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Abstract: In this paper, we explore the combined use of
spatial and multi-user diversity in a cellular system where
the channel state information (CSI) available at the base
station (BS) is subject to imperfections. To do that, we con-
sider a general statistical approach to describe the degree
of CSI imperfection. By doing so, performance assessment
is conducted for the generalized case in terms of ergodic
system capacity, for which closed-form expressions are de-
rived. In order to gain some insight, practical examples are
presented and spatial vs. multi-user diversity trade-offs are
analytically assessed.

1. Introduction

Multi-user diversity (MUD) concepts, first introduced
by Knopp and Humblet in [1], rely on the assumption
that different users in a wireless multi-user system ex-
perience independent fading processes. In those circum-
stances, the aggregated cell throughput can be substan-
tially increased by scheduling in each time slot the user
with the most favorable channel conditions. Besides,
in such fading environments the exploitation of trans-
mit spatial diversity (e.g. by means of orthogonal space-
time block coding, OSTBC) makes transmission links
more robust with low complexity receivers [2][3]. Both
schemes aimed at exploiting either multi-user or trans-
mit spatial diversity have been proposed for packet data
services in 3G wireless networks. For that reason, much
attention has been recently paid to their combined use
and the associated trade-offs.

Previous Work: In [4], [5] and [6] the inclusion of
OSTBC in multiuser schemes was analyzed. It was
shown that in a multi-user context Single-Input Single-
Output (SISO) schemes outperform OSTBC-based ones
in terms of aggregated cell capacity. Certainly, spa-
tial diversity helps reduce the probability of deep fades
but, by averaging over different diversity branches, SNR
peaks (those that multi-user diversity can exploit) are
suppressed as well. As a result, the resulting system
capacity is lower. It is worth noting that with perfect
Channel State Information (CSI) at the transmitter, spa-
tial diversity can be efficiently exploited in a multi-user
context, for instance via optimal transmit beamforming
[7]. Unfortunately, perfect CSI is seldom available at the
Base Station (BS).

Although multi-user diversity can be efficiently ex-
ploited in the presence ofpartial CSI, in FDD systems
this involves the use of feedback channels which are of-
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ten subject to a number of impairments. Recently, sev-
eral studies show that the increased robustness of OS-
TBC schemes against imperfect CSI provides signifi-
cant capacity gains with respect to those of SISO ap-
proaches. For instance, in [8] and [9] the authors an-
alyze the impact ofdelaysin the feedback channel by
means of system-level computer simulations and nu-
merical integration, respectively. The consequences of
bandwidth restrictionswere explored in [10], where
the authors analyzed the impact of introducing OSTBC
and antenna selection mechanisms in Selective-MUD
environments[11].

Contributions : In this paper, weanalytically assess
the existing trade-offs in the combined use of multi-user
and transmit spatial diversity in scenarios where CSI at
the scheduler is subject to impairments. In particular,
we conduct an analytical study of the impact of imper-
fect CSI at the scheduler on SISO and OSTBC-based
schemes. To do that, we derive closed-form expres-
sions of the ergodic system capacity associated to both
approaches. We do not restrict ourselves to a specific
source of imperfections but, instead, we adopt a general
statistical approach to its modelling. In order to gain
some insight, we then present two practical examples:
delayed feedback channel and channel estimation errors.
By doing so, weanalytically prove that using OSTBC
pays off in some situations.

Organization: The corresponding system model is
presented in Section 2.. In Section 3., the general statis-
tical approach for modelling the degree of imperfections
in the CSI at the scheduler is introduced. Closed-form
expressions for the ergodic system capacity are derived
for homogeneous and non-homogenous systems in Sec-
tions 4. and 5., respectively. Next, the particularization
of the ergodic capacity expressions to practical scenar-
ios with delayed feedback or channel estimation errors
is given in section 6.. Finally, some numerical results
and conclusions are provided in Sections 7. and 8., re-
spectively.

2. Signal model and Scheduler

Consider the downlink of a cellular system with one
base station equipped with multiple antennas (NBS), and
K single-antenna user equipments (UE). For an arbitrary
time-slot, the received signal at thek-th terminal can be
modelled as:

rk = hT
k s + nk

wherehk ∈ CNBS is the channel vector gain between
the BS and thek-th terminal, for which each compo-
nent is assumed to be independent and identically dis-



tributed, circularly symmetric Gaussian random variable
with zero mean and user-dependent varianceσ2

hk
(hk ∼

CN (0, σ2
hk

INBS
)), s ∈ CNBS is the symbol vector

broadcasted from the BS andnk ∈ C denotes addi-
tive Gaussian noise (AWGN) with zero mean and vari-
anceσ2. The active users in the system are assumed to
undergo independent Rayleigh fading processes and so
does the signal being transmitted from different anten-
nas in the BS. Further, we consider quasi-static fading,
i.e, the channel response remains constant during one
time-slot and, then, it abruptly changes to a new inde-

pendent realization. We denote byγk = Pt‖hk‖2
NBSσ2 the

instantaneoussignal-to-noise ratio experienced by user

k in a given time-slot and bȳγk = PtE[‖hk‖2]
NBSσ2 its long-

term average SNR, withPt standing for the total transmit
power. Notice that the total transmitted power is constant
and evenly distributed among transmit antennas.

At the BS, we will consider two transmission
schemes: a SISO configuration (NBS = 1) and an OS-
TBC scheme withNBS = 2 transmit antennas1, more
precisely, the well-known Alamouti scheme [3]. For the
SISO scheme, the pdf and CDF of the received SNR take
the following expressions:

fγk,SISO (γ) =
1
γ̄k

e
− γ

γ̄k

Fγk,SISO (γ) = 1− e
− γ

γ̄k (1)

respectively, whereas for the OSTBC case we can write:

fγk,OSTBC (γ) =
4γ

γ̄2
k

e
− 2γ

γ̄k

Fγk,OSTBC (γ) = 1− e
− 2γ

γ̄k

(
2γ

γ̄k
+ 1

)
(2)

Concerning channel state information (CSI), we as-
sume the availability of a low-rate error-free feedback
channel to let user terminals conveypartial CSI to the
BS, in particular their instantaneous SNR. However, in
this work we consider that the partial CSI at the BS,γ̂k,
differs from the actual SNR,γk (further details are given
in the next Section). As for the scheduling process, it
is organized in a slot-by-slot basis following a modified
version of the Proportional Fair Scheduling [12] rule. In
particular, in each time slot the user with the maximum
normalized SNR is selected for transmission, that is,

k∗ = arg max
k

{
γ̂1

E[γ̂1]
, ...,

γ̂k

E[γ̂k]
, ...,

γ̂K

E[γ̂K ]

}
(3)

By doing so, users are only allowed to transmit when the
instantaneous SNR is near toits own peak[12], that is
with respect to their average SNR. As a result, multi-user
diversity is still exploited and the scheduler will grant
access probability of1/K to each user.

3. Modelling CSI imperfections at the
transmitter

In this section, we derive a statistical model describ-
ing the degree of CSI imperfection at the BS. In particu-

1For simplicity, we have assumed only two transmit antennas but
the analysis can be easily extended to the general case.

lar, we consider that the estimated SNR at the transmit-
ter was obtained from a channel vector gain,ĥk, which
differs from the actual channel response,hk; these two
random variables being related with a gaussian model.
In other words, we assume thathk conditioned onĥk

follows a gaussian distribution:

hk|ĥk ∼ CN (ηkĥk,Σk) (4)

whereηkĥk andΣk = σ2
hk

σ2
εk

I are the mean and co-
variance matrix, respectively. Notice thatσ2

εk
models

the degree of CSI uncertainty and, hence, it is equal to 0
whenhk = ĥk. Whereas, admittedly, this model might
not be very accurate for some sources of imperfection, it
is very helpful in the analysis and design of communi-
cation schemes because of its inherent tractability [[13],
Chapter 9, pp. 321].

Under those assumptions, it is straightforward to show
from Eq. (4) that the actual SNR,γk, conditioned on its
estimate,̂γk, follows a non-central chi-square distribu-
tion with 2NBS degrees of freedom [14]:

fγk|γ̂k
(γk|γ̂k) =

NBS

γ̄kσ2
εk

(
γk

η2
kγ̂k

) 2NBS−2
4

e

−NBS(γk+η2
kγ̂k)

γ̄kσ2
εk

× INBS−1

(
2NBS

√
η2

kγγ̂k

γ̄kσ2
εk

)
(5)

with In(·) standing for thenth-order modified Bessel
function of the first kind.

4. Ergodic system capacity for homoge-
neous systems

In this section, we restrict ourselves to the case where
all the users are statistically identical in terms of CSI
imperfections (ηk = η and σεk

= σε) and SNR sta-
tistics (̄γk = γ̄) and, thus, E[γ̂k] = E[γ̂]. The non-
homogeneous case will be addressed later in Section 5..

In a multi-user system, the instantaneous channel ca-
pacity achievable by thescheduleduser k∗ over the
equivalentSISO channel is given by2:

CI(γ) = log2 (1 + γ)

where γ stands for the instantaneouspost-scheduling
SNR. Because of channel imperfections, the actual SNR,
γ, is not fully known at the BS. However, the distribution
of γ conditioned on a SNR estimateγ̂ is certainly known
(see Eq.(5) above). As a result, we will use theexpected
channel capacity as a performance measure [[13], Chap-
ter 9, pp. 324], that is:

C(η, σε, γ̄, γ̂) = Eγ [CI(γ)] (6)

Finally, by averaging over all possible realizations ofγ̂,
the ergodic system capacity follows:

C(η, σε, γ̄, K) = Eγ̂ [C(η, σε, γ̄, γ̂)] (7)

2In this section, subscriptk will be dropped for variables associated
with the scheduled user.



Notice that only the last expression depends on the num-
ber of users, the reason for that being that the sched-
uler makes its decisions according to thesetof SNR es-
timates (̂γk, k=1..K). Next, we derive the corresponding
closed-form expressions for both the SISO and OSTBC
cases.
4.1. SISO

For the SISO approach, by recalling Eq. (5) and con-
sidering thatNBS = 1, Eq. (6) can be rewritten as:

CSISO(η, σε, γ̄, γ̂) = Eγ [CI(γ)]

=
∫ ∞

γ=0

log2 (1 + γ) fγ|γ̂(γ|γ̂)dγ

=
∫ ∞

γ=0

log2 (1 + γ)
1

γ̄σ2
ε

e
−(γ+η2γ̂)

γ̄σ2
ε I0

(
2
√

η2γγ̂

γ̄σ2
ε

)
dγ

(8)

Before characterizing Eq. (7) for the SISO approach, we
have just to derive the pdf of̂γ. In the homogeneous case
considered throughout this section, this can be readily
obtained by resorting to order statistics [15]:

fγ̂(γ̂) = K
e−

γ̂
E[γ̂]

E[γ̂]

(
1− e−

γ̂
E[γ̂]

)K−1

=
K

E[γ̂]

K−1∑

k=0

(
K − 1

k

)
(−1)ke−

γ̂(k+1)
E[γ̂] (9)

where the second equality follows from the application
of the binomial expansion.

Last, by plugging (8) along with (9) into (7), the fol-
lowing integral results:

CSISO(η, σε, γ̄, K) = Eγ̂ [CSISO(η, σε, γ̄, γ̂)]

=
∫ ∞

γ̂=0

CSISO(η, σε, γ̄, γ̂)fγ̂(γ̂)dγ̂

=
K

E[γ̂]γ̄σ2
ε

K−1∑

k=0

(
K − 1

k

)
(−1)k

∫ ∞

γ=0

log2 (1 + γ)

× e
− γ

γ̄σ2
ε

∫ ∞

γ̂=0

e
−γ̂

�
η2

γ̄σ2
ε
+ k+1

E[γ̂]

�

I0

(
2
√

η2γγ̂

γ̄σ2
ε

)
dγ̂dγ

For the sake of brevity, we show below the final expres-
sion (details can be found in the Appendix):

CSISO(η, σε, γ̄, K) = −K log2 e

K−1∑

k=0

(
K − 1

k

)
(−1)k

× e
k+1

E[γ̂]η2+(k+1)γ̄σ2
ε

E[γ̂]η2 + (k + 1)γ̄σ2
ε

Ei

(
k + 1

E[γ̂]η2 + (k + 1)γ̄σ2
ε

)

(10)

4.2. OSTBC
For the OSTBC case, one should bear in mind that the

pdf of the post-scheduling estimated SNR reads [4]:

fγ̂ (γ̂) = K
4γ̂

E[γ̂]2
e−

2γ̂
E[γ̂]

(
1− e−

2γ̂
E[γ̂]

(
2γ̂

E[γ̂]
+ 1

))K−1

(11)

Then, analogously to the previous case, equation (5)
and the binomial expansion of (11) should be used in (7)
for obtaining the ergodic system capacity (see Appen-
dix):

COSTBC(η, σε, γ̄,K) = 4K log2 e

K−1∑

k=0

(
K − 1

k

)
(−1)k

×
k∑

n=0

(
k

n

)
n!

n∑
m=0

(
n + 1
n−m

)
E[γ̂]mη2m

× γ̄n−mσ2(n−m)
ε (m + 1)e

2(k+1)
E[γ̂]η2+(k+1)γ̄σ2

ε

×
m+2∑

l=1

2m−lΓc(l −m− 2, 2(k+1)
E[γ̂]η2+(k+1)γ̄σ2

ε
)

(k + 1)l(E[γ̂]η2 + (k + 1)γ̄σ2
ε )m+n−l+2

(12)

5. Ergodic system capacity for non-
homogeneous systems

As a natural extension to the analysis conducted in the
previous section, we will now consider a scenario where
neither CSI statistics nor the imperfections correspond-
ing to different users are identically distributed. This is
where the max-normalized SNR scheduling rule comes
actually into play since E[γ̂k] in Eq. 3 differ now.

First, we focus on the userk and derive the conditional
probability that this user has the maximum normalized
SNR as:

Prob

(
max
n 6=k

γ̂n

E[γ̂n]
≤ y

E[γ̂k]

∣∣∣∣∣γ̂k = y

)
=

N∏
n=1
n6=k

Fγ̂n

(
y

E[γ̂n]
E[γ̂k]

)

where the specific expressions ofFγ̂n (y) for the differ-
ent transmission schemes can be found in Eqs. (1-2).
Then, it can be proved that the ergodic capacity corre-
sponding to the userk depends on:

f ′γ̂k
(y) = Prob

(
max
n6=k

γ̂n

E[γ̂n]
≤ y

E[γ̂k]

∣∣∣∣∣γ̂k = y

)
fγ̂k

(y)

By particularizing the above expression for the different
transmission schemes:

f ′γ̂k,SISO(y) =
e
− y

E[γ̂k]

E[γ̂k]

(
1− e

− y
E[γ̂k]

)K−1

(13)

f ′γ̂k,OSTBC(y) =
4γ̂k

E[γ̂k]2
e
− 2γ̂k

E[γ̂k]

×
(

1− e
− 2γ̂k

E[γ̂k]

(
2γ̂k

E[γ̂k]
+ 1

))K−1

(14)

and comparing Eqs. (13-14) with Eqs. (9-11), one can
observe that the capacity results we are interested in can
be expressed in terms of Eq. (16-17) respectively as:

C ′k,SISO =
1
K

CSISO(ηk, σεk
, γ̄k,K)

C ′k,OSTBC =
1
K

COSTBC(ηk, σεk
, γ̄k,K)



Clearly, the contribution to the ergodic capacity associ-
ated to userk (under a max-normalized SNR scheduling
rule) exclusively depends on thenumberof users but not
on the other users’ statistics. Finally, the overall ergodic
system capacity for both approaches can be written in
closed form as:

C ′SISO =
1
K

K∑

k=1

CSISO(ηk, σεk
, γ̄k, K)

C ′OSTBC =
1
K

K∑

k=1

COSTBC(ηk, σεk
, γ̄k,K) (15)

6. Practical Cases

So far, we have derived analytical expressions for the
general case of channel imperfections. In order to gain
some insight, we will now particularize those expres-
sions to two practical cases where the gaussian model
applies:
6.1. Delayed feedback channel

Unless reciprocity between the forward and reverse
links holds, there always exists a delay between the in-
stant when the SNR is measured at the UE and the actual
transmission of data to the scheduled user takes place.
Under the assumption of a Jakes’ scattering model is
adopted and, hence,hk andĥk turn out to be samples of
the same Gaussian process. In other words,hk andĥk

follow a joint complex Gaussian distribution with corre-
lation coefficientρk = Jo(2πfdk

Tk), wherefdk
stands

for the Doppler frequency,Tk is the delay in time units,
andJo(·) denotes the zero-order Bessel function of the
first kind. As a consequence, the conditioned pdf can
be easily obtained by applying Bayes’ Theorem [[16],
Chapter 10]:

fhk|ĥk
(hk|ĥk) =

fhk,ĥk
(hkĥk)

fĥk
(ĥk)

=
e−(hk−ρkĥk)HR−1

k (hk−ρĥk)

πMdet(Rk)

whereRk = σ2
hk

(1 − ρ2
k)INBS

is the covariance ma-
trix. Therefore, the delayed feedback channel fits into
the gaussian model since we have that:

hk|ĥk ∼ CN (ρkĥk,Rk)

and, hence, the ergodic system capacity can be computed
by substituting:

ηk = ρk σ2
εk

= 1− ρ2
k E[γ̂k] = γ̄k ,

into Eq. 15, where the last equality holds from the fact
thath andĥ are samples of the same gaussian process.
6.2. Imperfect channel estimation

It is common practice to assume that the channel im-
pulse response is perfectly known at the receiver. How-
ever, in practical situations only an estimate of the ac-
tual channel is actually available. In the case of a linear
MMSE estimator, for instance, we can model the chan-
nel estimate as [16]:

ĥk = hk + ek

whereek ∈ CNBS is the vector corresponding to the
channel estimation error for which each component is
assumed to be i.i.d circularly symmetric Gaussian ran-
dom variable with varianceσ2

ek
and independent from

hk. Then, by applying the Bayes’ Theorem one can find
that:

hk|ĥk ∼ CN (
1

1 + ∆ek

ĥk, σ2
hk

∆ek

1 + ∆ek

INBS )

where we have defined∆ek
=

σ2
ek

σ2
hk

. Thus, we

should take the following parameters into account for the
derivation of the ergodic system capacity:

ηk = 1
1+∆ek

σ2
εk

= ∆ek

1+∆ek
E[γ̂k] = γ̄k(1 + ∆ek

)

As a final remark, it should be noted that in this second
case, the ergodic capacity expressions derived above, are
actually upper bounds. This is because we are only con-
sidering the impact of noisy channel estimates on the
scheduling process, whereas we disregard its impact on
the detection process at the receiver. However, this sec-
ond issue is out of the scope of this paper since we are
interested in the analytical study of the impact caused by
incorrect scheduling decisions. For further details, the
reader is referred to [17] and [18], where work related to
SISO and MIMO channels, respectively, can be found.

7. Numerical results

In this section, we are interested in assessing spa-
tial vs. multi-user trade-offs in situations where the
partial CSI available at the BS is subject to imperfec-
tions. Due to space constraints and the similarity be-
tween the expressions obtained in the homogeneous and
non-homogeneous cases, we will restrict ourselves to
the former case. In particular, we will consider a sys-
tem transmitting data packets with an average SNR of
γ̄ = 10 dB, andK = 5 or 30 active users in the system.

In Fig. 1, we depict the average system capacity as a
function of UE speed. As for the CSI delay, we adopt
the parameters used in [8] for a High Speed Downlink
Packet Access (HSDPA) scenario where the authors jus-
tify that scheduling decisions can be made every 2 ms
with a time delay ofT = 4 ms. From the curves, one
concludes that in the absence of delay, the SISO ap-
proach is far more effective than its OSTBC counter-
part. However, when UE speed increases and delays in
the feedback channel are comparable to the coherence
time, the degradation experienced by the SISO scheme
is larger than that of OSTBC. In other words, the single-
antenna approach is less robust to channel uncertainty
(i.e. deep fades) arising from CSI delays. As the number
of active users grows, though, the capability of generat-
ing post-scheduling SNR peaks improves faster for SISO
configurations and, hence, compensates for such SNR
uncertainties (i.e. SISO and OSTBC curves cross each
other for higher values of the UE speed). Finally, one
can also observe that beyond 50 km/h curves are driven
again towards higher values of the ergodic capacity. This
is because under a Jakes’ scattering model assumption,
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Figure 1: Average system capacity vs. UE speed for the
different transmission schemes (K = 5 and30,γ̄ = 10
dB).
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Figure 2: Average system capacity vs.∆e for the differ-
ent transmission schemes (K = 5 and30,γ̄ = 10 dB).

the correlation depends on the zero-order Bessel func-
tion of the first kind, which is not a monotonically de-
creasing function.

Similar conclusions can be drawn from Fig. 2, where
ergodic system capacity is plotted as a function of the
parameter∆e. However, in this case no extra multi-
user diversity gain can be extracted as the degradation
in the channel estimates increases. For increasing values
of ∆e, capacity curves reach a floor associated with the
performance of a round-robin scheduler (i.e. no MUD
gain).

8. Conclusions

In this paper, we explored the existing trade-offs in ex-
ploiting multi-user and transmit spatial diversity in sce-
narios where the CSI available at the scheduler is sub-
ject to impairments. In particular, the impact of imper-
fect CSI at the base station was analyzed for SISO and
OSTBC-based schemes. To do that, a general statisti-
cal approach for modelling the degree of CSI imperfec-
tions at the base station was adopted and closed-form ex-
pressions for the ergodic system capacity were derived.

In order to gain some insight, practical scenarios with
delayed feedback channel and channel estimation errors
were presented. It was analytically shown that OSTBC-
based schemes are more appropriate for scenarios with
degradation in the CSI available at the BS, in particular
for a reduced number of active users.

9. Appendix

In this appendix, we derive the closed-form solutions
of the ergodic system capacity for both the SISO and
OSTBC approaches.
9.1. SISO

In order to derive a closed-from expression of the er-
godic system capacity with a homogeneous system, one
should solve the following expression for the SISO case:

CSISO(η, σε, γ̄, K) =
K

E[γ̂]γ̄σ2
ε

K−1∑

k=0

(
K − 1

k

)
(−1)k

×
∫ ∞

γ=0

log2 (1 + γ) e
− γ

γ̄σ2
ε

×
∫ ∞

γ̂=0

e
−γ̂

�
η2

γ̄σ2
ε
+ k+1

E[γ̂]

�

I0

(
2
√

η2γγ̂

γ̄σ2
ε

)
dγ̂dγ

With the help of identities [[19], Eq. 6.614.3], [[19], Eq.
9.220.2] and [[19],Eq. 9.215.1] one can readily solve the
inner integral in the above equation:

CSISO(η, σε, γ̄,K) = K log2 e

K−1∑

k=0

(
K − 1

k

)
(−1)k

× 1
E[γ̂]η2 + (k + 1)γ̄σ2

ε

×
∫ ∞

γ=0

ln(1 + γ)e
− γ(k+1)

E[γ̂]η2+(k+1)γ̄σ2
ε dγ

After that, by resorting to [[19], Eq. 4.331.2], the latter
integral can be solved and written in closed form as:

CSISO(η, σε, γ̄,K) = −K log2 e

K−1∑

k=0

(
K − 1

k

)
(−1)k

× e
k+1

E[γ̂]η2+(k+1)γ̄σ2
ε

E[γ̂]η2 + (k + 1)γ̄σ2
ε

Ei

(
k + 1

E[γ̂]η2 + (k + 1)γ̄σ2
ε

)

(16)

with Ei(x) standing for the exponential integral function
(Ei(x) = − ∫∞

−x
e−t

t dt, for x < 0).
9.2. OSTBC

On the other hand, for the OSTBC case we have to
plug equation (5) and the binomial expansion of (11) into
(7):

COSTBC(η, σε, γ̄, K) =
8K

E[γ̂]2ηγ̄σ2
ε

K−1∑

k=0

(
K − 1

k

)

× (−1)k
k∑

n=0

(
k

n

)
2n

E[γ̂]n

∫ ∞

γ=0

log2 (1 + γ) γ
1
2 e
− 2γ

γ̄σ2
ε

×
∫ ∞

γ̂=0

γ̂n+1/2e
−2γ̂

�
η2

γ̄σ2
ε
+ k+1

E[γ̂]

�

I1

(
4
√

η2γγ̂

γ̄σ2
ε

)
dγ̂dγ



In order to solve the inner integral in the above equa-
tion, one should resort to identities [[19], Eq. 8.406.3]
and [[19], Eq. 6.643.4]. Finally, with the help of [[19],
Eq. 8.970.1] and [[20], Eq.78], the ergodic system ca-
pacity can be expressed analytically in terms of the com-
plementary incomplete gamma function (Γc(n, x) =∫∞

x
e−ttn−1dt) as:

COSTBC(η, σε, γ̄, K) = 4K log2 e

K−1∑

k=0

(
K − 1

k

)
(−1)k

×
k∑

n=0

(
k

n

)
n!

n∑
m=0

(
n + 1
n−m

)
E[γ̂]mη2m

× γ̄n−mσ2(n−m)
ε (m + 1)e

2(k+1)
E[γ̂]η2+(k+1)γ̄σ2

ε

×
m+2∑

l=1

2m−lΓc(l −m− 2, 2(k+1)
E[γ̂]η2+(k+1)γ̄σ2

ε
)

(k + 1)l(E[γ̂]η2 + (k + 1)γ̄σ2
ε )m+n−l+2

(17)
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