=

1
c

[(
sh,x

‖sh‖ − (px − sh,x)
‖p− sh‖

)(
sh,y

‖sk‖ − (py − sh,y)
‖p− sh‖

)]T

∂θh

∂sh
=

[
−sh,y/s2

h,x

1 + (sh,y/sh,x)2
1/sh,x

1 + (sh,y/sh,x)2

]T

,

with the last two equations meant for h �= 0, and T h,� = 04×4

for � ≥ 1 and � �= h. The FIM Jη is invertible when both Jγ
and T are invertible (sufficient but not necessary condition),
due to the one-to-one mapping between channel and location
parameters.

C. Bounds on MS Position Estimation Error

To derive the lower bound on the uncertainty of MS position
estimation, we consider the CRLB in the location domain
obtained by inverting the FIM Jη in (13), i.e., Ση = J−1

η .
Specifically, the position error bound (PEB) is computed by
adding the third and fourth diagonal entries of the Ση matrix,
and taking the square root as

PEB =
√

[Ση]3,3 + [Ση]4,4 (16)

where [ · ]j,j selects the j-th diagonal entry of Ση .

D. Role of NLOS Components on MS Position Estimation

In the previous subsections, we have derived the funda-
mental bounds on the estimation of the unknown channel and
position parameters. Based on that, we now discuss how the
presence of NLOS paths impacts on the estimation of the
MS position p under the considered MISO setup. We start
by recalling that the CRLB matrix Ση matrix is given by
Ση = (TJγT T)−1. Focusing on the vectors γk and ηk of the
k-th path, it is interesting to note that the number of parameters
in both channel and location domains is the same, and there
exists a bijective relationship between them (see eqs. (9)–
(12)). Consequently, Ση can be equivalently expressed as
Ση = (T−1)TJ−1

γ T
−1, where, by invoking the multivariate

inverse function theorem, the inverse transformation matrix
T−1 can be directly computed as the derivative of the location
parameters with respect to the channel parameters, i.e.,

T−1 =
∂ηT

∂γ
=

⎡
⎢⎣
T̄ 0,0 . . . T̄K,0

...
. . .

...
T̄ 0,K . . . T̄K,K

⎤
⎥⎦ (17)

with each 4 × 4 block T̄ h,�, h, � = 0, . . . , K , obtained as

T̄ h,�
def=

∂ηT
h

∂γ�

=

⎡
⎢⎢⎣

δh� 0 0
0 δh� 0
0 0 ∂sh/∂τ�

0 0 ∂sh/∂θ�

⎤
⎥⎥⎦ . (18)

By noting that the blocks T̄ h,� = 04×4 for l ≥ 1 and h �= �,
it follows that

Ση =

⎡
⎢⎢⎢⎢⎣
T̄

T
0,0 04×4 · · · 04×4

T̄
T
1,0 T̄

T
1,1 · · · 04×4

...
...

. . .
...

T̄
T
K,0 04×4 · · · T̄ T

K,K

⎤
⎥⎥⎥⎥⎦J−1

γ

⎡
⎢⎢⎢⎣
T̄ 0,0 T̄ 1,0 · · · T̄K,0

04×4 T̄ 1,1 · · · 04×4

...
...

. . .
...

04×4 04×4 · · · T̄K,K

⎤
⎥⎥⎥⎦

(19)

This leads us to our first main result.
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Theorem 1: Denoting by PEBk the value of the PEB when
k NLOS paths with unknown origin besides the LOS path are
present, with 0 ≤ k ≤ K , then

PEBK ≥ PEB0, (20)

with equality when all paths are orthogonal.
Proof: We first prove the inequality. We denote the K +1

4×4 diagonal blocks of J−1
γ by C0, . . . ,CK . From the Schur

complement, it follows that Ck 
 (Λ(γk,γk))−1. From (16),
it is evident that the relevant information on the estimation
of p resides in the first 4 × 4 block of Ση. By taking the
products in (19), it turns out that such a block is equal to
T̄

T
0,0C0T̄ 0,0 
 T̄

T
0,0(Λ(γ0,γ0))−1T̄ 0,0. Applying the PEB

definition in (16) to both sides of this inequality, it turns out
that PEBK ≥ PEB0.

We now prove the equality when paths are orthogonal.
Under typical mmWave conditions, the different received paths
can be resolved either in the angular or time domains, with
practically negligible overlap among them. In other words,
the NLOS paths can be treated as orthogonal paths car-
rying independent information [9], [40], leading in turn to
Λ(γh,γ�) = 04×4 for h �= � in (6). Neglecting these terms,
the approximate expression of Ση is given by (21), as shown
at the bottom of the page, where now Ck = (Λ(γk,γk))−1.
It then immediately follows that PEBK = PEB0.

This effect relates to the fact that the MS is equipped with
a single-antenna receiver, hence it cannot exploit the NLOS
parameters to gain additional position-related information (i.e.,
AOAs). This represents a major difference compared to the
MIMO setup where, in general, the contribution of the NLOS
components can result in a reduction of the PEB [2], [10].
In the MISO case, multipath propagation will degrade the
MS localization only when the NLOS paths and the LOS
significantly overlap, but will never improve the PEB com-
pared to the LOS-only case. From such considerations, it also
follows that in the MISO setup (i) localization without LOS
is not possible; and (ii) the NLOS paths cannot be used to
synchronize the MS to the BS. Both aspects are in contrast to
the MIMO case, as shown in [41].

Remarkably, we observe from (21) that mapping of the
scatterers positions is still possible in spite of the fact that the
receiver has only a single antenna, that is, it cannot perform
any spatial processing. More specifically, the terms in the main
diagonal of (21) reveal that the accuracy in the estimation of
each scatterer’s position sk is linked to the parameters of the
associated k-th NLOS path T̄

T
k,kCkT̄ k,k, as well as to the

parameters related to the LOS link T̄
T
k,0C0T̄ k,0. Given the

additive nature of such terms, the lower the uncertainty in

the LOS parameters, the higher the accuracy in mapping the
multipath environment.

A direct consequence of the above analysis is that, given the
considered model, the MS position can be refined using the
information from the NLOS paths only in case the scatterers’
positions are known a priori. In fact, in the latter case the
FIM analysis can be further specialized considering a reduced
vector of unkown location parameters η = η0. Accordingly,
the FIM in the position space η0 is obtained by means of a
reduced 4 × 4(K + 1) transformation matrix T as

Jη0
=
[
T 0,0 . . . TK,0

]
Jγ

⎡
⎢⎢⎢⎣
T T

0,0

T T
1,0
...

T T
K,0

⎤
⎥⎥⎥⎦ .

After simple matrix multiplications, it follows that

Jη0
=

K∑
k=0

(
Tk,0Λ(γk,γ0)T

T
0,0+ . . . +Tk,0Λ(γk,γK)T T

K,0

)
.

By exploiting also in this case the hypothesis of orthogonal-
ity among paths, in the above summation only the blocks
Λ(γk,γk) �= 0, so that the FIM can be approximated as

Jη0
=

K∑
k=0

T k,0C
−1
k T T

k,0.

The above expression reveals that, in presence of scatterers
with known positions, the NLOS paths increase the amount of
information available for the estimation of the MS position.

IV. JOINT MAXIMUM LIKELIHOOD LOCALIZATION

AND MAPPING

In this section, we present the joint maximum likeli-
hood (ML) estimator, a low-complexity channel estimator
working in two dimensions, and the localization and map-
ping algorithm. We also show that the ML estimator can be
performed equivalently in the position domain, and provide
insights into the obtained solutions.

A. Maximum Likelihood Estimation of Channel Parameters

We start the derivation by noting that each received signal
yg[n], 1 ≤ g ≤ G, 0 ≤ n ≤ N − 1, can be statistically
characterized as

yg[n] ∼ CN (
√

NBSh̄
T[n]zg[n], σ2) (22)

where h̄
T[n] =

∑K
k=0 αke

−j2πnτk
NTS aH

BS(θk) and all the para-
meters are treated as deterministic unknowns, except the

Ση ≈

�
�������

T̄
T
0,0C0T̄ 0,0 T̄

T
0,0C0T̄ 1,0 T̄

T
0,0C0T̄ 2,0 · · · T̄

T
0,0C0T̄K,0

T̄
T
1,0C0T̄ 0,0 T̄

T
1,0C0T̄ 1,0 + T̄

T
1,1C1T̄ 1,1 T̄

T
1,0C0T̄ 2,0 · · · T̄

T
1,0C0T̄K,0

T̄
T
2,0C0T̄ 0,0 T̄

T
2,0C0T̄ 1,0 T̄

T
2,0C0T̄ 2,0 + T̄

T
2,2C2T̄ 2,2 · · · T̄

T
2,0C0T̄K,0

...
...

...
. . .

...
T̄

T
K,0C0T̄ 0,0 T̄

T
K,0C0T̄ 1,0 T̄

T
K,0C0T̄ 2,0 · · · T̄

T
K,0C0T̄K,0 + T̄

T
K,KCK T̄K,K

�
�������

(21)

Authorized licensed use limited to: Universitat Autonoma De Barcelona. Downloaded on July 12,2021 at 19:22:55 UTC from IEEE Xplore.  Restrictions apply. 



FASCISTA et al.: DL SINGLE-SNAPSHOT LOCALIZATION AND MAPPING WITH SINGLE-ANTENNA RECEIVER 4677

transmitted symbols zg[n], which are assumed known to the
receiver, and the number of paths K , which can be determined
during the initial access phase [42], [43]. To formulate the
estimation problem, we re-order the unknown parameters as
ϕ = [ΘT ψT]T, where Θ = [θ0 τ0 · · · θK τK ]T represents the
parameters of interest linked to the desired MS and scatterers
positions, while ψ = [σ2 αT]T with α = [α0 · · · αK ]T

denotes the vector of nuisance parameters. Notice that, dif-
ferently from the LOS-only scenario, including the NLOS
links in the localization process introduces additional unknown
parameters that make the resulting estimation problem much
more challenging. Following the ML criterion, the estimation
problem can be thus formulated as

Θ̂ = argmax
Θ

[max
ψ

L(Θ,ψ)] (23)

where L(Θ,ψ) def= log f(Y |Θ,ψ) and f(·) denotes the
probability density function of the observations Y given ψ
and Θ. A more convenient rewriting of the channel model in
(1) allows us to express the likelihood in (23) as

L(Θ,ψ) = −NG log(πσ2)

− 1
σ2

G∑
g=1

‖yg −
√

NBSQ
gα‖2 (24)

where

Qg =

⎡
⎢⎣

(zg[0])TD[0]
...

(zg[N − 1])TD[N − 1]

⎤
⎥⎦ ∈ C

N×(K+1) (25)

with yg = [yg[0] yg[1] · · · yg[N − 1]]T the g-th column of the
observation matrix Y , and

D[n] =
[
e

−j2πnτ0
NTS a∗BS(θ0) · · · e

−j2πnτK
NTS a∗BS(θK)

]
. (26)

It is easy to observe that the noise variance can be estimated
as σ̂2 =

∑G
g=1 ‖yg − √

NBSQ
gα‖2/(NG), leading to the

compressed likelihood

LK(Θ,α) =
G∑

g=1

‖yg −
√

NBSQ
gα‖2 (27)

where LK(Θ,α) is the compressed negative log-likelihood
function in presence of K NLOS paths. Eq. (27) can be
optimized with respect to the entire vector α ∈ C

(K+1)×1,
yielding α̂ = 1/

√
NBSQ

−1 ∑G
g=1(Q

g)Hyg where Q =∑G
g=1(Q

g)HQg. Substituting these minimizing values back in
(27) leads to

LK(Θ) =
G∑

g=1

‖yg −Qg(Θ)α̂(Θ)‖2 (28)

and, accordingly, the final joint ML estimator is given by

Θ̂ = arg min
Θ

LK(Θ). (29)

The cost function (28) is highly non-linear in the 2(K + 1)
unknown parameters and does not admit a closed-form
solution or a multidimensional exhaustive search. Therefore,
the joint ML need to be solved by resorting to iterative

numerical optimization routines such as, for instance, those
based on derivatives of the cost function (e.g., gradient
descent or its variants [44]), or by employing more direct
approaches such as the Nelder-Mead method [45], starting
from a good initial estimate.

B. Low-Complexity Channel Parameter Estimation

To solve the channel parameter estimation problem in
practice, we take advantage of the sparse nature of the
mmWave channel and propose a reduced-complexity subop-
timal approach to obtain a good initial estimate of Θ. The
main idea consists in exploiting the fact that the received
paths are almost orthogonal between each other, as discussed
in Sec. III-D. Under this assumption, the joint ML estimation
problem can be approximated to a problem of multiple single-
path estimation, where each path can be described by the
following simplified channel model

h̃
T
[n] = αe

−j2πnτ
NTS aH

BS(θ), n = 0, . . . , N − 1 (30)

with α, θ and τ complex amplitude, AOD and TOF of a single
path, respectively. Replacing (1) with (30) in the derivation
of the joint ML immediately leads to the cost function of
the single-path ML estimator, denoted as L0(θ, τ), whose
expression can be straightforwardly obtained as a special case
of (28) for Θ = [θ τ ]T, which is tantamount to considering
K = 0 in the original joint ML estimation problem.

In analogy to traditional subspace-based AOA estimation,
we leverage orthogonality among the paths and interpret
L0(θ, τ) as a kind of “pseudospectrum”, whose minima occur
in correspondence of pairs (θ, τ ) close to the actual channel
parameters θk and τk of each k-th path. As it will be shown in
Sec. V, searching for the K +1 dominant minima in L0(θ, τ)
and using these as initial estimates in the iterative minimization
of LK(Θ) can efficiently solve the joint ML estimation
problem and attain the theoretical performance bounds, but
at the significantly reduced cost of a coarse two-dimensional
search over the space (θ, τ) instead of a prohibitive
2(K + 1)-dimensional search.

C. Localization and Mapping

From the theoretical analysis conducted in Sec. III-D,
it emerged that in a MISO setup, NLOS components cannot
be harnessed to determine the unknown MS position. In this
respect, the natural way to obtain an estimate of p is to
exploit the sole LOS position-related parameters, which can
be identified among the K + 1 estimated pairs (θ̂k, τ̂k) as the
pair with the minimum value for τ̂k, while the remaining pairs
are used for determining the map.

1) Localization: In the following, we will refer to such
estimates as (θ̂LOS, τ̂LOS). The unknown MS position can be then
determined by solving (9)–(10) for p:

p̂ = cτ̂LOS[cos θ̂LOS sin θ̂LOS]T. (31)

2) Mapping: Once the estimate p̂ is obtained, it can be
used in conjunction with each pair (θ̂k, τ̂k), k ≥ 1, to retrieve
the related scatterer’s position sk. More precisely, the direc-
tion θ̂k constrains the sought ŝk to lie on the straight line
passing by the BS position and having angular coefficient
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m(θ̂k) = tan(θ̂k). Among all the possible candidate positions
on that line, ŝk is the one also satisfying the distance constraint
d̂k = cτ̂k with p̂. In formulas, we have that√

ŝ2
k,x(1 + m(θ̂k)2) − 2(p̂x + m(θ̂k)p̂y)ŝk,x + ‖p̂‖2

+
√

ŝ2
k,x(1 + m(θ̂k)2) = cτ̂k (32)

with ŝk,y = m(θ̂k)ŝk,x. Assuming for simplicity that
ŝk,x > 0 ∀k = 1, . . . , K , the position of the k-th scatterer can
be estimated in closed-form as⎧⎪⎪⎨

⎪⎪⎩
ŝk,x =

1
2

(cτ̂k)2 − p̂2
x − p̂2

y√
1 + tan2(θ̂k) cτ̂k − p̂x − tan(θ̂k)p̂y

ŝk,y = tan(θ̂k)ŝk,x

.

We observe that, in line with the theoretical findings in
Sec. III-D, the accuracy on the estimation of sk depends on the
quality of the NLOS parameters estimates θ̂k and τ̂k, as well
as on the goodness of p̂, which is estimated based on the
LOS-only parameters τ̂LOS and θ̂LOS. Given the nonlinear nature
of the geometric estimator (IV-C.2), it is not trivial to figure
out how the involved parameters impact the estimation of ŝk.
The proposed solution is summarized in Algorithm 1.

Algorithm 1 Proposed Reduced-Complexity Algorithm
Input: Y , K
Output: p̂, ŝ1, . . . , ŝK

1 for i from 0 to K do
2 Compute the single-path “pseudospectrum” function

L0(θ, τ)
3 [θ̂i τ̂i] = arg min

(θi,τi)
L0(θ, τ)

4 end

5 Θ̂init =
[
θ̂0 τ̂0 · · · θ̂K τ̂K

]T

6 Θ̂ = IterativeMin(LK(Θ), Θ̂init)
7 Select (θ̂LOS, τ̂LOS) as the pair (θ̂k, τ̂k) with minimum τ̂k

8 p̂ = cτ̂LOS[cos θ̂LOS sin θ̂LOS]T

9 for i from 1 to K do

10 ŝk,x = 1
2

(cτ̂k)2−p̂2
x−p̂2

y√
1+tan2(θ̂k) cτ̂k−p̂x−tan(θ̂k)p̂y

11 ŝk,y = tan(θ̂k)ŝk,x

12 end

Two comments are now in order. First, it is worth noting
that, unlike the MIMO case, in the considered mmWave MISO
setup the LOS path must be present in order for the single-
snapshot localization and mapping problem to be solvable.
To avoid a wrong estimation of the MS and scatterers positions
in case of pure NLOS propagation, a preliminary NLOS detec-
tion step should be performed before applying the proposed
two-step procedure, e.g. using state-of-the-art approaches such
as [46], [47]. Second, notice that the initialization of the
algorithm can be replaced by a different channel estimation
method, e.g. subspace-based methods. However, the advan-
tage of the proposed algorithm is that it exploits the quasi-
orthogonality of the signals in the joint space-time domain to

reduce the complexity to a single-path estimation. As a conse-
quence, simultaneous localization and mapping can feasibly be
implemented even in a simple one-antenna mmWave receiver
using only a single snapshot (by comparison, subspace-based
methods require accumulating a significant number of snap-
shots to blindly estimate the whole subspaces, and have the
additional complexity of eigendecomposition).

D. Equivalence of Maximum Likelihood Estimation in
Channel and Position Domains

In this section, we briefly discuss an alternative formulation
of the ML estimation problem in the position domain, showing
that the resulting estimator is equivalent to the one in the
channel domain. Without loss of generality, we focus on the
single-path cost function L0(θ, τ), but the same reasoning can
be easily applied also to LK(Θ). More precisely, by express-
ing the channel parameters θ and τ as a function of their
corresponding location parameters according to (9)–(10), (30)
can be equivalently rewritten as

h̃
T
[n] = αe

−j2πn‖s‖
cNTS aH

BS(atan2(sy, sx)), n = 0, . . . , N − 1
(33)

where s = g(θ, τ) = cτ [cos θ sin θ]T and g(·) is the bijective
mapping (transformation from polar to Cartesian coordinates)
between the channel and position parameters. Accordingly,
we denote by L0(s) the position-domain counterpart of the
cost function L0(θ, τ). The equivalence between the ML for-
mulations in both channel and position domains easily follows
by observing that, given the bijective mapping s = g(θ, τ),
the likelihood L0(θ, τ) can be rewritten as a function of s,
i.e.,

L0(θ, τ) = L0(g−1(s)). (34)

Analogously to L0(θ, τ), searching for the K +1 dominant
minima of L0(s) provides an initial estimate of the MS and
scatterers positions, which can be subsequently used to solve
the joint ML problem in the position domain. In this respect,
it is worth noting that since the single-path model (33) is
unable to capture the geometric reflections of the propagating
rays, the bijective transformation g(·) will map the TOF τk

of each NLOS path into a position that falls within a distance
dk = cτk from the BS, along a direction identified by the
AOD θk, thus leading to a final position that does not coincide
with the actual position of the k-th scatterer. Let us denote by
se

k = [se
k,x se

k,y ]T, k ≥ 1, such “equivalent" positions. Then,
each se

k can be mapped back to its corresponding position sk

by applying some geometric considerations: first, we write the
parametric expression for the segment passing by the BS and
the equivalent position se

k, that is, sk(λ) = λpBS + (1− λ)se
k,

λ ∈ [0, 1]. Then, we retain as position sk the point on the line
corresponding to the value λ∗ satisfying ‖se

k − sk(λ∗)‖ =
‖sk(λ∗) − p‖, that is

λ∗ =
1
2

‖se
k − p‖2

‖se
k‖2 − (pxse

k,x + pyse
k,y)

(35)

(where without loss of generality we kept assuming that the
BS is placed at the origin of the reference system). Given the
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equivalence between the two estimators, in the following we
present the results only for one of them; in particular, we opt
for the joint ML in the channel domain, being closer to the
physics of the channel hence more easily interpretable in terms
of paths (i.e., angles and delays).

V. SIMULATION ANALYSIS AND RESULTS

In this section, we present a simulation analysis aimed
at evaluating the performance of the proposed joint ML
estimator, considering different values of the relevant parame-
ters, also in comparison with the theoretical bounds derived
in Sec. III. To evaluate the performance, we consider the
Root Mean Squared Error (RMSE) estimated on the basis
of 1000 Monte Carlo independent trials.

A. Simulation Setup

The analyzed scenario consists of a single BS equipped with
NBS = 20 antennas, placed at a known position pBS = [3 0]T

m, while the MS is located at p = [10 4]T m. The localization
process is carried out by exploiting only a single broadcast
signal in DL (G = 1) with bandwidth B = 40 MHz over
a central frequency fc = 60 GHz, using N = 20 different
subcarriers. The simulations are carried out without assuming
any a priori knowledge of the MS and scatterers positions;
accordingly, we set the beamforming matrix F g[n] to have
M = NBS/2 uniformly-spaced beams that cover the whole
considered area, and keep it constant over each transmission
g and subcarrier n.

We compute the channel path loss ρk for each k-th path
according to the geometry statistics in [48], [49]. To assess the
algorithm performance under different operating conditions,
we introduce the LOS-to-multipath ratio (LMR) LMRk =
PLOS/P k

NLOS. This indicator reflects the theoretical insights pro-
vided by the CRLB analysis in Sec. III: indeed, from the
diagonal elements of (21), we observed that the lower bounds
on the estimation of each scatterer position sk depend only
on the parameters of the associated k-th NLOS path and
on the parameters of the LOS path, hence the ratio between
their powers represents a meaningful parameter to discriminate
between favorable (i.e., stronger LOS) and unfavorable (i.e.,
weaker LOS) conditions. Accordingly, the total LMR is given
by LMR = PLOS/

∑K
k=1 P k

NLOS. The transmit power Pt adopted
by the BS is varied (from about 0.1 mW up to about 10 mW)
in order to obtain different ranges of SNR, defined as SNR

def=
10 log10 (Pt/(ρ0N0B)), where N0 is the noise power spectral
density and ρ0 is the path loss of the LOS link.

B. Results and Discussion

1) Analysis of the Theoretical Bounds: we start the analysis
by providing a numerical interpretation of the relevant CRLBs
derived using the FIM analysis in Sec. III. In Fig. 2, we inves-
tigate the achievable theoretical accuracy in the estimation of
the desired MS position p in presence of a number of NLOS
paths K varying from a minimum of zero (i.e., LOS-only
scenario) up to a maximum of three [50]. To reproduce
different geometric configurations of the environment, we fix

Fig. 2. PEB on the estimation of p as a function of the degree of separation
among LOS and NLOS paths μ, for a varying number of NLOS paths.

three reference directions from the MS to the scatterers to
−20◦, 50◦ and 70◦, respectively, and vary each position sk

(k ≥ 1) along its corresponding direction in order to obtain
a distance between the MS and the k-th scatterer equal to
dk,2 = �kμ, with μ ∈ (0, 1] a scaling parameter introduced to
increase or decrease the degree of separation (in terms of both
TOF and AOD) among the LOS path and the NLOS paths. The
three reference distances are set to �1 = 20 m, �2 = 28 m, and
�3 = 36 m, so that the resulting scenario is compatible with the
expected coverage in mmWave 5G systems [13]. In agreement
with the theoretical findings in Sec. III-D, we observe that the
PEB does not experience significant changes as K increases,
confirming that the estimation of p is not harmed by the
presence of the additional NLOS paths at the receive side. This
behavior also confirms the orthogonality among the different
paths, since the NLOS paths start to have a noticeable effect
only for very small values of μ. Furthermore, the very slight
differences among the PEB curves reveal that the residual
reciprocal interference among the paths is mainly linked to the
overall multipath power and it is otherwise independent from
the effective number of NLOS paths K . Therefore, to ease the
presentation and without loss of generality, in the following
we stick to the case of a single NLOS path (i.e., K = 1)
and evaluate the proposed algorithm performance for different
values of the multipath power. Finally, notice that the values
assumed by the PEB demonstrate that cm-level localization
accuracy can be achieved in the considered mmWave MISO
setup, in spite of the fact that the receiver can only exploit a
single antenna to cope with multipath propagation.

2) Comparison Between Channel Domain and Position
Domain Estimation: the approach proposed in Sec. IV-A
originates from the idea that a first initial estimate of the
unknown vector Θ can be obtained by searching for the
K + 1 dominant minima in the single-path cost function
L0(θ, τ). To validate such an intuition, in Fig. 3 we report
a graphical example of a possible evaluation of L0(θ, τ) over
a discrete two-dimensional 64× 64 grid 1 of (θ, τ) pairs. The
simulation is conducted assuming a single scatterer placed
at s1 = [8 13]T m, which generates a reflected NLOS path

1Notice that we are considering a fine grid (with resolution 0.2 m in range
and 0.5 degrees in angle) only for the sake of visualization; for practical
implementation, a very coarse grid (with resolution 2 m in range and 4 degrees
in angle) is sufficient to achieve best performance.
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Fig. 3. Possible evaluation of the cost function L0(θ, τ) for a scenario with
K = 1 NLOS path.

having a power 3 dB less than the LOS, at SNR = 5 dB. As
expected, the cost function is highly non-linear and exhibits
several local minima. However, the two dominant minima are
in the neighborhood of the actual (θk, τk) pairs, k = 0, 1
(indicated by crosses), meaning that L0(θ, τ) is able to capture
the angular and time “signature" of each individual path,
although with an accuracy that worsens for lower SNR and
less separable paths. This is remarkable since L0(θ, τ) is a
suboptimal function that ignores the presence of more than
one path in the received signal Y .

For the sake of comparison, in Fig. 4 we report the
evaluation of the position-domain cost function L0(s) (see
Sec. IV-D) over a discrete grid of (sx, sy) pairs obtained
from the previous 64 × 64 grid (in the channel domain)
by applying a Cartesian transformation to each (θ, τ) pair
(i.e., [sx sy]T = cτ [cos θ sin θ]T pair), while the remaining
parameters are set as in Fig. 3. We observe that, also in the
location domain, there are two dominant minima that clearly
emerge in evaluating the cost function L0(s). In line with the
discussion in Sec. IV-D, the bottom-most minimum occurs in
the neighborhood of the actual MS position p, while the other
one (linked to the NLOS parameters) is located in the vicinity
of the equivalent scatterer position se

1 = [11.3 21.6]T m.2

3) Performance Assessment for LOS Stronger Than NLOS:
we start the performance assessment by considering the more
typical case in which the LOS path is received with a power
greater than the NLOS, that is, we assume the presence of a
single scatterer at s1 = [8 13]T m which produces a LMR = 5
dB. Fig. 5 reports the RMSEs on the estimation of the channel
parameters dk and θk, k = 0, 1, as a function of the SNR.
The proposed estimator is labeled as “Joint ML” and it is
implemented in two-steps: in the first one, an initial estimate

2It is worth noting that a naive search of the first K + 1 minima in
any single-path cost function would likely produce erroneous estimates of
the sought channel or position parameters, respectively: in fact, since each
dominant minimum is quite spread (blue areas in both figures), the search
would likely lead to incorrectly selecting multiple local minima belonging
to the neighborhood of the same dominant minimum. To overcome such a
drawback, one can resort to the well-known space-alternating generalized
expectation-maximization (SAGE) method, which sequentially estimate each
(θk, τk) pair and compensate its contribution before searching for the next
dominant minimum (i.e., the next (θk , τk) pair) in the cost function. This
approach, theoretically introduced in [51], has been extensively applied for
parameter extraction from extensive channel measurement data [52], [53].

Fig. 4. Possible evaluation of the cost function L0(s) for a scenario with
K = 1 NLOS path.

of Θ is obtained by searching for the K +1 dominant minima
in L0(θ, τ) over a coarse 8×8 grid built from pairs (θk, τk); the
estimated vector Θ̂ is then used to initialize a Nelder-Mead
procedure which iteratively solves the (K + 1)-dimensional
ML estimation problem in (29). For the sake of comparison,
we also report the performance of the algorithms that approach
the estimation problem by assuming a simplified single-path
(SP) model. More precisely, we label as “SP ML with Coarse
Grid” the algorithm that simply optimizes L0(θ, τ) over the
coarse 8 × 8 grid to estimate Θ (i.e., the first step of the
proposed Joint ML approach). The SP estimation performance
can be further improved by using each estimated (θ̂k, τ̂k) pair
in Θ̂ to initialize a Nelder-Mead procedure that numerically
optimize the SP cost function L0(θ, τ), yielding a refined
estimate of Θ; in the following, we label such an approach
as “SP ML with Refinement”. Notice that the optimization
in the second step of both the “SP ML with Refinement”
and the proposed “Joint ML” can be efficiently performed
in a relatively short time, with the latter requiring only a
slightly increased runtime compared to the former due to the
larger size of the vectors involved in the iterative optimization.
As concerns the theoretical lower bounds, each

√
CRLB(·)

is obtained by inverting the FIM in either channel (ref. eq. (6))
or location (ref. eq. (13)) domain, selecting the corresponding
diagonal entries and taking the square root.

By comparing the RMSEs in Fig. 5, we observe that the
LOS channel parameters are estimated more accurately than
the NLOS ones (as also reflected in the corresponding bounds),
due to the stronger power of the former compared to latter. The
"SP ML with Coarse Grid" algorithm (dash-dot curves with
square markers) provides satisfactory initial estimates of both
AODs and TOFs parameters, with an accuracy that increases
with the SNR (since the powers of the LOS and NLOS paths
increase accordingly) and with a reduced complexity thanks
to the coarse grid used in the estimation process. Although
the performance further improves when a subsequent iterative
2D refinement is applied (see dash-dot curves with diamond
markers), both the SP algorithms are still unable to achieve
the theoretical lower bounds, as confirmed by the position
errors reported in Fig. 6. The existing gap clearly demonstrates
that the algorithms derived assuming a simplified SP model
cannot effectively cope with the residual mutual interference
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Fig. 5. RMSEs on dk = cτk and θk estimation in comparison with the
CRLBs as a function of the SNR, for a LMR = 5 dB.

Fig. 6. RMSEs on MS and scatterer position estimation versus CRLBs as a
function of the SNR, for LMR = 5 dB.

among the received paths. On the other hand, the solid curves
show that the proposed Joint ML estimator offers the best
performance: indeed, the RMSE of p̂ approaches the bound
already for SNR = −5 dB, while the mapping of the scatterer
position becomes increasingly more accurate until reaching the
bound for SNR = 5 dB.

4) Performance Assessment for LOS Weaker Than NLOS:
to challenge the proposed Joint ML estimator, we consider the
case in which the power of the NLOS path is 5 dB higher than
that of the LOS, that is, we set LMR = −5 dB. This setup is

Fig. 7. RMSEs on MS and scatterer position estimation versus CRLBs as a
function of the SNR, for LMR = −5 dB.

representative of scenarios in which the LOS path is severely
attenuated. The RMSEs of p̂ and ŝ1 are reported in Fig. 7:
in this case, the higher power in the NLOS path translates
into more advantageous conditions for mapping the scatterer
position, which in fact is more accurately estimated compared
to the MS position, as confirmed by the smaller values of the
bounds (dashed curves). As it can be observed, in this case the
performances of the SP algorithms significantly deviate from
the theoretical bounds. Remarkably, the proposed Joint ML
estimator performs well even when the LOS path is highly
attenuated, providing a very accurate localization of the MS
and mapping of the scatterer already at about 0 dB SNR.

To further challenge the algorithms, we investigate the case
in which the LOS and NLOS paths are not easily separable
in both space and time domains, i.e., they are non-orthogonal
according to the definition given in Sec. III-A. More precisely,
we moved the position of the scatterer closer to the MS
position, that is, we set s1 = [11 16]T m. In this case,
θ0 = 69◦ and θ1 = 63◦, while the corresponding TOFs
are such that cτ0 = 14 m and cτ1 = 22 m. This scenario
is quite challenging being the angular and delay separation
between the paths drastically close to the minimum spatial
and time resolution of the system for the considered values
of the parameters (i.e., 2/N ≈ 6◦ resolution in angle and
c/B = 7.5 m resolution in distance). The obtained results are
reported in Fig. 8. Interestingly, despite the more challenging
scenario (as confirmed by the higher values of the CRLBs), the
proposed approach can correctly cope also with the presence
of NLOS paths that are very close (in both time and space) to
the LOS link, with a slight performance degradation only for
small values of the SNR.

5) Performance Assessment as a Function of the Multipath
Power: to corroborate the above results, we further analyze the
algorithms behavior assuming a fixed value of the SNR and
varying the multipath power in terms of LMR between −10 dB
and 10 dB, so as to obtain performance representative of a
number of different operational conditions. In Fig. 9, we show
the RMSEs on the estimation of p and s1 as a function
of the LMR, for a SNR = 10 dB. In agreement with the
theoretical findings in Sec. III-D as well as with the analysis
reported in Fig. 2, the PEB remains practically constant as
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Fig. 8. RMSEs on MS and scatterer position estimation versus CRLBs as a
function of the SNR, for LMR = −5 dB and non-orthogonal LOS and NLOS
paths.

Fig. 9. RMSEs on MS and scatterer position estimation versus CRLBs as a
function of the LMR, for SNR = 10 dB.

the LMR changes, thus confirming the very weak dependency
of LOS on the NLOS path, that is, the estimation of p is
not harmed by the presence of multipath propagation. On the
other hand, the dashed (red) curve shows that the accuracy
achievable in the estimation of s1 progressively worsens as the
power of the multipath diminishes. As it can be noticed, the
performances of the SP algorithms are in trade-off: indeed,
the RMSEs on the estimation of p tend to decrease as the
LMR increases; conversely, the RMSEs of ŝ1 experiences
an evident increase as the power of the NLOS path drops.
Again, this behavior confirms that the performances are better
for the more powerful path. Interestingly, the proposed Joint
ML approach, thanks to its optimality, is able to cope with
the less accurate scatterer position estimate for high LMRs,
and vice versa with the less accurate MS position estimate
for low LMRs. Indeed, the solid curves show that the joint
estimator enables a satisfactory localization and mapping in all
the different operating conditions, significantly outperforming
the SP competitors and attaining the bounds for even moderate
values of the SNR.

As a final remark, notice that all the performances above
are very good despite the quite moderate values of the sys-
tem parameters. Realistic values are more favorable, e.g. the
number of transmit antennas NBS is typically larger, hence

the resulting performance monotonically improves (figures not
reported due to lack of space).

VI. CONCLUSION

The problem of single-snapshot estimation of the unknown
MS position and mapping of scatterers locations in a mmWave
MISO system has been addressed. The localization process is
based on the combined use of AOD and TOF information,
which can be estimated from a single pilot signal broadcast
in DL by a BS. The Fisher information analysis demonstrated
that localization and mapping is still possible also when using
a single-antenna receiver but, differently from the MIMO
setup, NLOS information cannot be used to improve the
estimation of the MS position. We formulated the joint ML
estimation problem in the channel domain and proposed and
evaluated a low-complexity initialization method, which has
an equivalent formulation in the position domain.

APPENDIX

DERIVATION OF FIM ELEMENTS IN (7)

In the following, we provide the exact expressions of
the entries of the FIM matrix in (7), derived based
on (8). We introduce κn = 2πn/(NTS), βh,� =
2NBS
σ2 α∗

hα� exp(jκn(τh − τ�)) and Ah,� = aBS(θh)aH
BS(θ�). We

start from the elements linked to the parameters θk and τk,
which are given by

Λ(τh, τ�) =
∑
g,n

�{
βh,�κ

2
n(zg[n])HAh,�z

g[n]
}

,

Λ(θh, θ�) =
∑
g,n

�{
βh,�(zg[n])HDH

hAh,�D�z
g[n]

}
,

Λ(τh, θ�) =
∑
g,n

�{
jκnβh,�(zg[n])HAh,�D�z

g[n]
}

,

where the matrix Du with subscript u replaced by either h or
� is given by

Du = −j
2π

λc
d cos θudiag[0 1 · · · (NBS − 1)]

with diag(·) a function which constructs a diagonal matrix
with its entries.

The elements including the channel amplitudes rk and
phases φk are obtained as

Λ(τh, r�) =
∑
g,n

�{jejφ�
βh,�

α�
κn(zg[n])HAh,�z

g[n]},

Λ(τh, φ�) =
∑
g,n

�{−βh,�κn(zg[n])HAh,�z
g[n]},

Λ(θh, r�) =
∑
g,n

�{jejφ�
βh,�

α�
(zg[n])HDH

h Ah,�z
g[n]},

Λ(θh, φ�) =
∑
g,n

�{jβh,�(zg[n])HDH
h Ah,�z

g[n]},

Λ(rh, r�) =
∑
g,n

�{ βh,�

α∗
hα�

ej(φ�−φh)(zg[n])HAh,�z
g[n]},

Λ(φh, φ�) =
∑
g,n

�{βh,�(zg[n])HAh,�z
g[n]},

Λ(rh, φ�) =
∑
g,n

�{j βh,�

α∗
h

e−jφh(zg[n])HAh,�z
g[n]}.
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