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ABSTRACT

In multi-antenna downlink systems the optimization of
linear precoding is severely hampered by the amount of
feedback. An efficient solution consists in opportunistic
schemes, which generate M random beams and schedule
the users with the highest signal-to-noise-plus-interference
ratios (SINRs), which can be made available to the trans-
mitter with very little feedback. Although this technique
has been shown to be optimal for asymptotically large
number of users, severe performance degradation occurs
in practical system where the number of users is limited.
In this paper we propose an enhancement of this strategy
based on an adaptive beam selection procedure. Instead of
transmitting all the generated beams, the scheduler picks
the optimum subset of beams that maximizes the system
sum-rate according to the feedback information. We pro-
pose and compare several beam selection algorithms ac-
cording to different complexity requirements. In particu-
lar, we show that the proposed approaches give substantial
gains with respect to conventional opportunistic schemes.

I. I NTRODUCTION

In the downlink of a Single-Input Single-Output (SISO)
multi-user wireless system, it is well known that the aver-
age cell throughput can be increased when in each slot the
user with better channel conditions is scheduled [1]. Con-
versely, this is not the optimum strategy for the Multiple-
Input Multiple-Output (MIMO) Broadcast Channel, given
that multi-antenna capabilities are not exploited to serve
several users simultaneously. In particular, the capacity
region of the gaussian MIMO broadcast channel can be
achieved with dirty paper coding (DPC) [2]. However, DPC
may not be considered an appropriate scheme for real ap-
plications, since it is not easy implementable due to the suc-
cessive encodings and decodings.

In [3], it was proposed the Zero Forcing (ZF) scheme
as an alternative to DPC. It was shown that with this sub-
optimal (but very simple for implementation) strategy, the
same capacity growth rate as in DPC can be achieved when
the number of users is large. Unfortunately, the ZF scheme
(like DPC) requiresperfectchannel side information (CSI),
which is seldom available at the base station. For that
reason, opportunistic schemes with multiple beams based
on partial CSI at the base station (BS) have recently at-
tracted interest [4]. The main idea is to generate a random
set of beamformers at the BS to schedule users according

to signal-to-interference-and-noise ratio (SINR) measure-
ments. In this scheme, users only have to reportSINR rela-
tive to the selected precoding and, then, the amount of infor-
mation to be sent in the feedback is considerably reduced.
Performance has been shown to be very effective for sys-
tems with a large number of users, as the sum capacity for
partial CSI has the same capacity growth rate as for the case
of perfect CSI at the BS [4].

However, performance can be far from satisfactory in
systems with a practical number of users. Kountoris and
Gesbert proposed two techniques with the aim of improving
opportunistic beamfoming with multiple beams in sparse
networks. In [5], they proposed an approach where chan-
nel time correlation is exploited to search the optimal set
of random beamvectors. In order not to depend excessively
on the properties for the channel, a different approach was
proposed in [6]. More precisely, it was proposed a scheme
where a low rate feedback is used for selecting the best
group of users, for which more efficient beamforming tech-
niques are applied: MMSE beamformer and iterative power
allocation with full and partial CSI at the transmitter, re-
spectively.

In this paper, we propose approaches aimed at improving
opportunistic beamfoming with multiple beams in sparse
networks. However, we focus our attention on the simple
philosophy of the original approach where users are served
with uniform power allocation. As we show in this paper,
using all the available beams active may not be the optimum
solution for scarcely populated cells with constant transmit
power at the base station. For that reason, we propose beam
selection procedures where the optimum subset of beams
is selected for transmission. In particular, we propose dif-
ferent beam selection techniques where the only required
information are the channel gains or theSINR.

II. SIGNAL MODEL

Consider the downlink of a cellular system with one base
station equipped withM antennas, andK single-antenna
Mobile Stations (MS). In order to serve multiple users in
the same time-slot, a linear precoding matrix is used at
the base station. In particular, we follow a random beam-
forming strategy [4]. More precisely, in each time slot we
construct a random matrixW = [w1,w2, ...,wM ], where
wi ∈ CM×1, i = 1..M , are random orthonormal vectors
generated according to an isotropic distribution [7]. Then,
these vectors are used for transmitting information to the
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users with the highestSINRs. Unlike the approach in [4],
we do not necessarily transmit with all the beams vectors
wi. That is, the transmission is made with a subset of ac-
tive beamsB ⊂ W = {w1,w2, ...,wM}. Further details
about the beam selection procedure will be given in Section
V. Therefore, the received signal at the k-th MS is given by:

rk = hT
k WBsB + nk

where the time index has been dropped for the ease of nota-
tion,hk ∈ CM×1 is the channel vector gain between the BS
and thek-th MS, for which each component is assumed to
be independent and identically distributed, circularly sym-
metric Gaussian random variable with zero mean and unit
variance (hk ∼ CN (0, IM )), WB ∈ CM×B is the precod-
ing matrix constructed with the columns ofW correspond-
ing to the subset of active beamsB, sB ∈ CB×1 is the sym-
bol vector broadcasted from the BS,B = card(B) ≤ M is
the number of simultaneous served users andnk ∈ C de-
notes additive Gaussian noise (AWGN) with zero mean and
varianceσ2. The active users in the system are assumed to
undergo independent Rayleigh fading processes. Further,
we consider quasi-static fading, i.e, the channel response
remains constant during one time-slot and it changes to a
new independent realization in the subsequent one.

Concerning channel state information, we assume per-
fect CSI knowledge foreachuser at the receive side, and
the availability of a low-rate error-free feedback channel to
convey partial CSI to the transmitter. Finally, the total trans-
mit power,Pt, is constant and evenly distributed among ac-
tive beams, i.e.,E{sH

B sB} = Pt. Then, we defineρ = Pt

σ2

as the averageSNR of the system.

III. POST-SCHEDULING SINR STATISTICS

According to the signal model presented in the previous
section, theSINR associated to userk with beami can be
expressed as follows:

SINRk,i(B) =
|hT

k wi|2
B/ρ +

∑
j∈B
j 6=i

|hT
k wj |2

=
z

B/ρ + y
(1)

Since we assume that all users experience i.i.d Rayleigh
fading and the beamformers are orthonormal to each other,
z andy become independent chi-square random variables,
z ∼ χ2

2 andy ∼ χ2
2B−2 [4]. As a consequence, both the

CDF and pdf of theSINR can be expressed as:

FSINR(γ) = 1− e−
γB
ρ

(1 + γ)B−1
(2)

fSINR(γ) =
e−

γB
ρ

(1 + γ)B

(
B

ρ
(1 + γ) + B − 1

)

Notice that in a i.i.d Rayleigh fading scenario theSINR
statistics depend on thenumberof interfering beams but
not on the number oftransmit antennas, M , as long as the
number of active beams is lower thanM .

The scheduling process is organized in a slot-by-slot ba-
sis following amax-SINR (greedy) rule. That is, for beam
i, the scheduler selects the active userk∗i satisfying:

k∗i = arg max
k=1..K

{SINRk,i}
where it is assumed that a different user is selected for each
beam1. Since all users experience i.i.d Rayleigh fading,
the CDF of thepost-schedulingSINR, FSINR∗(γ), i.e. the
SINR experienced by the scheduled user can be readily ex-
pressed in terms of Eq. (2) as:

FSINR∗(γ) = (FSINR(γ))K =

(
1− e−

γB
ρ

(1 + γ)B−1

)K

Finally, by simply differentiating the above expression
the pdf can be written as:

fSINR∗(γ) = K
e−

γB
ρ

(1 + γ)B

(
B

ρ
(1 + γ) + B − 1

)

×
(

1− e−
γB
ρ

(1 + γ)B−1

)K−1

These expressions will be used in the following section
in order to compute the resulting sum-rate.

IV. A SYMPTOTIC BEHAVIOR OF THESUM-RATE

According to the proposed scheduling policy, the sum-rate
achievable whenB beams are active is given by:

R(B) = E

{∑

i∈B
log2

(
1 + max

1≤k≤K
SINRk,i(B)

)}

= B

∫ ∞

γ=0

log2 (1 + γ) fSINR∗(γ)dγ (3)

In [4], Sharif and Hassibi deived a closed-form expres-
sion for the asymptotic case (K → ∞) which exhibits the
same sum-rate growth as DPC. For a practical scenario with
a finite number of users, though, resorting to numerical in-
tegration is needed. Still, this expression is tractable when
the averageSNR of the system is arbitrarily high (ρ →∞)
as shown by the authors in [8]. In this case, the pdf of the
post-schedulingSINR can be written as follows:

fhigh,SINR∗(γ) = K
B − 1

(1 + γ)B

(
1− 1

(1 + γ)B−1

)K−1

As a consequence, the integral in Eq. (3) becomes consid-
erably simpler and a closed-form expression can be derived
for the sum-rate (see [8] for further details):

Rhigh ≈ B

B − 1
log2(e)

K∑

k=1

1
k

(4)

where the term
∑K

k=1
1
k accounts for the multi-user gain.

Two main conclusions can be drawn from the expression
above. First, the sum-rate tends to infinity when only one
beam is used since, in this case, the sum-rate capacity grows
logarithmically with the averageSNR. Besides, the sum-
rate decreases with the number of active beams due to the
termB/(B − 1). In summary, using only one active beam
is the optimum strategy in the high-SNR regime.

1The probability that one user achieves the highestSINR over more
than one beam is negligible when the number of users is large compared
with the number of active beams (K >> B) [4].
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Table 1: Sum-rate performance for low-SNR scenarios
(200 users,ρ=-5 dB).

B=1 B=2 B=3 B=4
Simulation 1.485 1.759 1.836 1.893

Eq. (5) 1.485 1.848 2.071 2.179
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Figure 1: Sum-rate vs. averageSNR for a different num-
ber of active beams (B). Dotted lines correspond to the
approximate results for the high-SNR regime given by Eq.
(4). Top: 20 users, bottom: 200 users.

In a low-SNR regime (i.e.,ρ → 0), a totally different
scenario results. By neglecting the interference term in eq.
(1), the post-scheduling pdf can be expressed as:

flow,SINR∗(γ) = K
e−

γB
ρ

ρ

(
1− e−

γB
ρ

)K−1

Finally, after some algebraic manipulations the sum-rate
can expressed as:

Rlow ≈ −BK log2 e

K−1∑

k=0

(
K − 1

k

)
(−1)k

k + 1
eB

(k+1)
ρ

× Ei

(
−B

(k + 1)
ρ

)
(5)

with Ei(x) standing for the exponential integral function
(Ei(x) = − ∫∞

−x
e−t

t dt, for x < 0) [9, Eq. 8.211.1]. Ta-
ble 1 and Fig. 1 illustrate the accuracy of the approximate
sum-rate expressions for the low- and high-SNR regimes,
respectively2. The following conclusions are in line. First,
in noise-limited scenarios a higher number of active beams
turns out to be beneficial. In particular, this is more relevant
when the population of users is high (see top and bottom
plots in Fig. 1). Second, in interference limited scenarios
with a moderate number of users, the use of multiple beams
does not pay off. Instead, a careful selection ofthe active
beams gives better results.

2See how both the simulated and approximated results in Table 1 reflect
the same trend for a growing number of beams.

V. BEAM SELECTION ALGORITHMS

In the previous section, we have shown that using all the
set of active beams may not be the optimal transmission
configuration. For that reason, we now derive several beam
selection algorithms capable of identifying the best subset
of beams (and users) according to scenario conditions. In
addition, the number of users in the system can bevirtu-
ally increased by using beam selection because the number
of SINR combinations is augmented3, which is quite inter-
esting for sparse networks. In particular, we propose the
following beam selection techniques:

A. Optimum Beam Selection

This algorithm conducts an exhaustive search over all the
possible subsets of beams and users. For a fixed num-
ber of active beamsB, a total of

(
M
B

)
KB SINRs must be

computed in order to find the best transmission configura-
tion. Next, by considering all the possible number of ac-
tive beams, a total of

∑M
B=1

(
M
B

)
KB = KM2M−1 SINR

computations results. Finally, it is worth noting that this al-
gorithm requires all the gains|hT

k wi|2 to be known. There-
fore, it is necessary for each user to reportM integer num-
bers to the base station over the feedback channel.

In order to reduce the computational complexity of
the beam selection procedure, next we present some sub-
optimum approaches:

B. Bottom-up Trellis Beam Selection

The first sub-optimum methodology is based on a bottom-
up procedure. More precisely, the algorithm is started by
selecting the best user for each beam. After that, the se-
lected users in the first step are combined (with their asso-
ciated beams) in order to find the best combination with two
active beams. The algorithm is iterated until the combina-
tion where all the beams are active (B = M ) is reached.
Basically, the objective is to reduce the computational cost
by focusing on the users achieving the highest gains with
only one active beam. By doing so,KM computations are
needed in the first level but only

(
M
B

)
B operations are re-

quired in subsequent ones. As a result, complexity drops to
M2M−1 + M(K − 1) SINR computations.

C. Top-down Trellis Beam Selection

In the bottom-up procedure, we are restricting the search to
those users maximizing system performance when only one
beam is activated. However, this subset of users may not be
adequate when the number of beams increases and interfer-
ence comes into play (as a result of spatial multiplexing).
For that reason, we propose a similar approach starting on
the maximum number of active beams (B = M ), for which
the best subset of users is found. Then, the algorithm is
iterated by removing one beam in each step. Again, user-
beam pairs selected in the first step are kept. The number

3In the single beam case (B=1), the number of equivalent users it is
equal toMK. This is becauseSINRk,i for k = 1..K andi = 1..M are
i.i.d distributed in this case.
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of required computations is the same as in the bottom-up
approach.

D. Greedy Beam Selection

Both the top-down and bottom-up procedures restrict the
search to the best user subset when only one or all the beams
are active, respectively. In order to extend the search to
a larger set of users, we propose a greedy beam selection
procedure. Specific details about the proposed greedy algo-
rithm can be found in Table 2 but the basic idea consists in
selecting in each step the pair user-beam leading to a higher
increase of sum-rate. The algorithm is iterated until the con-
figuration with all the active beams is reached and, then, the
best sub-set withB = j∗ active beams is selected. In the
first iteration,MK computations are needed to find the best
user-beam pair. Next,K SINRs should be computed when
a new beam is added and this operation must be repeated for
the remaining beams. Therefore, the algorithm performs
(M −B − 1)K computations in each iteration with a total
computational cost of

∑M
B=1(M−B−1)K = KM

2 (M+1)
SINR operations.

E. Enhanced Greedy Beam Selection

In the greedy beam selection scheme proposed above, the
overall performance depends on the user-beam pair of the
first iteration (in the absence of inter-user interference). In-
stead, we can defer such decision to the second iteration
where some inter-user interference is already present. In
other words, we initialize the algorithm by identifying the
best user for each beami = 1..M (i.e., in the absence of
interference). Then, we run the greedy algorithmM times
taking as a starting point each user-beam pair obtained in
the initialization. In this case, the total computational com-
plexity amounts toKM

2 (M2−M +2) SINR computations.

F. Restricted Beam Selection

Finally, we present a methodology where the optimum
beam selection procedure is restricted to a predetermined
number of active beamsB. In other words, all the possible
transmission configurations withB active beams are tested.
By doing so, the number ofSINR computations is reduced
to

(
M
B

)
KB = KM !

(M−B)!(B−1)! operations. This strategy is
very appropriate for those situations where the optimum
number of active beams can be known beforehand. For in-
stance, it was shown in Section IV. that the optimum strat-
egy is using a single active beam when theSNR is consider-
ably high. Besides, when the number of possible transmis-
sion configurations

(
M
B

)
is equal or lower thanM , each user

can report the highestSINRs for each configuration instead
of all the gains|hT

k wi|2 . Then, by sending onlySINRs
associated to a limited number of transmission configura-
tions, sub-optimum approaches can be derived in terms of
system performance vs. feedback requirements constraints.
In the sequel, these algorithms will be called BSX, where
X will be the number of active beams.

Table 2: Greedy Beam Selection Algorithm

1. Set j=1,K1={1, . . . , K} andB1={w1, . . . ,wM}.
2. Compute the best user-beam pair for the case with only one

active beam as:
(k1, i1) = argmax(k,i)ρ|hT

k wi|2, ∀(k, i) ∈ K1 × B1

3. ComputeR1 = log2(1 + ρ|hT
k1wi1 |2).

4. Set j = j + 1, Kj=Kj−1 − {kj−1} and Bj=Bj−1 −
{wij−1}.

5. Compute the best user-beam pair that can be added to the
system as:

(kj , ij) =

= argmax(k,i)

(
log2

 
|hT

k wi|2
j/ρ +

Pj−1
s=1 |hT

k wis |2

!

+

j−1X
p=1

log2

 
|hT

kp
wip |2

j/ρ + |hT
kp

wi|2 +
Pj−1

s=1
s6=p

|hT
kp

wis |2

!)
,

∀(k, i) ∈ Kj × Bj

6. Compute

Rj =

jX
p=1

log2

0
B@

|hT
kp

wip |2
j/ρ +

Pj
s=1
s6=p

|hT
kp

wis |2

1
CA

7. If j < M , go to step 4. Otherwise go to step 8.

8. Setj∗ = argmaxjRj .

9. The algorithm is finished and the set of selected beams and
users is the following:

(k1,wi1), ..., (kj∗ ,wij∗ )

VI. SIMULATION RESULTS AND DISCUSSION

We consider a system with a number of active users in
the rangeK = 10..100. Since Fig. 1 revealed that little
improvement can be obtained with four active beams, we
restrict the analysis of the proposed beam selection algo-
rithms to a scenario withM = 3 transmit antennas.

In Fig. 2, performance in terms of sum-rate vs. num-
ber of users for the different beam selection methodologies
is compared in a lowSNR regime (SNR=0 dB). As ex-
pected, the best performance is obtained with the optimum
approach. Regarding the sub-optimum approaches, perfor-
mance losses can be observed for both the bottom-up and
greedy methodologies, whereas most of the sum-rate gains
can be achieved with the top-down and enhanced trellis ap-
proaches. This is because using several active beams may
be beneficial when the SNR is low and, then, incorrect deci-
sions made in the first step of the greedy and bottom-up al-
gorithms penalize system performance. This effect is even
clearer when the number of users increases. As for the re-
stricted beam selection procedures, it is observed that the
best results are obtained with the BS2 approach.

When theSNR is increased (see Figs. 3 and 4), the sys-
tem becomes interference limited. As a result, the impact
of wrong users selection on the denominator of theSINR
(see eq. (1)) is emphasized. It can also be observed that
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Figure 2: Sum-rate vs. number of users for the different
beam selection procedures (SNR=0 dB).

10 20 30 40 50 60 70 80 90 100
4.5

5

5.5

6

6.5

7

7.5

8

8.5
SNR= 10 dB

Users

S
um

−
ra

te
 (

b/
s/

H
z)

Optimum BS
BS1
BS2
BS3
Bottom−up Trellis
Top−down Trellis
Greedy
Enhanced Greedy

Figure 3: Sum-rate vs. number of users for the different
beam selection procedures. (SNR=10 dB)

results associated to BS1 are improved, whereas BS3 wors-
ens its performance. This is because the optimum solution
tends to use a reduced number of active beams when the
SNR is increased. This effect can be clearly observed in
a scenario withSNR=50 dB. Due to space constraints re-
sults corresponding to this scenario are not included, but
it is noteworthy that the same results are obtained with the
optimum, bottom-up, greedy, enhanced greedy and BS1 ap-
proaches.

In order to provide the reader with a complementary
point of view, computational complexity requirements in
terms ofSINR computations are shown in Table 3. Con-
siderably computational savings are obtained with the sub-
optimum approaches except with the enhanced greedy ap-
proach. This algorithm executesM times the greedy ap-
proach, where in each step of algorithm the set of users
and beams in the search are reduced but all the elements
of the set must be tested. For that reason, it is observed that
the enhanced greedy approach begins to be computation-
ally efficient with respect to the optimal approach when the
number of transmit antennas is increased.

In summary, in the proposed scenario with a practical
number of users and constant transmit power at the base
station, it is shown that substantial gains can be obtained
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Figure 4: Sum-rate vs. number of users for the different
beam selection procedures. (SNR=20 dB.)

Table 3: Computational Complexity for the different ap-
proaches in terms ofSINR computations (20 users).

M=1 M=2 M=3 M=4
Optimum BS 20 80 240 640

Bottom-up/Top-down 20 42 69 108
Greedy 20 60 120 200

Enhanced Greedy 20 80 240 560
BS-1 20 40 60 80
BS-2 - 40 120 240
BS-3 - - 60 240
BS-4 - - - 80

with the BS2 approach. In particular, most of the capac-
ity gains can be achieved with a computational complexity
considerably lower with respect to the optimum solution.
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