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Abstract—In 5G simultaneous localization and mapping
(SLAM), estimates of angles and delays of mmWave channels
are used to localize the user equipment and map the environ-
ment. The interface from the channel estimator to the SLAM
method, which was previously limited to the channel parameters
estimates and their uncertainties, is here augmented to include
the detection probabilities of hypothesized landmarks, given
certain a user location. These detection probabilities are used
during data association and measurement update, which are
important steps in any SLAM method. Due to the nature of
mmWave communication, these detection probabilities depend
on the physical layer signal parameters, including beamforming,
precoding, bandwidth, observation time, etc. In this paper, we
derive these detection probabilities for different deterministic
and stochastic channel models and highlight the importance of
beamforming.

I. INTRODUCTION

Wireless communication signals have an inherent relation
to localization and mapping, as the received signals depend
on the propagation environment and the location of the re-
ceiver with respect to the transmitter [1]. These properties are
exploited explicitly in the GPS system, which extract time,
Doppler, and phase measurements for localization of terrestrial
users. Similarly, ultrawide bandwidth (UWB) communication
systems are predominantly used for their high delay resolution,
thanks to the massive UWB bandwidth [2]. Cellular communi-
cation systems have been relatively limited in their localization
capabilities, predominantly for emergency call localization.

5G mmWave communication systems have several proper-
ties that make them attractive for user localization. The combi-
nation of large bandwidths and arrays with many elements lead
to high delay and angular resolution. The operation at high
carrier frequencies leads to sparse communication channels,
further amplified by the use of directional beamforming [3]–
[5]. These properties are also conducive for mapping, which is
the determination of locations and properties of landmarks in
the environment [6]. There is a rich literature on simultaneous
localization and mapping (SLAM) in general [7]–[9] and
more recently in radio-based SLAM in particular [10]–[12].
An important challenge in SLAM is the data association
(DA) problem, which is the assignment of measurements to
landmarks in the environment. DA considers every measure-
ment as possibly being generated from every landmark, and
makes hard [13] or soft [14] decisions based on the available
statistical information.

Common to most SLAM methods is the implicitly layering
of the problem. There is an underlying measurement process,
which generates detections and with associated measurements
(which include measurements from detected landmarks and
measurements to due noise peaks, not corresponding to any
physical landmark) with certain assumed statistics, with certain
detection probabilities (i.e., the probability that a hypothesized
landmark would lead to a measurement in a hypothesized user
location). While layering is a sound engineering principle, care
must be taken when defining the interfaces between the layers
(i.e., the measurement process and the SLAM method). As
we will see later, during DA, the detection probability plays
a key role. Some existing methods consider this detection
probability to be a constant [12], [15], either determined by
the sensor field of view [11], or given a priori [10], [14].
Adaptive detection probabilities were proposed in [16] based
on signal amplitude information, while [17] models the detec-
tion probability as a hidden random variable to be inferred.
The above works do not consider the salient properties of
5G mmWave communication, where the detection probability
depends on the physical layer signal parameters: bandwidth,
observation time, signal structure, precoding, combining. In
particular, the ability of mmWave to illuminate only parts of
the propagation environment via beamforming and to only
receive signals from certain directions is important to take into
account. In addition, the detection probabilities depend on the
applied channel estimation routine.

In this paper, we aim to quantify the detection probabilities
used in 5G SLAM, in order to enrich the interface between
the channel estimation routine and the SLAM algorithm. Our
approach makes abstraction of the receiver signal processing,
so our detection probabilities can be seen as optimistic upper
bounds. We analyze the detection probability of several scenar-
ios of interest, including line-of-sight (LOS) propagation, scat-
tering from small objects, and reflection from large surfaces.
Our results confirm the severe impact of the beamforming and
the type of landmarks on the detection probabilities.

Notation: We denote estimates of a variable x by x̂ and
hypothesized values of x by x̃.

II. MODEL

A. Physical Layer Model

We consider a 2D mmWave communication system with
multiple paths, where the transmitter has Nt antennas and
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Figure 1. Concept: the standard interface between 5G SLAM and channel estimation is one-way, in the form of the channel parameters. The red arrows
comprise the proposed augmentation to this interface, in order to provide 5G SLAM with correct detection probabilities. HL stands for high likelihood.

Mt radio frequency (RF) chains, while the receiver has Nr
antennas and Mr RF chains. To lighten the notation, we
drop any indices related to mobility. The downlink signal is
expressed as [18]

yk[n] =

L−1∑

l=0

WHHlFpk[n]e−j2πτl/(NTs) + WHnk[n], (1)

where l is the path index, k ∈ {0, . . . ,K − 1} is the
transmissions index, n ∈ {0, . . . , N − 1} is the subcarrier
index, W ∈ CMr×Nr is a combining matrix at the receiver
with WHW = IMr , F ∈ CMt×Nt is a precoding matrix at
the transmitter with FHF = IMt

, pk[n] is the pilot at time
k on subcarrier n, nk[n] is AWGN with covariance N0INt

(independent across transmission and subcarriers), τl is the
time-of-arrival (TOA) of the l-th path and

Hl = hlar(θr,l)a
T
t (θt,l), (2)

where hl ∈ C is the complex channel gain with density p(hl),
at(θt) is the transmitter array response at angle-of-departure
(AOD) θt,l, and ar(θr) is the receiver array response at angle-
of-arrival (AOA) θr,l. Each path corresponds to a physical ob-
ject/landmark in the environment, such as a reflecting surface
or a scattering point. Path l = 0 denotes the LOS path (if it
is present). We assume that objects are well separated, so that
paths are also well separated in either TOA, AOD, or AOA
[19]. We denote the location of the BS by xt, the location of
the user by xr, and the location of an incidence point of a
multipath component by sl.
Remark 1 (Simplified notation). For notational convenience
and without loss of generality, we will consider the landmark
location to be inter-changeable with the incidence point lo-
cation sl. In general, the landmark may be different from
the incidence point (e.g., a virtual anchor corresponding to a

reflecting surface). We also note that the BS and user location
can also include their orientations, which affect the AOD and
AOA, respectively, as well as a clock bias, which affects the
TOA.

B. 5G SLAM Model
As depicted in Figure 1, we further assume there exists a

channel estimation routine, which determines an estimate of
the number of paths M , where M can be larger or smaller
than L, the true number of paths. This estimate is based on a
threshold, chosen to achieve a certain false alarm rate. For each
detected path, the channel estimation routine also computes
triples of channel parameters zm = [τ̂m, θ̂r,m, θ̂t,m]T, for
m = 0, . . . ,M − 1. These triples and their covariances are
used in a 5G SLAM routine to localize the receiver and map
the environment. A SLAM method includes a data association
sub-routine, which aims to determine which channel param-
eters correspond to which object in the environment. Data
association involves computation of association weights, wm,i
for measurement m and previously seen landmark i > 0 with
estimated location s̃i and are given1 by [11], [20]

wm,i = pD(x̃r, s̃i, t)p(zm|x̃r, s̃i, t), (3)

where pD(x̃r, s̃i, t) is the detection probability, i.e., the proba-
bility that a hypothesized object at position si would give rise
to a measurement for a hypothesized user location x̃r. Here
t denotes the type of the path (e.g., LOS, reflecting surface,
scatter point). The green box in Figure 1 shows the impact of
the detection probability in 5G SLAM:

• For a given landmark i of type t, if there is a measurement
m with high likelihood (HL) p(zm|x̃r, s̃i, t) (marked HL

1This is a simplification of the true weight calculation in order to simplify
the exposition. In addition, there are weights wm,0 corresponding to new
landmarks and w0,i corresponding to missed detections.



in Figure 1), then the association weight depends on
the value of pD(x̃r, s̃i, t). In addition, if there is a high
detection probability but no HL measurement, then the
landmark should be removed from the map.

• We can also take the view from a given measurement m.
If there is a HL landmark, then the weight will depend
on the detection probability. If there is no HL landmark
that can be associated with the measurement m, then a
new landmark should be generated (a birth).

III. DETECTION PROBABILITY DERIVATION

With the assumptions from Section II, we can focus on
a single path, to compute pD(x̃r, s̃, t), for a hypothesized
receiver location x̃r, incidence point location s̃, and object
type t. For notational convenience we drop the index i.

A. Derivation

Given these parameters, it is straightforward to compute
the corresponding [τ̃ , θ̃r, θ̃t], from basic 2D geometry [11]. In
turn, given these parameters, we can consider the hypothetical
observation

ỹk[n] = h̃WHar(θ̃r)a
T
t (θ̃t)Fpk[n]e−j2πτ̃/(NTs) + WHñk[n],

(4)

where the channel gain has a density p(h̃|x̃r, s̃, t). We further
denote p̃k[n] = WHar(θ̃r)a

T
t (θ̃t)Fpk[n]e−j2πτ̃/(NTs). We

thus aim to determine whether a single path, leading to an
observation (4) would lead to a detected or undetected path.
The optimal processing would now proceed as follows:

1) Multiply ỹk[n] with the complex conjugate of p̃k[n],
leading to observation

z̃k[n] = h̃ ‖p̃k[n]‖2 + p̃H
k [n]WHñk[n]. (5)

2) Sum over all subcarriers and transmissions, leading to
observation ỹ =

∑
k,n z̃k[n]/

√
N0/2.

3) Consider as statistic |ỹ|2, which has a non-central χ2

distribution with 2 degrees of freedom and non-centrality
parameter 2P̃ |h̃|2/N0, where P̃ =

∑
k,n ‖p̃k[n]‖2

4) Given h̃ and a detection threshold γ, the conditional
detection probability is given by

pD(x̃r, s̃, t|h) = p(|ỹ|2 > γ|h̃) (6)

= Q1



√

2P̃ |h̃|2
N0

,
√
γ


 , (7)

where Q1(·, ·) is the Marcum Q-function.
5) The false alarm probability is related to γ through

pFA = p(|ỹ|2 > γ|h̃ = 0) = e−γ/2, (8)

so that γ = −2 log pFA.
The expected detection probability thus becomes

pD(x̃r, s̃, t) = Eh̃



Q1



√

2P̃ |h̃|2
N0

,
√
γ





 , (9)

where the expectation is with respect to the channel statistics
with density p(h̃|x̃r, s̃, t). Observe that the detection probabil-
ity does not depend on the observation ỹ. In some cases, this
integral can be computed analytically [21]. Note that when
|h̃| → 0, pD(x̃r, s̃, t)→ pFA, so that pD ≥ pFA.
Remark 2. When the transmitter and receiver are equipped
with a single RF chain (Mr = Mt = 1), P̃ is given by

P̃ = EsKN‖wHar(θ̃r)a
T
t (θ̃t)f‖2 ≤ EsKNNrNt, (10)

where Es is the energy per OFDM subcarrier, K is the number
of transmissions, and N is the number of subcarriers. We
observe the processing gain in time (K) and frequency (N ),
as well as the impact of beamforming, limited by NrNt.

B. Application to mmWave Channels
In correspondence with the literature, we consider three

special cases: the LOS path, a scatter point (SP), and a
reflecting surface (represented by VA, for virtual anchor).

1) Deterministic Models: When the channel is determinis-
tic the expectation over h̃ is omitted, so the detection prob-
ability depends on the deterministic value |h̃|. For t = LOS,
s̃ = ∅, and

|h̃| = λ

4π‖x̃r − xt‖
, (11)

where λ is the wavelength of the signal at the carrier fre-
quency; for t = SP, the channel is governed by the radar
equation [22]

|h̃| = λ
√
S

(4π)3/2‖x̃r − s̃‖‖s̃− xt‖
, (12)

where S is the object radar cross section (RCS). For t = VA,
the channel follows the reflection model

|h̃| = λΓ

4π (‖x̃r − s̃‖+ ‖s̃− xt‖)
, (13)

where 0 ≤ Γ ≤ 1 is the surface reflection coefficient.
2) Stochastic Models: The deterministic models can be

augmented to include limited knowledge of the environment.
For instance, for t = LOS, the LOS path may be present with
a certain probability pLOS [23]. The expectation in (9) is then
with respect to the LOS probability:

pD(x̃r, s̃,LOS) = (14)

pLOSQ1



√

2P̃ λ2

16π2‖x̃r − xt‖2N0
,
√
γ


 + (1− pLOS)pFA.

For t = SP, the RCS may not be perfectly known and be
drawn from a distribution p(S), e.g., the well-known Swerling
models [24]. Similarly, for t = VA, the reflection coefficient
may be characterized by p(Γ), based on the material electro-
magnetic properties [25]. Another relevant case is fading for
t 6= LOS. Under Rayleigh fading, p(h̃|x̃r, s̃, t) follows a zero-
mean Gaussian distribution, with variance determined by (12)–
(13). Similarly, a Nakagami distribution can be considered
for NLOS [26]. In all cases, the expectation is over a 1-
dimensional variable, and can be computed using simple
numerical techniques.
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Figure 2. Detection probability as a function of the hypothesized UE location,
K = 1, pFA = 0.001.

IV. RESULTS

A. Scenario

We consider a scenario with a BS located at xt = [0‚0]T,
sending K = 1 OFDM symbol with N = 128 subcarriers us-
ing an average transmit power of 1 mW, N0 = 4.0049×10−9

mW/GHz, a total bandwidth of 200 MHz, and a carrier
frequency of 28 GHz. Transmitter and receiver are equipped
with ULAs with Nt = Nr = 32 antennas. There is a
hypothesized incidence point at s = [20, 10]T, and a variable
hypothesized user location x̃r = [xr, 0]T. We will visualize the
detection probability as a function of xr, for the LOS and and
NLOS path, considering uniform precoding and combining, as
well as directional precoding and combining. The precoding
and combining matrices are columns from the DFT codebook,
while the pilot data is constant2 for all subcarriers (i.e.,
pk[n] = p,∀k, n). For the t = SP hypothesis, S = 10 m2,
while for the t = VA hypothesis, Γ = 0.8. We set pFA = 10−3,
corresponding to γ = 9.21.

B. Results and Discussion

Figure 2 shows the detection probabilities as a function
of the hypothesized UE location, for six distinct scenarios.
Four scenarios are without beamforming (labeled ’omni’ in
the figures), i.e., Mt = Nt, Mr = Nr, F and W are unitary
32×32 matrices. In one scenario there is beamforming, where
W and F are a single column from the DFT matrix (i.e.,
Mt = Mr = 1).

• LOS path without beamforming: pD is around 1 for xr <
100 m since the signal is always much stronger than the
noise, after which the detection probability degrades due
to the path loss at large distances. At 160 m, pD ≈ 0.1.

• SP path without beamforming: in this case pD is always
very small, with a peak of around 0.006 when the user
is closest to the location s̃. The low value of pD can
be explained by the severe path loss in (12), essentially
leading to the scatter point as a transmitter with power
loss of S/(4π‖x̃r − s̃‖2) ≈ −14.5 dB.

• VA path without beamforming: under the VA hypothesis,
pD is similar to the LOS case, with some performance
loss due to the additional path loss compared to the LOS

2Note that this choice does not allow estimate of the DOA, but is selected
for simplicity of the simulations and reduced stochasticity.
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Figure 3. Detection probability as a function of the hypothesized UE location
for higher false alarm probability (pFA = 0.01), K = 1.

case. Roughly speaking, for the same pD the LOS path
can be 40 m longer than the VA path.

• SP path with beamforming: we now consider the ideal-
ized case where the precoder chooses a column vector
f = a∗t (θ̃t)/‖at(θ̃t)‖ and the combiner a column vector
w = ar(θ̃r)/‖ar(θ̃r)‖, in order to maximize the SNR
gain. This leads to the red dashed curve. Now, for
distances up to 40 m, pD ≈ 1, and then rapidly drops
off. This clearly shows the importance of illuminating
the environment, in order to achieve sufficient detection
probability to enable SLAM.

• VA path without beamforming under Rayleigh fading:
when the channel is random, generated according to a
zero-mean distribution with power equal to the deter-
ministic case above, we obtain the blue dashed curve.
We notice that the fading reduces pD for xr < 100 m,
while for xr > 100 m, pD is increased compared to
the deterministic case. This effect can be ascribed to the
shape of the Marcum Q-function.

• VA path without beamforming under Nakagami-m fading
(for m = 4): as show in the blue dotted curve, the Nak-
agami case is in between the Rayleigh and deterministic
case. For m = 1, we find the Rayleigh results, while for
m→ +∞ we recover the deterministic curve.

To further boost the performance, we can increase pFA or send
more consecutive OFDM symbols (increase K). Increase of
pFA (shown in Figure 3) leads to some improvement of pD by
raising the floor level, but will lead to more severe clutter for
the SLAM algorithm, which in turn leads to higher complexity
(each false path should be associated to each landmark) as
well as ghost landmarks. On the other hand, Figure 4 shows
the performance when we increase the coherent integration
interval from K = 1 to K = 10 OFDM symbols. The
additional SNR gain leads to orders of magnitude gains
in detection probability and is the only meaningful way to
discover small objects. However, care must be taken not to
increase the coherent integration time beyond the coherence
time of the channel.

V. CONCLUSIONS

We have proposed a novel interface between mmWave
channel estimation and 5G SLAM, by providing detection
probabilities to the SLAM methods, based on the physical
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Figure 4. Detection probability as a function of the hypothesized UE location
for K = 10 OFDM symbols, pFA = 0.001.

layer signal parameters of the communication. We have de-
rived simple expressions for the detection probability and
applied these to a variety of propagation conditions. Our
results indicate that beamforming and the coherent integration
duration play a crucial role in the detection probability and
should not be neglected in the SLAM. The proposed approach
can also be used to guide system design, to meet certain
quality metrics for SLAM, by modifying physical layer signal
parameters to achieve certain target detection probabilities.

Possible avenues for future work include the impact of
diffuse multipath and intelligent reconfigurable surfaces.
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