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ABSTRACT
In this paper, we explore spatial vs. multi-user diversity
tradeoffs in terms of outage capacity for a non-homogeneous
cellular system with selective feedback. More precisely, we
analytically derive an upper bound of the outage capacity
of both a SISO and an OSTBC transmission scheme and,
further, analyze some interesting trade-offs concerning the
impact of terminal count and bandwidth restrictions. Such
outage capacity analysis is particulary suited for the study of
delay-constrained services. Numerical examples reveal that
in many scenarios OSTBC is far less sensitive to impair-
ments in the feedback channel.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Communica-
tions Applications

General Terms
Performance, Reliability, Theory

Keywords
Wireless systems, cross-layer designs, multi-antenna schemes,
multi-user diversity, selective scheduling, spatial diversity

1. INTRODUCTION
Multi-user diversity (MUD) concepts, first introduced by

Knopp and Humblet in [1], rely on the assumption that dif-
ferent users in a wireless multi-user system experience inde-
pendent fading processes. In those circumstances, the ag-
gregated cell throughput can be substantially increased by
scheduling in each time slot the user with the most favorable
channel conditions.
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Besides, in such fading environments, the exploitation
of transmit spatial diversity (e.g., by means of orthogonal
space-time block coding, OSTBC) makes transmission links
more robust by using low-complexity receivers [2][3] and,
for that reason, much attention has been recently paid to
the cross-layer interaction between transmit spatial diversity
(physical layer) and multi-user diversity (MAC layer). For
instance, in [4] and [5], the inclusion of OSTBC in multiuser
schemes was analyzed. It was shown that, in a multi-user
context, Single-Input Single-Output (SISO) schemes outper-
form OSTBC-based ones in terms of aggregated cell capac-
ity. Certainly, spatial diversity helps reduce the probabil-
ity of deep fades but, by averaging over different diversity
branches, SNR peaks (those that multi-user diversity can
exploit) are suppressed as well. Consequently, the resulting
ergodic capacity is lower. In [6], it was proven that with
perfect Channel State Information (CSI) at the transmitter,
spatial diversity can be efficiently exploited in a multiuser
context by using optimal beamforming. Since perfect CSI is
seldom available at the base station, a second scheme that
concentrates transmit power in the antenna with the largest
gain is considered as well. For this second approach only
low-rate partial CSI is needed but its performance is consid-
erably sensitive to a number of impairments in the feedback
channel.

Recently, several studies have shown that the increased
robustness of OSTBC against imperfect CSI provides signif-
icant capacity gains with respect to SISO schemes. For in-
stance, in [7] and [8] the authors analyze the impact of delays
in the feedback channel. The consequences of bandwidth re-
strictions are explored in [9] and [10] by Gesbert and Alouini
where a bandwidth-efficient Selective-MUD (SMUD) sched-
uler is presented. In [11], the authors derive closed-form
expressions of the ergodic system capacity for both SISO
and OSTBC transmission schemes in order to analytically
assess the impact of such bandwidth restrictions in SMUD.

However, the aforementioned studies analyze system per-
formance in terms of ergodic capacity. In delay-limited sys-
tems where codewords length is potentially short, ergodic
system capacity is not a valid measure since those code-
words undergo a finite number of fading states only. In
those circumstances, outage capacity seems to be more ap-
propriate. In this paper, then, we focus on the interaction
of spatial and multi-user diversity for a Selective MUD sys-
tem in terms of outage capacity. The study is conducted in
a non-homogeneous system, i.e., for a system where users
in the cell experience different average SNRs but, still, the



proposed scheduler guarantees fairness among users. In par-
ticular, we analytically derive an upper bound of the out-
age capacity of both a SISO and an OSTBC tranmission
scheme and analyze some interesting trade-offs by means of
computer simulations. This work extends that of [11] by
providing an analysis in terms of outage capacity (in ad-
dition to the ergodic capacity results presented there). In
addition, it complements [10] and derives simplified expres-
sions of the post-scheduling SNR statistics (not only SISO
as in [10] but also in the OSTBC case) by exploiting the fair-
ness properties of the proposed scheduler. Such simplified
expressions make the outage (or ergodic) capacity analysis
much more tractable.

This paper is organized as follows. In Section 2, the corre-
sponding signal model and scheduler are presented. Closed-
form expressions for the density functions (pdf and CDF)
of the post-scheduling SNRs are derived in Section 3. Next,
analytical expressions for an upper bound for the outage ca-
pacity is obtained in Section 4. Finally, a number of trade-
offs of the proposed transmission schemes are discussed in
Section 5.

2. SIGNAL AND SYSTEM MODEL

2.1 Signal Model
Consider the downlink of a cellular system with one base

station (BS) equipped with multiple antennas (NBS), and
K single-antenna terminals. For an arbitrary time instant,
the received signal at the k-th terminal can be expressed as:

rk = hT
k s + nk

where hk ∈ C
NBS is the channel vector gain between the

BS and the k-th terminal, for which each component is as-
sumed to be independent and identically distributed, circu-
larly symmetric Gaussian random variable with zero mean
and user-dependent variance σ2

hk
(hk ∼ CN (0, σ2

hk
INBS )),

s ∈ C
NBS is the symbol vector broadcasted from the BS and

nk ∈ C denotes additive Gaussian noise (AWGN) with zero
mean and variance σ2. The active users in the system are
assumed to undergo independent Rayleigh fading processes
and so does the signal being transmitted from different an-
tennas in the BS. Further, we consider quasi-static fading,
i.e, the channel response remains constant during one time-
slot and, then, it abruptly changes to a new independent
realization. Concerning CSI, we assume perfect knowledge
for each user at the receive side, and the availability of a
low-rate error-free feedback channel to convey partial CSI

to the transmitter. Finally, We denote by γk = Pt‖hk‖2

NBSσ2 the

instantaneous signal-to-noise ratio experienced by user k in

a given time-slot and by γ̄k = PtE[‖hk‖2]

NBSσ2 =
Ptσ2

hk
σ2 its long-

term averaged SNR, with Pt standing for the total transmit
power. Notice that the total transmitted power is constant
and evenly distributed among transmit antennas.

At the BS, we will consider two transmission schemes:
a SISO configuration (NBS = 1) and an OSTBC scheme
with NBS = 2 transmit antennas1, more precisely, the well-
known Alamouti scheme [3]. For the SISO scheme, the pdf
and CDF of the received SNR take the following expressions:

1For simplicity, we have assumed only two transmit anten-
nas but the analysis can be easily extended to the general
case.

fγk,SISO (γ) =
1

γ̄k
e
− γ

γ̄k

Fγk,SISO (γ) = 1 − e
− γ

γ̄k (1)

respectively, whereas for the OSTBC case we can write:

fγk,OSTBC (γ) =
4γ

γ̄2
k

e
− 2γ

γ̄k

Fγk,OSTBC (γ) = 1 − e
− 2γ

γ̄k

�
2γ

γ̄k
+ 1

�
(2)

For notational convenience, we define Fx(x) as the cor-
responding CDF functions in the case of random variables
with unit mean, that is,

Fx,SISO(x) = 1 − e−x

Fx,OSTBC(x) = 1 − e−2x (2x + 1) (3)

for the SISO and STBC cases, respectively.

2.2 Scheduler
The scheduler operates on a slot-by-slot basis according to

a modified version of the Proportional Fair Scheduling rule
[12]. In particular, in each time slot the user experiencing
the maximum normalized SNR is selected for transmission.
Therefore, a terminal is only scheduled when its instanta-
neous SNR is near to its own peak [12], that is with respect
to its average SNR. Clearly, this scheduling rule is fair (every
user is granted access with probability 1/K regardless of its
average SNR) and, at the same time, some multi-user di-
versity can still be exploited. In order to reduce bandwidth
requirements in the feedback channel, a Selective Multi-user
Diversity (SMUD) approach is adopted: in a specific time
slot, only terminals experiencing normalized-SNRs above a
pre-defined threshold (ξth) are allowed to report their chan-
nel state information to the BS. Hence, the max normalized-
SNR scheduler will conduct the search over such a subset of
the active users only. In summary, the scheduler is driven
according to the following rule:

k∗ = arg max
k

�
γk

γ̄k
s.t.

γk

γ̄k
> ξth

�
when, at least, one user is reported. Conversely, when all the
users remain silent (i.e. in the event of a scheduling outage)
the scheduling rule amounts to:

k∗ = rand {1, ..., k, ..., K}
where users are randomly selected, again with probability
1/K.

To conclude this section, couple of comments on the se-
lection of the normalized threshold ξth. First, notice this
design parameter has a direct impact on users’ individual
contributions to the feedback load through the following ex-
pression:

F̄ = 1 − Fx(ξth)

Clearly, the higher the threshold, the lower the percentage
of times a user is allowed to report its SNR. We will refer to
this ratio (F̄ ) as the normalized average feedback load. Sec-
ond, such normalized threshold must be identical for all the
active users in the system since, otherwise, the user actually
scheduled could not be the one with the highest SNR. As a
result, fairness among users would not be preserved because
of the introduction of SMUD mechanisms.



3. SNR STATISTICS IN A SELECTIVE-MUD
SYSTEM

In this section, we derive the statistics of the post-scheduling
SNRs, that is, the signal-to-noise ratio experienced by the
scheduled user. Both pdf and CDF functions will be used
later to derive closed-form expressions of the outage system
capacity. We conduct the analysis for a generic transmission
scheme (SISO or OSTBC, in this case) and, hence, we omit
any explicit reference in the pdf and CDF expressions shown
below.

First, by defining Ak as the event that user k actually
scheduled and by applying Bayes theorem, one can readily
obtain the CDF of the post-scheduling SNR, γ∗, as:

Fγ∗(γ) = Prob(γ∗ ≤ γ) =

K�
k=1

Prob (γk ≤ γ|Ak)Prob (Ak)

where Prob(Ak) = 1/K, k = 1..K, due to the properties of
the scheduler. Now, by focusing on user k, we can easily
derive the probability Prob (γk < γ|Ak). In particular, the
analysis must be conducted for two different SNR regions:
(1) the random scheduling region (γk/γ̄k ≤ ξth), where all
users remain silent2; and (2) the max-normalized scheduling
region (γk/γ̄k > ξth), where at least user k reports back its
SNR.

For the γk/γ̄k ≤ ξth case and by recalling that all users
experience independently distributed fading, we have:

Fγk|Ak
(γ|Ak) = Prob (γk ≤ γ|Ak)

= Prob(γk ≤ γ)Prob

�
γi

γ̄i
≤ ξth for all i �= k

�

= Fγk (γ)
K�

i=1
i�=k

Fγi (ξthγ̄i) = Fγk (γ) (Fx (ξth))K−1

and hence:

fγk|Ak
(γ|Ak) = fγk (γ) (Fx (ξth))K−1 (4)

where fγk (·) and Fγk (·) are the pdf and CDF of the SNR
associated to user k (equations in (1) and (2)), whereas Fx(·)
is defined in equations in (3).

On the other hand, for γk/γ̄k > ξth the CDF/pdf func-
tions are given by:

Fγk (γ|Ak) = Prob (γk ≤ γ|Ak)

= Prob(γk ≤ γ)Prob

�
γi

γ̄i
≤ γ

γ̄k
for all i �= k

�

= Fγk (γ)
K�

i=1
i�=k

Fγi

�
γ

γ̄k
γ̄i

�
= (Fγk (γ))K

fγk|Ak
(γ|Ak) = Kfγk (γ) (Fγk (γ))K−1 (5)

Finally, the post-scheduling pdf can be written as follows:

2In this region, user k is not allowed to report its SNR sta-
tus to the BS. Therefore, this user can only be randomly
selected for transmission when the scheduling is in random
scheduling configuration, i.e., all the users are silent.

fγ∗ (γ) =
K�

k=1

fγk|Ak
(γ|Ak) Prob (Ak)

=
1

K

K�
k=1

fγk|Ak
(γ|Ak) (6)

4. OUTAGE CAPACITY ANALYSIS
In a multi-user system, the instantaneous channel capacity

achievable by the scheduled user k∗ over the equivalent SISO
channel is given by

C∗ = log2 (1 + γ∗)
In delay-limited services, channel coding is conducted over

a finite (and potentially low) number of frames. In these
circumstances, the resulting performance is strongly influ-
enced by the short-term fluctuations in channel conditions
[13]. This effect can be efficiently captured by outage ca-
pacity measures. As done in [14], we set a time horizon of
T contiguous time slots and compute the probability for the
average information rate sent to the arbitrary user k to be
below a pre-defined threshold R. Finally, results are aver-
aged for the whole set of K active users:

PCOUT (R) =
K�

k=1

�
Prob (mk = 0) Prob(Ak)+

T�
mk=1

Prob(mk)

× Prob

�
1

mk

mk�
j=1

log2(1 + γk(j)) < R

					Ak



Prob(Ak)

�

(7)

where mk is the number of slots (out of T ) granted by
the scheduler in the BS to user k, and γk(j) stands for
the instantaneous SNR experienced by user k during slot
j = 1..mk. Notice that, for the case mk = 0 slots, the proba-
bility for the average information rate to be below R is equal
to 1 irrespective of R. As for the discrete random variable
mk, it follows a binomial distribution (i.e. set of indepen-
dent trials) with individual probabilities Prob(Ak) = 1/K.
Then we have:

Prob(mk) =

�
T

mk


�
1

K

�mk
�

1 − 1

K

�T−mk

(8)

So, we focus now on in obtaining an analytical expression
for:

Prob

�
1

mk

mk�
j=1

log2(1 + γk(j)) < R

					Ak




The case mk = 1 poses no difficulty since it is straightfor-
ward to show that:

Prob

�
log2(1 + γk) < R

					Ak



= Fγk

�
2R − 1|Ak




However, finding such analytical expression for the mk >
1 case is barely tractable since, the computation of the pdf
associated to the random variable z = 1

mk

�mk
j=1 log2(1 +

γk(j)) involves an mk-fold convolution of (log-) chi-square
distributed random variables. Alternatively, we compute
an upper bound of the outage capacity by resorting to the
Chernoff bound (e.g. as in [15]), i.e.:



Prob

�
log2(e)

mk

mk�
j=1

ln(1 + γk(j)) < R

					Ak



≤PCF B (mk, γ̄k, R)

= min
s>0

�
e

sRmk
log2(e) Eγk(1),...,γk(mk)|Ak

�
e−s

�mk
j=1 ln(1+γk(j))

��
(9)

Due to the i.i.d nature of the channel fades associated to
user i, the expectation inside Eq. (9) can be re-written as:

Eγk(1),...,γk(mk)|Ak

�
e−s

�mk
j=1 ln(1+γk(j))

�
=

=

�
Eγk|Ak

�
e−s ln(1+γk)

��mk

=

�
Eγk|Ak

�
(1 + γk)−s��mk

Note that, the above equation can be solved by computing
the following integral:

Eγk|Ak

�
(1 + γk)−s� =

� ∞

γk=0

(1 + γk)−s fγk|Ak
(γk|Ak) dγk

= (Fx(ξth))K−1

� ξthγ̄k

γk=0

fγk (γk)

(1 + γk)s dγk

+ K

� ∞

γk=ξthγ̄k

fγk (γk)

(1 + γk)s (Fγk (γk))K−1 dγk (10)

This can be easily done for the SISO case. In particular,
by resorting to the binomial expansion, using the change of
variables t = 1 + γ and with the help of [16, Eq. 3.381.3],
one can readily prove the following result:

EγSISO,i|Ak

�
(1 + γk)−s� =

e
1

γ̄k

γ̄s
k

��
1 − e−ξth


K−1

×
�

Γ

�
1 − s,

1

γ̄k

�
− Γ

�
1 − s,

(1 + ξthγ̄k)

γ̄k

�


+ K
K−1�
i=0

�
K − 1

i



(−1)i(i + 1)s−1e

i
γ̄k

× Γ

�
1 − s,

(1 + ξthγ̄k)(i + 1)

γ̄k

��
(11)

where Γ(α, x) stands for complementary incomplete gamma
function (Γ(α, x) =

�∞
x

e−ttα−1dt) [16, Eq. 8.350.2].
In the OSTBC case and after some algebraic manipula-

tions, one can express eq. (10) as a function of C(a,m, s, µ)
and D(a, m, s, µ):

EγOST BC,i|Ak

�
(1 + γk)−s

�
=

�
4

γ̄2
k

�
1 − e−2ξth (2ξth + 1)



K−1

×D
�

ξthγ̄k, 2, s,
2

γ̄k

�
+ K

K−1�
i=0

�
K − 1

i



(−1)i

×
i�

n=0

�
i

n


�
2

γ̄k

�n+2

C
�

ξthγ̄k, n + 2, s,
2

γ̄k
(i + 1)

��
(12)

where the closed-form of the integrals:

C(a, m, s, µ) =

� ∞

a

tm−1

(1 + t)s
e−µtdt

D(a, m, s, µ) =

� a

0

tm−1

(1 + t)s
e−µtdt

are omitted here for brevity but can be found in Appendix.
Last, by plugging (9) along with (8) into (7), the following
upper bound for the outage capacity results:

PCOUT (R) ≤ 1

K

K�
k=1

��
1 − 1

K

�T

+

T�
mk=1

�
T

mk


�
1

K

�mk
�

1 − 1

K

�T−mk

×min
s>0

�
e

sRmk
log2(e)

�
Eγk|Ak

�
(1 + γk)−s��mk

��

which can be simplified after some algebraic manipulation
as follows:

PCOUT (R) ≤ 1

K

K�
k=1

�
1 − 1 − PCF B (1, γ̄k, R)

K


T

Note that, the above expression can be particularized for
the different transmission schemes with the help of (11) and
(12).

5. NUMERICAL RESULTS AND
DISCUSSION

In this section, we present some computer simulation re-
sults and assess some spatial vs. multi-user diversity trade-
offs in situation where the partial CSI to be conveyed to the
BS is subject to bandwidth restrictions in the feedback chan-
nel. Since we already proved the proposed scheduler is fair
irrespective of the average SNRs, we will restrict ourselves
to the homogeneous case, i.e. γ̄k = γ̄.

In Fig. 1, we depict the outage capacity as a function of
the requested rate R for both transmission schemes (SISO
and OSTBC), different feedback loads (F̄ = 0.01..1) and a
scenario with K = 10 active users. For a total number of
T = 80 slots, this means that each user is scheduled in av-
erage T/K = 80/10 = 8 times. In the case of full feedback
load (F̄ = 1) one can observe that the SISO scheme provides
lower outage rates (for a given requested rate R) than its OS-
TBC counterpart. In other words, in a multi-user scenario
where multi-user diversity can be effectively exploited, the
suppression of SNR peaks due to the SNR-stabilizing effect
associated to OSTBC penalizes system performance. Con-
versely, when the average feedback load per user is reduced,
the degradation experienced by the SISO-based schemes is
larger than that exhibited by the OSTBC ones and, even-
tually, the relative ordering of both curves changes. This
follows from the fact that OSTBC approaches provide addi-
tional robustness against unfavorable fading conditions re-
sulting from random user selection. However, one can still
appreciate how the introduction of random scheduling makes
links less stable since the slope of the curves decreases for
low values of F̄ , being this effect more pronounced in the
SISO case, due to the lack of spatial diversity.
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Figure 1: Outage capacity vs. R for the differ-
ent transmission schemes and feedback loads (F̄ =
0.01, 0.05, 0.2, 1). γ̄=10dB, T=80 slots, K=10 users.

When the number of active users is increased to K = 20
(Fig. 2), a substantial improvement in terms of outage ca-
pacity results for the whole range of requested rates (all
curves shifted to the right). In addition, the impact of band-
width savings in the feedback channel is negligible for both
transmission schemes even for normalized loads as low as
F̄ = 0.2. However, outage capacity curves are less steep
now, this revealing that individual user links are less stable.
There is a simple explanation for that: since T is kept con-
stant but the number of active users is increased, the aver-
age number of times a user is scheduled (T/K = 80/20 = 4)
decreases. Clearly, the variance of the average information
rate over those time slots is higher now. This effect is even
clearer for the lower values of F̄ (random scheduling often
takes place) where a higher value of mk is key in order to
average out fading effects. As an example, for 10 users and
F̄ = 0.01 the achievable rate with 10% outage capacity is
2.37 (SISO) and 2.8 bits/s/Hz (OSTBC). When the number
of users is doubled, these rates decrease to 2.13 and 2.62
bits/s/Hz, respectively.

In summary, a number of non-trivial trade-offs arise when
considering different transmission schemes, feedback loads
and terminal count. As usual, design decisions at the cell
level will be closely linked to the QoS requirements of the
services under consideration.

6. APPENDIX
In order to derive a closed-from expression of eq. (10)

for the OSTBC case, one should solve the following two
integrals:

C(a, m, s, µ) =

� ∞

a

tm−1

(1 + t)s
e−µtdt (13)

D(a, m, s, µ) =

� a

0

tm−1

(1 + t)s
e−µtdt

µ > 0; m = 1, 2, ...

We start by deriving C(a,m, s, µ) and, then, we will compute
D(a, m, s, µ) as D(a, m, s, µ) = C(0, m, s, µ) − C(a, m, s, µ).
By using the change of variables x = 1+ t and the binomial
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Figure 2: Outage capacity vs. R for the differ-
ent transmission schemes and feedback loads (F̄ =
0.01, 0.05, 0.2, 1). γ̄=10dB, T=80 slots, K=20 users.

expansion, equation (13) can be expressed in closed-form as:

C(a,m, s, µ) = eµ

� ∞

1+a

(x − 1)m−1

xs
e−µxdt

= eµ
m−1�
p=0

�
m − 1

p



(−1)m−1+p

� ∞

1+a

xp−se−µxdt

Next, with the help of [16, Eq. 3.381.3], C(a, m, s, µ)
can be expressed in terms of the complementary incomplete
gamma function (Γ(α, x) =

�∞
x

e−ttα−1dt) [16, Eq. 8.350.2]:

C(a,m, s, µ) = eµ
m−1�
p=0

�
m − 1

p



(−1)m−1+pµs−p−1

× Γ (1 − s + p, µ(1 + a))

Finally, with the help of the above expression we can easily
write D(a, m, s, µ) as:

D(a, m, s, µ) = eµ
m−1�
p=0

�
m − 1

p



(−1)m−1+pµs−p−1

×
�

Γ (1 − s + p, µ) − Γ (1 − s + p, µ(1 + a))
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