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ABSTRACT

Orthogonal frequency division multiplexing (OFDM) communica-
tion systems require accurate estimation of timing offset and channel
impulse response in order to achieve desirable performance. In this
paper, we consider the optimal placement of pilot symbols over the
OFDM subcarriers in order to minimize a function of the Cramér-
Rao bound on these parameters. Previous work has investigated this
problem for channel estimation only, and found that equi-spaced,
equi-powered pilots are optimal. We show that when the time-delay
must be simultaneously estimated, the optimal pilot distribution is
often quite different, with more pilot energy distributed to the edges
of the signal bandwidth. Upper and lower bounds for the required
number of optimal pilots are also presented for the case where the
variance on the time-delay estimate is minimized.

Index Terms— OFDM, time-delay estimation, channel estima-
tion, synchronization

1. INTRODUCTION

Multicarrier (MC) signals in various formats (OFDM, discrete mul-
titone modulation, filter bank multicarrier modulation, etc.) have
become the preferred option for all types of systems: wide-area net-
works (LTE, WiMAX), local-area networks (IEEE 802.11g), broad-
casting (DVB-T/H, DRM, DAB, DMB) and short-range communi-
cations (UWB). On the other hand, satellite-based positioning sys-
tems still rely on code-division multiple access (CDMA) and direct-
sequence spread-spectrum signals, like the previous generation of
wireless communications systems did. This is indicative of the fact
that wireless communications and positioning systems have essen-
tially evolved independently of each other. For instance, the Global
Positioning System (GPS) makes it possible to obtain user position
information with accuracies on the order of one meter, but it trans-
mits at an extremely low data rate (50 bits/s). On the other hand,
WLAN systems based on the IEEE802.11x family of standards al-
low transmission rates above 54 Mbits/s, but attempts to use them
for positioning have experienced serious limitations.

There is, however, increasing interest from users and service
providers to design a single system that works well for both commu-
nications and positioning applications. This would have advantages
in terms of user equipment cost (one receiver instead of two), cover-
age, improved possibilities for development of new value-added ser-
vices, etc. As a result, public institutions and manufacturers have be-
gun to consider the design of combined positioning/communication
systems. For example, while the European Galileo system was de-
signed as purely a positioning system conceptually very similar to
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GPS, the next generation of Galileo may include broadband com-
munications capability. Likewise, improvements in the ability of
different wireless communications systems standards to perform lo-
calization are also being considered [1]. It is reasonable to think
that MC modulation is a better choice than CDMA for a combined
communications and positioning system. Besides the great reduction
in equalization complexity which is useful in communications sys-
tems, MC signals provide other advantages such significant flexibil-
ity in shaping the signal spectrum, robustness against multipath and
an inherent simplicity in its application to multiple-access schemes,
which would be beneficial in the design of a combined system.

Optimal pilot designs for OFDM channel estimation have been
derived by several researchers (e.g., [2–5]) whose results show that
equi-spaced, equi-powered pilots are optimal in terms of mean-
squared error. Others have considered designs for estimation of
carrier frequency offset (CFO) [6, 7], or joint channel and CFO
estimation [8,9]. However, the study of MC pilot allocation for very
precise timing estimation (e.g., as required in positioning systems)
has received little attention. In [10], it was shown that to a first
approximation, minimizing the variance of the time-delay estimate
(TDE) requires an MC signal with maximum root-mean-square
(RMS) bandwidth. This results in a pilot signal whose power is
pushed to the sucarriers at the extreme edges of the frequency band,
and is in clear contrast with the equi-spaced, equi-powered pilot
designs for channel estimation.

In this paper, we investigate the trade-offs associated with allo-
cating pilots for jointly estimating the channel and time-delay asso-
ciated with an OFDM signal, and we propose a simple tuning ap-
proach to control the relative performance of these two competing
objectives. The algorithm is based on minimizing a weighted trace
of the Cramér-Rao bound (CRB) over the pilot allocation across the
OFDM subcarriers. The minimization problem is shown to be con-
vex, and results in a solution with only a relatively small number of
non-zero pilot subcarriers. In particular, for the case where the pilots
are chosen to optimize only the TDE, we demonstrate that no more
than 2L+1 subcarriers need be assigned pilot symbols, where L−1
is the channel duration in symbols.

2. MODEL AND ASSUMPTIONS

2.1. OFDM Signal Model

Consider the frequency-selective channel model given by

h(t) =

L−1∑
l=0

hlδ(t − lTs − τd) (1)

where L is a known upper bound on the number of discrete multi-
path components, Ts is the system sampling period, hl is the com-
plex channel coefficient for the l-th path, and τd is the timing off-
set. Unlike other work on channel estimation, the delay is explicitly
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modeled inside the terms δ(t− lTs −τd)), and therefore the channel
coefficients are independent of the delay. Since this timing offset is
equivalent to the primary channel time delay, i.e., the time delay of
the first path of the impulse response, we will refer to it simply as the
time delay or delay in the remainder of this work. We assume that
the channel coefficients {hl} and the time delay τd are unknown and
must be estimated through the use of pilot tones transmitted as part
of an OFDM symbol s(n), n = 0, . . . , N − 1, which is constructed
from a set of pilot symbols {bq} by means of the length-N inverse
discrete Fourier transform (IDFT) as

s(n) =
1√
N

N/2∑
q=−N/2+1

bq ej 2π
N

nq
(2)

=
1√
N

N−1∑
m=0

bm−N/2+1 ej 2π
N

(m−N/2+1)n. (3)

Note that we assume N here to be even, although this is not strictly
necessary. Note also that we are ignoring the presence of data (non-
pilot) symbols in s(n). As we will see later, the required number of
pilots is relatively small so there will be plenty of subcarriers avail-
able for data, but in this work we assume they are not used for chan-
nel or time-delay estimation.

We restrict our attention to the zero inter-carrier and inter-
symbol interference case. Thus, we assume the carrier frequency
is perfectly synchronized at the transmitter and receiver, and that
a rough symbol synchronization has taken place so that the cyclic
prefix TG is larger than the delay spread, including the unknown
delay: (L − 1)Ts + τd < TG. With these assumptions, the sampled
received signal after discarding the cyclic prefix is given by

y(k) =
1√
N

N−1∑
m=0

L−1∑
L=0

hlbm−N/2+1 e−j 2π
T

(m−N/2+1)τd (4)

· ej 2π
N

(m−N/2+1)(k−l) + ν(kTs), (5)

where ν(kTs) is the noise contribution and T = NTs is the OFDM
symbol duration.

Taking the DFT of x(n), we have

x(q) =
1√
N

N−1∑
n=0

x(n) e−j 2π
N

nq + n(q) (6)

=

(
L−1∑
l=0

hl e−j 2π
N

ql

)
bq e−j 2π

T
qτd + n(q) (7)

= g(q)bq e−j 2π
T

qτd + n(q) (8)

where g(q) and n(q) are the channel and noise frequency responses,
respectively, at the q-th frequency bin and q ∈ [−N/2+1,−N/2+
2, . . . , 0, 1, . . . , N/2]. In matrix notation, this may be written as

x = BΓFLh + n (9)

where

x = [ x(−N/2 + 1) · · · x(N/2) ]T (10)

Γ = diag(w
−(−N/2+1)τd
T , . . . , w

−(N/2)τd
T ) (11)

B = diag(b−N/2+1, . . . , bN/2) (12)

h = [ h0 · · · hL−1 ]T (13)

n = [ n(−N/2 + 1) · · · n(N/2) ]T (14)

with wy
x = e−j 2π

x
y , and FL is composed of the first L columns of

the zero-frequency-centered N × N DFT matrix. The overall ef-
fect of the channel is accounted for by the term ΓFLh, where the
contributions of the delay τd and the channel taps h appear sepa-
rately. This differs from previous work where only the term FLh is
used, which implies that the effect of the delay appears in the coef-
ficients h. Although it may appear that this latter model reduces the
number of unknown parameters by one, its effect is actually counter-
productive since larger values of L are needed to accurately model
the channel.

2.2. The Cramér-Rao Bound

The parameter vector Θ associated with the OFDM signal model
of (9) is represented as

Θ � [ τd Re[hT ] Im[hT ] ]T (15)

where Re[a] and Im[a] are the real and imaginary parts, respectively,
of the complex variable a. Assuming that the additive noise is white
in frequency, i.e., E[nnH ] = σ2

nI, the Fisher Information Matrix
(FIM) for this problem is found to be

J(Θ) =
2

σ2
n

[
Jτd JT

21

J21 Jh

]
(16)

with

Jτd = hHFH
L BHD2BFLh (17)

J21 =

[
Im[FH

L BHDBFLh]
−Re[FH

L BHDBFLh]

]
(18)

Jh =

[
Re[FH

L BHBFL] −Im[FH
L BHBFL]

Im[FH
L BHBFL] Re[FH

L BHBFL]

]
(19)

D =
2π

Ts
diag(−N

2
+ 1, . . . ,

N

2
). (20)

Some straightforward calculations lead to the CRB:

CRBτd,h =
σ2

n

2

[
γ−1

τd
CRBT

21

CRB21 CRB22

]
(21)

where

γτd = hHFH
L BHDΠ⊥

BFL
DBFLh (22)

Π⊥
BFL

= I − BFL(FH
L BHBFL)−1FH

L BH
(23)

CRB21 =

[ −γ−1
τd

Im[q]
γ−1

τd
Re[q]

]
(24)

CRB22 =

[
Re[Q−1] + γ−1

τd
Im[q]Im[qT ]

Im[Q−1] − γ−1
τd

Re[q]Im[qT ]
(25)

−Im[Q−1] − γ−1
τd

Im[q]Re[qT ]
Re[Q−1] + γ−1

τd
Re[q]Re[qT ]

]
(26)

Q = FH
L BHBFL (27)

q = Q−1FH
L BHDBFLh. (28)

Note that, since diagonal matrices commute, the matrix B always
appears multiplied with its complex conjugate (transpose) BHB.
Thus, instead of parameterizing the CRB in terms of B, we param-
eterize it instead using the diagonal elements p = [p1 · · · pN ] of

P = BHB. The elements of p must be non-negative, and we also
assume a total power constraint

∑
pi ≤ PT . We let P denote the

set of all pilot vectors that satisfy these two conditions.
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3. OPTIMAL PILOT SELECTION

Earlier work such as that in [3, 4] assumed τd was known and found
the pilot structure that essentially maximized the trace of the result-
ing CRB relative to h only. In this case, the CRB would be given by
the inverse of Jh in (19), and the optimal pilot allocation is found as

p∗
h = arg min

p∈P
tr

[
(FH

L PFL)−1
]
. (29)

It was found in [3, 4] that (29) is minimized for allocations that pos-
sess equi-powered pilots evenly spaced in frequency. The solutions
range from a minimum of L non-zero pilots (when L is a divisor of
N ) to allocating equal pilot power over all N subcarriers, with each
solution providing the same bound on the mean-squared error.

It is interesting to consider what occurs when we again attempt
to minimize trace of the CRB associated with h, but assuming that
the time-delay τd is unknown. In this situation, the problem would
be posed as

min
p∈P

tr[CRB22] = min
p∈P

tr
[
(FH

L PFL)−1
]
+

‖(BFL)†DBFLh‖2

2‖Π⊥
BFL

DBFLh‖2
.

(30)
The first part of this expression corresponds to the uncoupled case
and, as discussed previously, is minimized by equi-spaced and equi-
powered pilots. The second term in (30) is a penalty term resulting
from the fact that τd is unknown, and (as we will see in the numerical
results) the presence of this penalty term significantly alters the equi-
spaced, equi-powered pilot structure.

More generally, we will consider an optimization criterion that
takes into account both the accuracy of the TDE and the channel esti-
mate. Specifically, we wish to find the vector p ∈ P that minimizes
a weighted sum of the diagonal entries of the CRB, i.e.,

p∗ = arg min
p∈P

G(α,p) (31)

where the cost function G(α,p) is given by

G(α,p) =

[
αβγ−1

τd
+ (1 − α)

(
1

L

)
tr(CRB22)

]
. (32)

The coefficient β is a normalization factor used to make the two
terms the same order of magnitude, and will depend on the units
used to represent the parameters. The parameter α ∈ [0, 1] is used
to control the relative importance of the estimation error for τd and
h when selecting p∗. Letting α → 1 weights the error to favor
accuracy in the TDE relative to the channel, and α → 0 does the op-
posite. In either case, we will see that the optimal pilot allocation is
considerably different than the equi-spaced, equi-powered allocation
found in [2–4].

Note that the CRB, and hence the solution to (31), is not a func-
tion of the actual value of τd. However, the CRB and p∗ will be a
function of h, which is not assumed to be known. In practice, there
are various options available to address this issue. For example, an
initial rough estimate of h may be available from estimation in an
earlier OFDM symbol, or one could average the FIM or CRB over
some known distribution for h. We will not address such approaches
here, since our main objective is to examine the differences in the
pilot allocation when τd is unknown. Our primary result is summa-
rized in the theorem below.

Theorem: The minimization in (31) is convex for any α, and
when α = 1, there exists at least one optimal solution whose num-
ber1 of non-zero pilots satisfies L + 1 ≤ ‖p∗‖0 ≤ 2L + 1.

1The 0-norm of a vector ‖·‖0 is defined as the number of non-zero entries
of the vector.

Proof: The FIM J(Θ) in (16) is a linear function of p, and its
convexity in p follows immediately from the convexity of the matrix
fractional function [11] and the composition of convex and affine
functions. The remainder of the proof can be found in [12].

While there is no closed-form solution for p∗ in (31), a standard
convex programming approach which is guaranteed to converge to
the optimal solution can easily be found. The lower bound L + 1 ≤
‖p∗‖0 is required for the FIM to be full rank, and the problem to be
identifiable. As we will see in the next section, for most channels the
optimal number of pilots is closer to the lower bound than the upper
bound. For typical values of N and L, the required number of pilots
will be quite sparse, even when 2L + 1 are required.

4. SIMULATION RESULTS

For all of the results presented in this section, we assume a channel
impulse response of length L = 4 and an OFDM signal with N =
32 subcarriers, a total pilot power of PT = 5, and a noise variance
of σ2

n = 10−4. Figure 1 shows the pilot distribtions for the case of a
specific channel defined by

h = [ 0.38 + j0.23 1.30 − j0.92

−1.60 − j0.31 0.61 + j0.24 ] .

The optimal pilots are shown for the cases where α = 0 and α = 1,
together with the frequency response of the channel. In this case,
the minimum of L + 1 = 5 pilots was required for α = 1, while
7 were necessary for α = 0. We see that the equi-spaced, equi-
powered pilot structure is lost when τd is unknown. We also see that
placing emphasis on accurately estimating τd pushes the pilot power
out towards the edges of the signal bandwidth.
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Fig. 1. Demonstration of the influence of α on the terms of G(α,b).

Figure 2 shows a histogram of the required number of pilots
‖p∗‖0 for the channel-optimal (α = 0) and τd-optimal (α = 1)
cases, where the results were calculated based on 8000 random
channels whose coefficients were chosen independently from a
zero-mean unit-variance complex Gaussian distribution. In over
65% of the trials, the τd-optimal pilot distribution required the mini-
mum number of pilots (i.e., L+1 = 5), and in only one case was the
upper bound of 9 pilots optimal. More pilots are seen to be required
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for the channel-optimal case, with about 85% of the trials producing
non-zero pilot symbols on either 8 or 9 subcarriers.
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Fig. 2. Histogram of the required number of pilots for α = 1 (τ -
optimal) and α = 0 (channel optimal).

In Fig. 3, the CRB for τd and the channel coefficients evaluated
at p∗ is plotted versus α, assuming β = 10000. To compare the
two curves in a single figure, so that they are of the same order of

magnitude, we plot σn

√
tr[CRB22]/(2L), which is proportional to

the bound on the RMS channel estimation error averaged over the

L coefficients, and 20σn

√
γ−1

τd , which is proportional to the bound

on the RMS error for τd. As expected, the bound for τd improves
as α → 1, while that for the channel decreases. In this example,
the variation in performance for τd with changes in α is less prou-
nounced than that for the channel, especially at the limiting values
of α. Even if one is primarily interested in the accuracy of τd, a
choice of α near its midpoint causes relatively little degradation for
τd compared with α = 1, but substantially improves the bound for
estimation of h.
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Fig. 3. Influence of α on the CRB for τd and h.

5. CONCLUSIONS

We have considered the problem of optimally allocating the power
of pilot symbols for joint estimation of the channel and time delay
of an OFDM signal. We presented a cost function composed of a
linear combination of the trace of the CRB for the channel and time-
delay estimation error, and showed that the function was convex in
the choice of the pilots. We showed that the optimal pilot distribu-
tion that results from minimizing this function is often considerably
different from the optimal distribution when the delay is known, a
case which had been studied in earlier work. In particular, when the
time delay is unknown and minimizing the TDE is paramount, more
pilot power is allocated towards the edges of the signal’s bandwidth.
For the case where the cost function focuses only on the TDE er-
ror, we presented bounds on the required number of optimal pilots.
We also presented the results of several simulations to illustrate the
contributions of the paper.
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