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ABSTRACT
This paper deals with the joint estimation of temporal (time-
delay, Doppler frequency) and spatial (direction-of-arrival,
DOA) parameters of several replicas of a known signal in an
unknown spatially correlated !eld. Unstructured and struc-
tured models have been proposed in the literature. The for-
mer suffers from a severe performance degradation in some
scenarios, whereas the latter involves huge complexity. It is
shown how the extended invariance principle (EXIP) can be
applied to obtain estimates with the quality of those of the
structured model, but with the complexity of the unstructured
one. We present a method to improve the quality of the time-
delay and Doppler estimates obtained with an unstructured
spatial model when an estimate of the DOAs is available.
Exemplarily, simulation results for time-delay estimation for
GPS (Global Positioning System) are included and con!rm
that our proposal approaches the Cramer-Rao lower bound
(CRLB) of the structured model even when suboptimal DOA
estimates obtained by ESPRIT are introduced.

Index Terms— Array signal processing, parameter es-
timation, direction of arrival estimation, Global Positioning
System

1. INTRODUCTION

Channel estimation is important in many applications as
MIMO channel characterization, radar, synchronization,
and Global Navigation Satellite Systems (GNSS) like GPS
(Global Positioning System). A simple unstructured data
model has been used for such problems in order to have low
complexity [1] and a solution for an unknown spatial !eld
was given in [2]. On the other hand the structured data model
provides better results [3, 4] but has a high complexity and
only seems to be easily manageable in the single path case
[5]. The latter work already shows how the extended invari-
ance principle (EXIP) can be applied to re!ne estimates for
an unstructured model to achieve the performance available
using a structured model.

This work extends the approach given in [5] to a mul-
tipath case. Applying EXIP, we derive an estimator that
only depends on the directions-of-arrival (DOAs) of the sig-
nals. We attain a closed form solution that allows to correct
the delay and Doppler estimates of the unstructured model
once DOA estimates are available. In this work we will
apply Unitary ESPRIT [6] for the DOA estimation. This
two-step approach offers large "exibility since it is shown
that an improvement of the delay and Doppler estimates can
be achieved even when non-maximum likelihood (ML) esti-
mates are introduced. This enables to use various rotational
invariance techniques to obtain DOA estimates and still ap-
proach the Cramer-Rao lower bound (CRLB) of the time-
delay and Doppler for the structured model.

In this work we apply this two-step approach for time-
delay estimation of the line-of-sight signal (LOSS) for GPS.
Here, precise time-delay estimation is needed for synchro-
nization and thus accurate positioning, even under presence
of severe multipath and interference.

2. DATA MODEL

We assume that L narrowband planar wavefronts, 1 ≤ ! ≤ L
are impinging on an array of M isotropic sensor elements.
The noise-plus-interference corrupted baseband signal at the
antenna output y(t) ∈ CM×1 can be modelled as a superpo-
sition of L wavefronts and additional temporally white Gaus-
sian noise n(t) ∈ CM×1 ,with zero-mean and unknown spa-
tial covariance matrix Q ∈ CM×M .

2.1. Structured Model

For the structured data model we de!ne the parame-

ter vector θ =
[
Re{γ}T, Im{γ}T, φT, ϑT, τT, νT

]T
on

the domain Dθ with the vector of complex amplitudes
γ = [γ1, . . . , γ", . . . , γL]T, the vector of azimuth angles
φ = [φ1, . . . , φ", . . . , φL]T, the vector of elevation angles
ϑ = [ϑ1, . . . , ϑ", . . . , ϑL]T, the vector of time-delays τ =
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[τ1, . . . , τ", . . . , τL]T, and the vector of Doppler frequencies
ν = [ν1, . . . , ν", . . . , νL]T. Thus we can write

y(t) =
L∑

"=1

s"(t) + n(t), (1)

where s"(t) is given by

s"(t) = a" (φ", ϑ") γ" ej2πν!tc(t − τ"). (2)

Here, a" (φ", ϑ") denotes the steering vector of an antenna
array and c(t − τ") denotes the pseudo-random-noise (PN)
sequence with delay τ".

2.2. Unstructured Model

For the simpler unstructured model we de!ne the parame-
ter vector ξ =

[
Re{vec{H}}T, Im{vec{H}}T, τT, νT

]T

on the domain Dξ with the matrix of spatial signatures H =
[h1 · · · h" · · · hL] ∈ CM×L. Here, vec{·} denotes the vec
operator, which vectorizes a matrix by stacking its columns.
Thus we can alternatively write

s"(t) = h" ej2πν!tc(t − τ"). (3)

3. MAXIMUM LIKELIHOOD (ML) ESTIMATION

The spatial observations are collected at N time instances, as
y[n] = y(n · Ts) with n = 1, 2, . . . , N . The channel pa-
rameters are assumed constant during the observation inter-
val. Collecting the samples of the observation interval leads
to

Y = [y[1],y[2], . . . ,y[N ]] ∈ CM×N , (4)

N = [n[1],n[2], . . . ,n[N ]] ∈ CM×N , (5)

S(ξ) = [s[1], s[2], . . . , s[N ]] ∈ CM×N . (6)

Thus, the signal for the unstructured model can be written in
matrix notation

Y = S(ξ) + N =
L∑

"=1

S"(ξ") + N = H (C $ D) + N,

(7)
where $ denotes the Hadamard-Schur product. Here, ξ" =[
Re{h"}T, Im{h"}T, τ", ν"

]T
contains the parameters of one

wave, C = [c(τ1) · · · c(τ") · · · c(τL)]T ∈ RL×N con-
tains the sampled PN sequence for each impinging wavefront
c(τ"), and D = [d(ν1) · · ·d(ν") · · ·d(νL)]T ∈ CL×N con-
tains the sampled Doppler frequencies for each impinging
wavefront

d(ν") =
[
ej2πν!Ts , . . . , ej2πν! n·Ts , . . . , ej2πν! N ·Ts

]T
. (8)

The negative log-likelihood function for the unstructured data
model within additive constants can be given [5]

Λ(ξ , Q) = N · log (det (Q)) + tr(Q−1 (Y−S(ξ)) (Y−S(ξ))H ), (9)

where (·)H denotes complex conjugate transposition, det(·)
the determinant operation, and tr(·) the trace operator. The
ML estimate for Q is given by

Q̂ =
1
N

(Y − S(ξ)) (Y − S(ξ))H. (10)

4. SPACE-ALTERNATING GENERALIZED
EXPECTATION MAXIMIZATION (SAGE)

ALGORITHM

In order to obtain the ML estimates ξ̂ for the unstructured
model we apply an iterative method, the SAGE algorithm [4].
We assume that L is given. The expectation step (E-Step) can
be derived

X̂" = Y −
L∑

!′=1
!′ #=!

S"′(ξ̂"′), (11)

Q̂ =
1
N

(Y − S(ξ̂)) (Y − S(ξ̂))H, (12)

and for the maximization step (M-Step) we get

τ̂" = argmax
τ!

{
|| Q̂− 1

2 X̂" (c(τ") $ d(ν̂"))
∗ ||22

}
, (13)

ν̂" = arg max
ν!

{
|| Q̂− 1

2 X̂" (c(τ̂") $ d(ν"))
∗ ||22

}
, (14)

ĥ" =
X̂" (c(τ̂") $ d(ν̂"))

∗

N
. (15)

The parameters of each wavefront are estimated sequentially.
The E-step and the M-step are performed iteratively for each
wavefront until the algorithm converges. Instead of solving
a 2 · L-dimensional non-linear optimization problem only 1-
dimensional optimization procedures need to be solved. Ini-
tialization of the SAGE algorithm is achieved with successive
interference cancellation starting with ξ̂ = [0, . . . , 0]T as de-
scribed in [3]. For the covariance matrix Q the initial estimate
is

Q̂ =
1
N

Y YH. (16)

5. EXTENDED INVARIANCE PRINCIPLE (EXIP)

As a second step we invoke the EXIP [7, 5] in order to re-
!ne the ML estimates, ξ̂, to achieve the performance using an
ML estimate for the structured model, θ̂, for which we would
need to solve a 4·L-dimensional non-linear problem, if solved
directly.

Assuming that there exists a function f which is one to
one, satisfying

ξ = f(θ) ∈ Dξ , ∀θ ∈ Dθ, (17)

and
lim

N→∞
ξ̂ = lim

N→∞
f(θ̂). (18)

!"#4



Then

ˆ̂θ = argmin
θ

[
ξ̂ − f(θ)

]T
W

[
ξ̂ − f(θ)

]
, (19)

is asymptotically (for large N ) equivalent to the structured
ML estimate θ̂, where

W = E
{

∂Λ(ξ,Q)
∂ξ ∂ξT

} ∣∣∣∣∣ ξ=ξ̂
Q=Q̂

, (20)

and E{·} denotes expectation.
Thus, for the problem at hand we can write

[ξ̂−f(θ)]=









Re{vec{Ĥ}}
Im{vec{Ĥ}}

τ̂

ν̂




−





Ψ(φ,ϑ)



 Re{γ}
Im{γ}





τ

ν








, (21)

where

Ψ(φ, ϑ) =
[

Re{IL !A} −Im{IL !A}
Im{IL !A} Re{IL !A}

]
. (22)

Here, ! denotes the Khatri-Rao product and A =
[a1(φ1, ϑ1) · · · a"(φ", ϑ") · · · aL(φL, ϑL)] ∈ CM×L. Fur-
ther, we de!ne

W =





Re{W1} −Im{W1} Re{W3}
Im{W1} Re{W1} Im{W3}
Re{W3}T Im{W3}T Re{W2}



 , (23)

with

W1 = 2 ·
(
(C $ D) (C $ D)H

)
⊗ Q̂−1, (24)

W2 = 2 · (ΥH Υ) $ ([e e] ⊗ (ĤH Q̂−1 Ĥ)), (25)

W3=





2·(eT⊗(Q̂−1 Ĥ)) diag{(c(τ̂1)'d(ν̂1))
H Υ}

...
2·(eT⊗(Q̂−1 Ĥ)) diag{(c(τ̂!)'d(ν̂!))

H Υ}
...

2·(eT⊗(Q̂−1 Ĥ)) diag{(c(τ̂L)'d(ν̂L))H Υ}





. (26)

Here, ⊗ denotes the Kronecker product, diag{·} de!nes a di-
agonal matrix , e = [1 1]T, and

Υ=
[

∂(c(τ̂1)$d(ν̂1))
∂τ̂1

··· ∂(c(τ̂!)$ d(ν̂!))
∂τ̂!

···∂(c(τ̂L)$d(ν̂L))
∂τ̂L

∂(c(τ̂1)$ d(ν̂1))
∂ν̂1

···∂(c(τ̂!)$d(ν̂!))
∂ν̂!

···∂(c(τ̂L)$ d(ν̂L))
∂ν̂L

]
. (27)

Thus, applying (21) to (19) and then minimizing (19) with
respect to τ and ν leads to the re!ned estimates

[ ˆ̂τ
ˆ̂ν

]
=

[
τ̂
ν̂

]
+ Re{W2}−1

[
Re{W3}T Im{W3}T

]

·
[[

Re{vec{Ĥ}}
Im{vec{Ĥ}}

]
− Ψ(ˆ̂φ, ˆ̂ϑ)

[
Re{ˆ̂γ}
Im{ˆ̂γ}

]]

(28)

Substituting (28) in (21) and then applying to (19) leads to
[

Re{ˆ̂γ}
Im{ˆ̂γ}

]
=

(
ΨT(ˆ̂φ, ˆ̂ϑ)ΩΨ(ˆ̂φ, ˆ̂ϑ)

)−1

·ΨT(ˆ̂φ, ˆ̂ϑ)Ω
[

Re{vec{Ĥ}}
Im{vec{Ĥ}}

]
, (29)

where

Ω =
[[

Re{W1} −Im{W1}
Im{W1} Re{W1}

]

−


 Re{W3}
Im{W3}



Re{W2}−1[Re{W3}T Im{W3}T]

]
. (30)

Finally, ˆ̂φ and ˆ̂ϑ can be obtained by

( ˆ̂φ,ˆ̂ϑ) = arg max
φ,ϑ








 Re{vec{Ĥ}}
Im{vec{Ĥ}}




T

ΩΨ(φ,ϑ)

· (ΨT(φ,ϑ) ΩΨ(φ,ϑ))−1
ΨT(φ,ϑ) Ω



 Re{vec{Ĥ}}
Im{vec{Ĥ}}








 .

(31)

Thus, (31) provides estimates of the DOAs that are asymptot-
ically equivalent to the ML estimates of the structured model.

The estimates ˆ̂φ and ˆ̂ϑ are introduced to (29) and (28) im-
proving the delay and Doppler estimates. The maximization
of (31) in general is complex unless particular array geome-
tries are employed. Subspace !tting methods can be used,
while maintaining the same asymptotic performance.

Instead of solving (31) we apply Unitary ESPRIT with
structured least squares (SLS) [6] and spatial smoothing. We
use the pre-whitened covariance estimate

R̂ = Q̂− 1
2 Ĥ (Q̂− 1

2 Ĥ)H. (32)

The important result, as we will see next, is that the DOA es-
timates obtained by ESPRIT (which in general underperform
(31), but the analysis is out of the scope of this paper) can
be introduced to (29) and (28), and thus lead to a signi!cant
improvement of the delay and Doppler estimates.

6. SIMULATION RESULTS

We assume a centro-symmetric [6] uniform rectangular ar-
ray (URA) with M = 9 isotropic sensor elements with half-
wavelength spacing. The channel parameters are assumed
constant during the observation interval TN and the one-sided
bandwidth of the signal is B = 1.023 MHz. For the PN se-
quence we apply Gold codes [8] as used for the GPS C/A code
with code period T = 1 ms, 1023 chips per code period each
with a time duration Tc = 977.52 ns. Signal-to-noise ratio
(SNR) denotes the LOSS-to-noise ratio. The effective SNR
in dB can be obtained by

SNR = C/N0 − 10 · log10(2 · B) + 10 · log10(Nc), (33)
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whereas C/N0 in dB-Hz denotes the carrier-to-noise den-
sity ratio and Nc ∈ N is the number of code periods within
TN = NcT . We assume C/N0 = 40.3 dB-Hz and Nc = 20
which leads to SNR = -9.8 dB. We analyze the behavior of
our approach for a single re"ective multipath as a function
of its relative delay to the LOSS (L = 2). In the following
parameters with the subscript 1 refer to the LOSS and param-
eters with the subscript 2 refer to the re"ection. The re"ected
multipath and the LOSS are considered to be in-phase and the
signal-to-multipath ratio (SMR) is 5 dB. Further, we assume
a temporally white Gaussian interference with interference-
to-signal ratio (ISR) of 40 dB which is responsible for the
spatial covariance of the noise plus interference !eld. The
interference is uncorrelated with the signals and the noise.
The DOAs for the LOSS and the multipath are φ1 = 50◦,
φ2 = 102◦, ϑ1 = 40◦, ϑ2 = 26◦ and for the interference are
φI = 150◦, ϑI = 6◦. We de!ne ∆τ = |τ1 − τ2|/Tc and
∆ν = |ν1 − ν2| · TN .

Fig. 1 and Fig. 2 depict the root mean square estima-
tion error (RMSE) and CRLB of τ̂1 and ˆ̂τ1 for ∆ν = 0 and
∆ν = 0.5 respectively. In Fig. 1 SAGE for small ∆τ is bi-
ased and the RMSE τ̂1 is below

√
CRLB(τ̂1), since the inter-

ference cancellation in the E-step (11) is not able to separate
the two waves if ∆τ and ∆ν are very small. In these cases the
estimate of one hidden data space, X̂1 is an estimate for a su-
perposition of the two wavefronts and the other, X̂2 includes
only noise.
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Fig. 1. RMSE of τ̂1 and of ˆ̂τ1 versus ∆τ for ∆ν = 0

7. CONCLUSIONS

In this work we proposed a two-step approach to achieve esti-
mates for a structured model for the multipath case in an un-
known spatially colored !eld. We applied the EXIP to re!ne
estimates achieved by an iterative ML estimator for an un-
structured model, when an estimate of the DOAs is available.
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Fig. 2. RMSE of τ̂1 and ˆ̂τ1 versus ∆τ for ∆ν = 0.5

Exemplarily, simulation results for time-delay estimation in
GPS are shown which con!rm that the proposed two-step ap-
proach attains the CRLB of the structured model even when
suboptimal DOA estimates obtained by Unitary ESPRIT are
introduced.
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