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Abstract— In this paper, we explore the existing tradeoff in
using either OSTBC or opportunistic beamforming techniques
with multiple beams (RB-MUX) in multi-user systems with
selective feedback. We derive a closed-form expression of the
ergodic system capacity for OSTBC and an approximation for the
high-SNR regime for RB-MUX. By doing so, we analytically assess
the impact of the number of terminals and bandwidth restrictions
in the feedback channel on both the OSTBC and RB-MUX
approaches. In particular, we show that RB-MUX schemes are
more effective for exploiting multi-user diversity gain. However,
OSTBC approaches give more benefits when either the feedback
channel is restricted or the SNR of the system is increased.

I. INTRODUCTION

In the downlink of a wireless multi-user system, it is well
known that the average cell throughput can be increased when
in each slot the user with better channel conditions is sched-
uled [1]. Such an effect is referred to as multi-user diversity
(MUD) and relies on the assumption that different users ex-
perience independent fading processes [2]. On the other hand,
communication schemes employing multiple antennas at the
transmit and/or receive edges are known to provide remarkable
improvements with respect to single-antenna configurations.
Since multiple antennas systems have been proposed in novel
wireless networks, much attention has been recently paid to
the combined use of MUD and multi-antenna techniques.

Multiple antennas can be employed to increase the reliabil-
ity of the transmission in presence of fading by using spatial
diversity mechanisms. In particular, Orthogonal Space-Time
Block Coding (OSTBC) is known to provide full diversity or-
der schemes by using low complexity receivers [3][4]. Recent-
ly, several papers (e.g., [5], [6]) have analyzed the performance
of OSTBC scheme in multiuser systems. It has been shown
that OSTBC limits the MUD performance gain compared to
the Single-Input-Single-Output (SISO) transmission scheme.
The reason for that being that OSTBC schemes are designed
to reduce the probability of deep fades but, by averaging
over different transmit diversity branches, SNR peaks are
suppressed too. However, in multiuser systems with imperfect
feedback, the increased robustness of OSTBC schemes against
fading provides significant gains with respect to those of
SISO approaches. For instance, in [7] the author analyzed the
impact of delays in the feedback channel. The consequences
of bandwidth restrictions were explored in [8].

Nonetheless, multi-antenna capabilities can be exploited to
serve several users simultaneously. In particular, the capacity
region of the Gaussian multi-antenna broadcast channel can
be achieved with dirty paper coding (DPC) [9]. However,
DPC may not be considered an appropriate scheme for real

applications, since it is not easy implementable due to the
successive encoding and decodings. Furthermore, DPC re-
quires perfect CSI, which is seldom available at the BS. For
that reason, opportunistic beamforming schemes with multiple
beams based on partial channel side information (CSI) at
the base station (BS) has been recently attracted significant
interest [10]. The main idea of RB-MUX1 is to generate a
random beamforming at the BS and to schedule the users
that maximize the signal-to-noise ratio (SNR). In this scheme,
users have to report only the SNR relative to the selected
precoding, thus the amount of information to be sent in
the feedback is considerably reduced. Performance has been
shown to be very effective for systems with a large number
of users, as the sum capacity for partial CSI has the same
grow-rate as for DPC [10].

In this paper, we asses the tradeoff between OSTBC and
RB-MUX schemes in a selective MUD scenario [11]. We
focus on these schemes due to their applicability in wireless
networks: low complexity receivers can be used and a low
amount of information is required in the feedback channel.
In particular, we conduct an analytical study of the impact
of bandwidth restrictions in the feedback channel on both
the OSTBC and RB-MUX approaches. To do that, we derive
closed-form expressions of the system capacity for the former
case, whereas an approximation for the high-SNR regime is
obtained for RB-MUX. We analytically show that MUD is
better exploited by RB-MUX schemes in scenarios without
restrictions in the feedback channel. As soon as the feedback
channel begins to be restricted (i.e., when the feedback load is
reduced), the OSTBC strategy becomes to be more effective
due to its inherent robustness against fading deeps. Further-
more, OSTBC scheme is more suitable for very high SNR, as
RB-MUX technique is interference limited.

II. SIGNAL MODEL

Consider the downlink of a Multi-Input-Single-Output
(MISO) cellular system with one base station equipped with
M antennas and K single-antenna terminals. For an arbitrary
time instant, the received signal at the terminal k is given by:

rk = hT
k s + nk (1)

where hk ∈ CM is the channel vector gain between the BS
and the terminal k, for which each component is assumed to
be independent and identically distributed (i.i.d.), circularly

1In the sequel, the random beamforming scheme with multiplexing
capabilities is referred to as RB-MUX.
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symmetric Gaussian random variable (Rayleigh fading) with
zero mean and variance σ2

h (i.e., hk ∼ CN (0, σ2
hIM )). Vector

s ∈ CM contains the symbols broadcasted from the BS and
nk ∼ CN (0, 1) denotes additive Gaussian noise (AWGN) with
normalized power. Further, we consider quasi-static fading,
i.e, the channel response remains constant during one time-
slot and, then, it abruptly changes to a new independent
realization. Concerning channel state information (CSI), we
assume perfect knowledge for each user at the receive side,
and the availability of a low-rate error-free feedback channel
to convey partial CSI to the transmitter. Finally, we denote by
γ̄ = Pt

M E[‖hk‖2] = Ptσ
2
h the average SNR (equal for all the

users) with Pt standing for the constant transmit power. At
the BS, we will consider two transmission schemes: OSTBC
scheme and RB-MUX strategies.

• OSTBC (Orthogonal Space-Time Block Coding):
For the spatial diversity scheme the effective SNR expe-

rienced by user k in time-slot s, after coherent combining,
conforms

γk ST (s) =
Pt

M

M∑
i=1

|hi,k|2. (2)

It is easy to notice that the SNR γk ST (s) is a χ2
2M random

variable (RV) with average E[γk ST (s)] = γ̄. In each time-slot
the scheduler selects a single user to be served according to
the instantaneous SNR γk ST (s) as detailed in Sect. III. The
probability density function (PDF) and the cumulative density
function (CDF) are respectively

fγk ST
(γ) =

1
(M − 1)!(γ̄/M)M

γM−1e−γM/γ̄ , γ ≥ 0,(3)

Fγk ST
(γ) = 1− e−γM/γ̄

M−1∑
m=0

(γM/γ̄)m

m!
, γ ≥ 0 (4)

• RB-MUX (Random Beamforming-Multiplexing):
At the beginning of any time slot s the BS constructs a

set of M orthogonal beamforming vectors um so that the
transmitted signal s =

∑M
m=1 umxm is the superposition of

M beams ,where xm stands for the unitary power information
symbols stream. Power is evenly distributed to the beams, thus
it is ||um(t)||2 = Pt

M . The receiver k is assumed to perfectly
know the value hT

k um (this can be readily arranged during
training) and it computes the SINRs by assuming that xm is
the desired signal and xp is interference (for p 6= m)

γk,m MUX(s) =
|hT

i um|2

1 +
∑M

p=1,p 6=m |hT
i up|2

=
z

1
γ̄ + y

, (5)

for m = 1, ..,M . Each beam is assigned to a different user
according to the SINR metric γk,m MUX(s) (see Sect. III).
In order to evaluate the performance we have to obtain the
distribution of the SINR. Since the beamforming vectors are
orthogonal and the users experience Rayleigh fading, |hT

i um|2
are i.i.d over m (and also over i) with χ2

2 distribution. Thus,
it holds that z and y are independent RVs with distributions
z ∼ χ2

2 and y ∼ χ2
2M−2. Finally, the CDF of the SINR yields

to

Fγk,m MUX
(γ) = 1− e−γ/γ̄

(1 + γ)M−1
(6)

Evaluation of the overall system performance from the
CDF of the SINR (6) is far from being trivial and numerical
integration turns out to be mandatory. In order to make an
analytical derivation feasible, we assume that the system is
interference limited and the additive noise as negligible. The
assumption is reasonable for large average SNR γ and/or
large number of antennas M. Simulation results validate the
assumption in the analyzed scenario. The SINR γk,m MUX(s)
reduces to a SIR, that is recognized as the ratio z/y of
independent chi-squares variables, thus it holds

fγk,m MUX
(γ) =

M − 1
(1 + γ)M

, (7)

Fγk,m MUX
(γ) = 1− 1

(1 + γ)M−1
. (8)

III. POST-SCHEDULING SNR STATISTICS

The scheduling process is organized in a slot-by-slot basis
following a max SNR (for OSTBC) or SINR (for MUX-OB)
rule. More specifically, the OSTBC strategy selects in each
time-slot the user with the maximum SNR γk ST (s), whereas
the RB-MUX scheduler allocates each beam to the active user
with the highest SINR γk,m MUX(s) under the constraint that
different beams are assigned to different users. If one user
achieves the highest metric over more than one beam, it is
scheduled on the strongest beam and it does not compete
to the allocation of the other beams. In this particular case,
the scheduler does not select the best user over each beam.
Anyway, the probability of this event is negligible when the
number of users is large compared to the number of antennas
(K >> M) [10]. In the sequel we will assume that the each
user can not have the highest metric over more than one beam,
thus the scheduler can always select the strongest metric over
each beam. Under this assumption we can provide a unified
framework by considering that in both schemes the scheduler
maximizes the metric γk(s) standing respectively for the SNR
γk OSTBC(s) in OSTBC and for the SINR γk MUX(s) (for a
given m) in RB-MUX.

In order to reduce bandwidth requirements in the feedback
channel, a Selective Multi-user Diversity (SMUD) approach
is adopted [11]. In other words, only terminals experiencing
metric above a pre-defined threshold (γth) in a specific time-
slot are allowed to report their channel state information to the
BS. Thus, the max-scheduler conducts the search over such a
subset of the active users only, that is

γ∗(s) = max k {γk(s)} s.t. γk(s) > γth (9)

Conversely, when all the users remain silent (i.e. in the event
of a scheduling outage) the scheduling rule amounts to

γ∗(s) = randk {γk(s)} for k = 1, ..,K (10)

where rand is the random pick operator. In the sequel, subscript
s will be dropped for the ease of notation. As for the post-
scheduling metric γ∗ the analysis must be conducted for two
different SNR regions: γ ≤ γth (i.e., all users remain silent),
and γ > γth (at least one user reports its CSI to the BS). For
the γ ≤ γth case and by recalling that all users experience
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i.i.d fading, we have:

Fγ∗ (γ) = Prob(γ∗ ≤ γ, γk ≤ γth for all k = 1...K)

= (Fγ (γth))K−1
Fγ (γ) . (11)

On the other hand, for γ > γth, the CDF function can be
expressed as:

Fγ∗ (γ) = Prob(γ1 ≤ γ, . . . , γK ≤ γ) = (Fγ (γ))K
. (12)

IV. FEEDBACK LOAD

In [11], the authors define normalized average feedback load
F̄ as the usage ratio per time slot averaged over the total
number of active users. This measure can also be interpreted
as the probability for a given user to effectively send its CSI
over the feedback channel. Thus, the metric threshold γth must
be designed to meet a desired feedback load F̄ . Since all the
users experience i.i.d. fading channels, it yields

F̄ = 1− Fγ(γth) (13)

In OSTBC strategy each user sends to the BS the instan-
taneous SNR γk ST , thus the SNR threshold γth for a given
feedback load F̄ can be directly obtained by plugging Eq. (4)
into (13).

RB-MUX scheduler is based on the SINR metric
γk,m MUX . Since each user can not be scheduled over more
than one beam and we assume that each user can be the
strongest over one beam at most, feedback from all the users
SINRs γk,m MUX would be a waste of resource. The amount
of information sent to the scheduler can be equivalently re-
stricted to the transmission of the maximum SINR γk,m∗ MUX

along with the index m∗ of the beam where the SINR is
maximized. Since the transmission of the index m∗ requires
a negligible rate, we remark that the amount of feedback in
OSTBC and RB-MUX is similar (one real coefficient for each
user), thus making possible a fair performance comparison.
The SINR threshold, γth, for a given feedback load can then
be obtained from the CDF of the maximum SINR, that can
be derived from (6) as

Fγk,m∗ MUX
(γ) =

(
1− e−γ/γ̄

(1 + γ)M−1

)M

. (14)

V. SYSTEM CAPACITY

Since the users channels are i.i.d., the scheduler guarantees a
fair long-term resource allocation, thus we focus the attention
on the average system performance. In a multi-user system, the
instantaneous channel capacity achievable by the scheduled
user over the equivalent SISO channel is given by C∗ =
log2 (1 + γ∗) ,where the scheduled metric γ∗ stands for the
SNR in OSTBC and for the SINR in RB-MUX transmission
scheme, respectively. Thus, the ergodic system capacity under
the proposed scheduling policy can be expressed as

C
∗

= Eγ∗ [C∗] =
∫ ∞

0

r
T X

(M) log2 (1 + γ) fγ∗ (γ) dγ

(15)
where r

T X
(M) stands for the rate of the transmission scheme.

• OSTBC (Orthogonal Space-Time Block Coding):
Deriving a closed-form expression of the average capacity

for the OSTBC scheme is somewhat involving. By using (4),
(11) and (12) into (15) and after some algebra, the average
capacity reduces to the following intermediate expression (see
Appendix I)

C
∗

log2(e)
=

r
ST

(M)MM

γ̄M (M − 1)!
[Fγ(γth)K−1

·ΨM (γth,M/γ̄) + K
K−1∑
k=0

(
K − 1

k

)
(−1)k

k∑
n1=0

(
k

n1

)
n1∑

n2=0

(
n1

n2

)(
1
2!

)n2

...

n
M−2∑

n
M−1=0

(
n

M−2

n
M−1

)(
2!3!..(M − 2)!

(M − 1)!

)n
M−1

(
M

γ̄i

)m′

·ΨM+m′(γth, (k + 1)M/γ̄i)], (16)

where m′ =
∑M−1

j=1 n
j

and we define the integrals Ψm(a, µ)
and Ψm(a, µ) as

Ψm(a, µ) =
∫ a

0

ln(1 + γ)γm−1e−µγdγ, (17)

Ψm(a, µ) =
∫ ∞

a

ln(1 + γ)γm−1e−µγdγ, (18)

for µ > 0 and m = 1, 2, ..

The summation accounts for two different contributions: the
capacity coming from the random scheduling (i.e., in the
case of scheduling outage) and the contribution due to the
opportunistic scheduling. The integrals in expressions (17) and
(18) are solved in closed-form in [8], where the interested
reader can find the details. Here we discuss the limiting case
of no-feedback (F = 0) and perfect feedback (F = 1). In the
former case it is γth →∞, the second term vanishes and the
integral reduces to

Ψm(a →∞, µ) = (m− 1)!eµ
m∑

k=1

Γ(k −m,µ)
µk

(19)

where Γ(α, x) =
∫∞

x
tα−1e−tdt is the complementary in-

complete Gamma function defined in [[13], Eq. 8.350.2]. The
capacity yields

C
∗

log2(e)
= r

ST
(M)eM/γ̄i

M−1∑
k=0

Γ(−k, M/γ̄)
(M/γ̄)k

, (20)

thus reducing (up to term r
ST

(M) and the power loss as-
sociated to OSTBC scheme [4]) to the performance of the
maximum ratio combiner (MRC) receiver [12]. In the dual
case of complete feedback (F = 1), it is γth → 0 and the
integral can be solved by plugging Ψm(0, µ) = Ψm(∞, µ)
into Eq. (16).

• RB-MUX (Random Beamforming-Multiplexing):
The average capacity of the RB-MUX is obtained here in

closed-form under the assumption of interference dominated
system. To simplify the analytical derivation, we insert the
user capacity Cm = log2(1+γ) (scheduled over the beam m)
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into integral (15) as

C
∗

= r
MUX

(M)
∫ ∞

0

C · fCm
(C) dC. (21)

The transmission rate is r
MUX

(M) = M as M independent
beams are transmitted. From Eqs. (8), (11) and (12) the
capacity CDF results

Prob (Cm < C) = Fγ (γth)K−1 (1− e−C/C), for C ≤ Cth

= (1− e−C/C)K , for C > Cth (22)

where Cth = log2(1+γth) is the equivalent capacity threshold
and C = log2 e

M−1 is the average beam capacity. It is easy to notice
that the single user scheduled capacity Cm is distributed as a
χ2

2 RV in random scheduling region (C ≤ Cth), whereas it
is the maximum of K i.i.d RVs in the max-scheduling region
(C > Cth). By plugging (22) into (21) the ergodic capacity
can be expressed as

C
∗

=
M

C
[Fγ (γth)K−1

∫ Cth

0

C · e−C/CdC

+K

∫ ∞

Cth

C(1− e−C/C)K−1e−C/CdC]. (23)

Similarly to OSTBC (16), the first term accounts for random
scheduling, whereas the second term reflects for max SINR
scheduling. By using the binomial expansion and identities
[[13], Eq. 3.351.7] and [[13], Eq. 3.351.2] the following
expression results

C
∗

M
= C · [Fγ (γth)K−1 (1− 1 + Cth/C

(1 + γth)M−1
) + K·

K−1∑
k=0

(−1)k

(
K − 1

k

)
e−(k+1)Cth/C

(1 + k)2
(1 + (k + 1)Cth/C)].

(24)

where C
′

th = Cth/ log2(e). Expression (24) further simplifies
when considering no-feedback channel (F = 0) or full feed-
back load (F = 1). In the former case, it is {γth, Cth} → ∞
and the capacity specializes to

C
∗

= M · C. (25)

In the full feedback case (F = 1), it is {γth, Cth} = 0, thus
leading to

C
∗

= M · C ·
K∑

k=1

1
k

. (26)

The term
∑K

k=1
1
k stands for the multiuser diversity gain and

for large K it can be approximated as
∑K

k=1
1
k ' log(K)+ε,

where ε stands for the Euler constant. Nevertheless, it would
be incorrect to draw conclusions on the capacity scaling low
by letting K → ∞ as the approximation introduced by the
assumption of interference dominated system (γk,m MUX '
z/y) increases with the number of users K. As a motiva-
tion, the opportunistic scheduler selects the users with the
largest SINR (5), thus jointly maximizing the power of the
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Fig. 1. Ergodic capacity of OSTBC and RB-MUX (MUX) vs. SNR (γ̄) for
M = 4 antennas, K = 40 users and feedback load F = 1, 0.1, 0.05.

desired signal |hT
i um|2 and minimizing that of the interference∑

p6=m |hT
i up|2. As a consequence, the contribution of the

mutual interference vanishes by letting K → ∞ and the
additive noise can not be neglected. By taking the noise
into account, the asymptotic rate for the capacity becomes
log(log(K)) as shown in [10].

VI. NUMERICAL RESULTS

Throughout this section, we will consider a system with a
BS equipped with M = 4 antennas transmitting to K single
antenna users. The OSTBC scheme over M = 4 antennas
achieves a maximum transmission rate r

OST BC
(4) = 3/4 [4].

Fig. 1 shows the ergodic capacity of OSTBC and RB-MUX
strategies versus the average system SNR for K = 40 users
and different average feedback load values (F = 1, 0.1, 0.05).
First at all, it worth analyzing the match between the curves as-
sociated with the analytical expressions and the corresponding
computer simulation results (markers on those curves). Perfect
match over the whole range is obtained for OSTBC, while the
analytical analysis of RB-MUX performance is close to the
simulation results for high average SNR (γ̄ > 15−20dB) due
to the assumption of interference dominated system. Anyway,
this range is of crucial interest since it permits to estimate the
threshold SNR where the methods switch in the performance
order. In fact, the RB-MUX strategy is more effective at
low SNR due to the spatial multiplexing capabilities, while
OSTBC achieves larger ergodic capacity at very large SNR as
RB-MUX is interference limited.

The ergodic capacity as a function of the number of users
K is shown in Fig. 2 for γ̄ = 20dB. Analytical expression
of the RB-MUX capacity is close to the simulation results
for different average feedback load values F . An accurate
analysis shows that the gap between the analytical and sim-
ulated curves increase with the number of users K, thus
confirming that the approximation does not hold for infinite
users as stated in Sect. V. In the full feedback case (F̄ = 1)
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one can observe that the RB approach is far more effective
than its OSTBC counterpart in exploiting multi-user diversity.
In other words, the suppression of SNR peaks due to the
SNR-stabilizing effect associated to OSTBC penalizes system
performance. Conversely, when the average feedback load per
user is reduced, the degradation experienced by the RB-based
schemes is larger than that exhibited by the OSTBC ones.
This follows from the fact that OSTBC approach provides
additional robustness against unfavorable fading conditions
resulting from random user selection. Similar conclusions can
be drawn from Fig. 3, that shows the ergodic capacity as a
function of the feedback load for K = 10, 30, 50 users.

VII. CONCLUSIONS

In this paper we have investigated the performance of
spatial diversity and spatial multiplexing techniques in a multi-

user scenario with selective feedback. Performance assessment
is conducted both analytically and by means of simulation
results in terms of ergodic capacity. By our evaluation, the
spatial multiplexing approach is very effective in exploiting
the MUD when opportunistic scheduling is employed at the
BS, whereas the performance degrades considerably when
bandwidth restrictions on feedback channel reduce the MUD.
On the other hand, the spatial diversity is more suitable for
limited feedback as it enhances the transmission robustness
against channels fading deeps.
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APPENDIX I
PROOF OF EQ. (16)

The expression (16) is obtained by plugging eq. (4), (11),
(12) into (15), by using the binomial expansion formula on the
CDF of the maximum SNR and by exploiting the following
equality(

M−1∑
m=0

1
m!

(
γM

γ̄i

)m
)k

=
k∑

n1=0

(
k

n1

) n1∑
n2=0

(
n1

n2

)(
1
2!

)n2

..

n
j−1∑

n
j
=0

(
n

j−1

nj

)(
1
j!

)n
j

.....

n
M−2∑

n
M−1=0

(
n

M−2

n
M−1

)
(

2!3!...(M − 2)!
(M − 1)!

)n
M−1

(
γM

γ̄i

)n1+n2+...+n
M−1

(27)
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