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Abstract—A key aspect to design an OFDM system for combined
positioning and high-data-rate communications is to find optimal
data and pilot power allocations. Previous work has investigated
the capacity maximizing design taking into account the effects
of channel and time-delay estimation for finite number of
subcarriers and channel taps. In this paper, we propose a method
based on the asymptotic expected Cramér-Rao bound of joint
time-delay and channel coefficients that reduces the complexity
of the bounds by increasing the number of subcarriers or channel
taps for data and pilot power allocations design. Specifically,
for long channels a general form of matrix inversion, which
is computationally complex, is converted to only the inversion
at strong eigenvalues or pilots. Numerical results show that as
the number of subcarriers increases, the non-asymptotic bounds
converge to the asymptotic bounds at a fast speed. Moreover,
even for a finite number of subcarriers or channel taps the
difference between joint data and pilot power allocations is
negligible compared to the non-asymptotic expected Cramér-Rao
bounds.

Index Terms—Combined positioning and communications,
OFDM, channel and time-delay estimation, asymptotic expected
Cramér-Rao bound, joint design of data and pilot power alloca-
tions.

I. INTRODUCTION

The design of combined positioning and communications

systems that can perform well in terms of high-data-rate trans-

mission and estimation accuracy is a challenging problem. In

general, the signals used for one application perform poorly in

the other case. To design a signal which can be applied for both

purposes, one needs to consider the system specifications for

time-delay estimation accuracy and data-rate communications.

To date, different approaches have been adopted to design pilot

symbols that improve the performance of channel estimators

[1]–[3]. The results show that equi-spaced, equi-powered pilots
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are optimal in terms of mean squared error. Pilot designs

for carrier frequency offset (CFO) estimation [4], or joint

channel and CFO estimation [5]–[7] are considered by others.

However, pilot design based on time-delay estimation has

received little attention. A pilot design based on joint CRB of

channel and time delay is proposed in [8], [9]. However, since

CRBs in [8], [9] are functions of specific channel realizations,

the resulting pilots cannot be guaranteed to be optimal for all

instances of random channels. The problem has been solved

by designing based on averaging the CRB over a set of

channel realizations known as Expected CRB (ECRB) [10].

Furthermore, joint data and pilot power allocations for the

case of limited number of subcarriers N and channel taps L
is investigated [10]. A method based on the effect of increasing

the number of subcarriers N and channel taps L on joint

channel coefficients and clock offset estimation is proposed

in [11]. However, the bounds are limited to a specific type of

channel.

In this paper, we consider the effect of increasing the number

of subcarriers N and channel taps L on the joint expected

Cramér-Rao bound of time-delay and channel coefficients.

Using asymptotic bounds reduce the computational complex-

ity. Specifically, applying matrix inversion algorithms such as

Gaussian elimination requires the computational complexity

of the order O(L3) for non-asymptotic bounds that makes

non-asymptotic bounds in [10] complex and close to singular.

However, we reduce the complexity to O(L) by doing the

inversion only at strong pilots. Asymptotic expected Cramér-

Rao bound for joint time-delay and channel coefficients is

investigated for two cases. First, we assume the number of

subcarriers N is sufficiently large but the number of channel

taps L is finite, second we consider the case where L and N
both grows large, with their relative ratio L/N approaching

zero. Furthermore, we compare joint design of data and pilot

allocations based on asymptotic bounds with non-asymptotic

bounds. Our results show that the difference for joint design

of data and pilot allocations based on asymptotic bounds is

negligible.
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II. SYSTEM MODEL AND PRELIMINARIES

In this section, first we present a model of the OFDM system,

then we propose the ECRB of the joint timing offset and

channel coefficients estimation as a performance metric.

A. OFDM Signal Model

Using the same notation as [11], the continuous-time received

signal from a standard OFDM symbol passed through a

frequency selective channel, after removing the guard interval,

is

y
(a)
N (t) =

∑

k∈Z

dN,kg
(a)(t− kT ) + v(a)(t), (1)

where T is the sampling period at the transmitter such that

T0 = NT is the observation window, N is the total number

of subcarriers, dN,k represents the output from the inverse FFT

(IFFT) block at the transmitter, and v(a)(t) is additive zero-

mean complex Gaussian noise. Unlike [11], but without loss

of generality, we assume that the impulse response g(a)(t) is

a delta function with the time limit of [0, LT ) where L is the

number of channel taps

g(a)(t) =

L−1∑

l=0

hlδ(t− lT − τ), (2)

where hl is the channel coefficient of lth path and τ is the tim-

ing offset or equivalently the time delay of first path. Assuming

the transmitter’s and receiver’s clocks are synchronized, the

discrete-time received signal yN [n] = y
(a)
N (nT ) is

yN [n] =
1√
N

N−1∑

n′=0

L−1∑

l=0

DN,n′hle
j 2π

N
n′(n−l−τd) + v[n], (3)

where DN,n′ represents pilot subcarrier at the n′th frequency,

and τ = τdT . In vector form we have

yN = RN (τd)h+ vN , (4)

where yN = [yN [0], . . . , yN [N − 1]]T , vN =
[vN [0], . . . , vN [N − 1]]T , h = [h0, . . . , hL−1]

T , and

the (n, l) element of RN (τd) is [RN (τd)]n,l =
1√
N

∑N−1
n′=0 DN,n′ej

2π
N

n′(n−l−τd). Finally, taking the FFT of

the output, we find

Y N = FN,NyN = FN,NRN (τd)h+ V N , (5)

which describes the output of the OFDM system at the training

phase. Also, one can obtain a similar model as in [8] by taking

the DFT of (3) and writing the result in a vector notation as

Y N = DNΓ(τd)FN,Lh+ V N , (6)

where DN represents an N ×N diagonal matrix of the input

with the kth diagonal element DN,k representing the input

at the kth subcarrier, Γ is an N × N diagonal matrix with

the kth diagonal element exp(−j2 π
T
kτd), and FN,L contains

the first L columns of a Discrete Fourier Transform (DFT)

matrix. Note that the difference between our problem and the

problems presented in [5], [11] is that here the timing offset is

only multiplied by n′, while in [11], sampling clock frequency

offset is multiplied by both n′ and n. Also, the problem differs

from the case when frequency offset occurs [5] since in that

case frequency offset is multiplied by n not n′.

B. Expected Cramér-Rao Bound

In this section, we present a closed-form expression for the ex-

pected CRB for the channel coefficients h and the timing offset

τd. Note that the related results can be found in [5], [8], [10],

[11]. Defining the parameter vector by θ = [hT
R,h

T
I , τd]

T , the

corresponding Fisher information matrix (FIM) can be written

as

JF =
2

σ2
ℜ
[
∂µH

∂θ

∂µ

∂θT

]
, (7)

where µ = FN,NRN (τd)h. One can easily find the FIM

JF =
2

σ2




Nℜ[UN ] −Nℑ[UN ] N2ℜ[V Nh]
Nℑ[UN ] Nℜ[UN ] N2ℑ[V Nh]

N2ℜ[hHV H
N ] −N2ℑ[hHV H

N ] N3hHWNh


 ,

(8)

where UN = 1
N
RH

N (τd)RN (τd), V N = 1
N2R

H
N (τd)QN (τd),

WN = 1
N3Q

H
N (τd)QN (τd), and QN (τd) = dRN (τd)/dτd.

Using the well known block inversion matrix lemma [12] and

defining a new estimation parameter θ̃ = [hT , τd]
T , we find

E

[
||ĥN − h||2

]
≥ σ2

2N

(
2tr(U−1

N ) + γ−1
N ||βN ||2

)
, (9)

E
[
(τ̂Nd − τd)

2
]
≥ σ2

2N3γN
, (10)

where

βN = U−1
N V Nh, (11)

γN = hH(WN − V H
NU−1

N V N )h. (12)

Finally, taking the expectation with respect to channel co-

efficients and using Jensen’s inequality, the approximate ex-

pression for the ECRB of the timing offset and the channel

coefficients would be

ECRBh ≈ σ2

2N

(
2tr(U−1

N ) + γ−1
N ||βN ||2

)
, (13)

ECRBτd ≈ σ2

2N3γN

, (14)

where

||βN ||2 = tr
(
(V H

NU−H
N U−1

N V N )Rh

)
, (15)

γN = tr
(
(WN − V H

NU−1
N V N )Rh

)
, (16)

where Rh is the channel covariance matrix. Note that the

actual expected CRB is tighter than the above expressions

due to Jensen’s inequality. In the next section, we obtain

the asymptotic ECRB for channel coefficients and timing

offset where the number of subcarriers N is assumed to be

sufficiently large.
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III. ASYMPTOTIC EXPECTED CRAMÉR-RAO BOUND

In this section, we obtain an asymptotic expression for UN ,

and using a similar procedure as in [11], we conclude the ex-

pressions for V N and WN . Unlike the expressions proposed

in [11], we express the asymptotic values of UN , V N , and

WN in discrete frequency as a function of pilot powers since

the final goal would be to design a system with optimal power

allocation for joint communication and navigation.

The (p, q) element of UN is

[UN ]p,q =

1

N

N−1∑

l1,l2=0

D∗
N,l1

DN,l2e
j 2π

N
(l1−l2)τd [MH(l1)M(l2)]p,q,

(17)

where

[MH(l1)M(l2)]p,q = e−j 2π
N

(ql2−pl1)ψ
(0)
N ((l1 − l2)), (18)

being

ψ
(0)
N ((l1 − l2)) =

1

N

N−1∑

n=0

e−j 2π
N

n(l1−l2). (19)

We propose the following lemma [11]:

Lemma 3.1: Let α > 0 and let φN : N → C be a function

such for every integer k with 1 < |k| < ⌊αN⌋, |φN (k)| <
C/k, where C is a constant that does not depend on N . Then,

for every real number r

ψ
(0)
N ((l1 − l2)) =

1

N

N−1∑

n=0

e−j 2π
N

n(l1−l2), (20)

converges almost surely to 0 as N → ∞.

Proof: See [11].

Replacing (18) and (19) in (17), and using the above lemma

with r = q − p+ τd, α = 1/2 and φN (k) = e−j 2π
N

pkψ
(0)
N (k),

one can conclude that the terms for l1 6= l2 in (17) almost

surely converge to zero. Therefore, we obtain

[U ]p,q = [UN→∞]p,q =
1

N

N−1∑

l=0

|DN,l|2e−j 2π
N

(q−p)l. (21)

Similarly, the asymptotic expressions for V N and WN can

be found as

[V ]p,q = [V N→∞]p,q =
jπ

N

N−1∑

l=0

l

N
|DN,l|2e−j 2π

N
(q−p)l,

(22)

and

[W ]p,q = [WN→∞]p,q =
4π2

3N

N−1∑

l=0

(
l

N
)2|DN,l|2e−j 2π

N
(q−p)l.

(23)

In the following, we find a more compact form for the asymp-

totic expressions of channel coefficients and time delay and

also we consider the case when the number of channel taps L
is sufficiently large such that L/N → 0. Replacing |DN,l|2 by

Pl as the pilot power at the lth subcarrier, and using (21), (22),

and (23) we obtain U = UN→∞ = 1
N

∑N−1
l=0 Ple(l)e

H(l),

V = V N→∞ = jπ
N

∑N−1
l=0

l
N
Ple(l)e

H(l), and W =

WN→∞ = 4π2

3N

∑N−1
l=0 ( l

N
)2Ple(l)e

H(l) where e(l) =

[ej
2π
N

l(0), . . . , ej
2π
N

l(L−1)]T . This can be interpreted as the

sum of N , L × L matrices with the eigenvalues Pl and

eigenvectors e(l) for l = 0, . . . , N − 1. In matrix form,

we have U = FL,NPFH
L,N , V = jπFL,NDPFH

L,N ,

and W = 4π2

3 FL,ND2PFH
L,N where FL,N is the first

L rows of the discrete Fourier transform matrix, and P

and D are pilot power and derivative matrices defined as

P = diag{P0, . . . , PN−1} and D = diag{ 0
N
, . . . , N−1

N
}

respectively. Consequently, asymptotic ECRB of channel co-

efficients and time delay can be found by replacing U , V ,

and W in (13) and (14),

NECRBas
h ≈ σ2

2

(
2tr(U−1) + γ−1||β||2

)
, (24)

N3ECRBas
τd

≈ σ2

2γ
, (25)

where

||β||2 = tr
(
(V HU−HU−1V )Rh

)
, (26)

and

γ = tr
(
(W − V HU−1V )Rh

)
. (27)

Finally, we analyze a special case where the number of channel

taps L is sufficiently large such that L/N → 0. In this case

the Fisher information matrix (FIM) is close to singular or

badly conditioned. For this type of problem, it is proved in

[13] that instead of using the inverse of the FIM, we should

apply the pseudo-inverse. This means that the inverse terms in

(24) and (25), i.e. U−1 and U−2, should be replaced by their

pseudo-inverse. Equivalently, the corresponding eigenvectors

to weak eigenvalues are set to zero. Applying eigenvalue

decomposition to (24) and (25), we obtain

NECRB
as

h ≈ σ2


tr(Λ−1) +

3tr
(
(ED̃

2
EH)Rh

)

2tr
(
(ED̃

2
ΛEH)Rh

)


, (28)

and

N3ECRB
as

τd
≈ 3σ2

2π2

1

tr
(
(ED̃

2
ΛEH)Rh

) , (29)

where E represents the eigenvectors corresponding to the

strong eigenvalues or pilots. Note that the terms eigenvalues

and pilots have been used interchangeably since, by increasing

the number of channel taps, the eigenvalues and pilots are

asymptotically the same. D̃ is the derivative matrix at the

subcarriers with strong pilots, and Λ represents strong eigen-

values or pilots. Note that (28) and (29) have been computed

by replacing U−1, V , and W by EΛ
−1EH , ED̃ΛEH ,

and ED̃
2
ΛEH respectively, and using the fact that E is

unitary matrix (i.e., EHE = I). This is pretty similar to the
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expressions proposed in [5] for the case of Asymptotic CRB

of joint frequency offset and channel coefficients.

IV. CHANNEL CAPACITY

In this section we present a pilot design for joint communica-

tion and navigation based on asymptotic expected CRB for two

cases. First, a more general form when the number of channel

taps can be any limited number is investigated. Second, we

assume sufficiently large number of channel taps L such that

the ratio between channel taps and the number of subcarriers

goes to zero L/N → 0. We can rewrite signal model (6) as

Y N = HḊN + V N , (30)

where ḊN = [DN,0, . . . , DN,N−1]
T , H =

diag{H(0), . . . , H(N − 1)}, H(k) = γτ (k)H̄(k),
γτ (k) = exp(−j 2π

T0

kτ), H̄(k) = F k,Lh, and F k,L is

the kth row of FN,L. Replacing H by Ĥ + H̃ in (30) we

obtain

y = ĤḊN + H̃ḊN + V N , (31)

where Ĥ and H̃ represent the estimated value and the

error, with the kth diagonal elements Ĥ(k) = γτ̂ (k)F k,Lĥ

and H̃(k) = γτ̃ (k)F k,Lh̃ respectively. Note that channel

coefficients h are estimated in the receiver through known

pilot symbols inserted at the transmitter. The receiver feeds

the estimated channel coefficients back to the transmitter

(Adaptive Modulation). However, the estimated coefficients

at the transmitter are not error-free due to estimation error.

Consequently, it can be shown that the lower bound of ergodic

capacity C̄lb for the so called partially known channel at the

transmitter is of the form of [14]

C̄lb(pp,pd) =
1

N
E

[
log2 det(I + P dR

−1
ye

ĤĤ
H
)
]
, (32)

where P d is an N × N diagonal matrix of data power with

k ∈ D diagonal entry pd,k and zero elsewhere, D being the

set of subcarriers used for data transmission, and

Rye
= P dE

[
H̃H̃

H
]
+ σ2I. (33)

So, we obtain

E

[
H̃H̃

H
]
= diag

{
F k,LE{h̃h̃

H}FH
k,L

}

k∈D
. (34)

Using (33) and (34), and replacing E{h̃h̃H} by the matrix

form of (24) or (28), we find the ergodic capacity as

C̄lb(pp,pd) = E
[
Clb(pp,pd)

]
, (35)

where Clb(pp,pd) is the instantaneous capacity defined as

Clb(pp,pd) =
1

N

∑

k∈D
log2(1 +

pd,kζk

pd,k ζ̃k(pp) + σ2
), (36)

where ζk = F k,Lĥĥ
H
FH

k,L, and ζ̃k(pp) = F k,LJh(pp)F
H
k,L

with Jh(pp) being the matrix form of (24) or (28), and pp

represents pilot vector or subcarriers used for estimation, i.e.

ζ̃k(pp) is a function of pilot vector pp.

V. POWER ALLOCATION OPTIMIZATION

In this section, we formulate the optimization problem used

for pilot design for joint communications and positioning.

To maximize the cost function which is the lower bound

of ergodic capacity (35), one needs to solve the following

optimization problem

C̄CL = E

[
max

pp,pd∈K
Clb(pp,pd)

]
, (37)

where

K = {pp,pd|Jτd(pp) ≤ ǫ,1Tpd + 1
Tpp ≤ Pt,

pT
p pd = 0,pp º 0,pd º 0},

(38)

where C̄CL is the channel capacity for the closed-loop (CL)

system using partially known CSI at the transmitter side, K
is a set such that pp and pd satisfy some constraints, pp

and pd represent pilot and data power vectors respectively,

Pt is the total power, Jτd(pp) represents the asymptotic

bound for time-delay in (25) or (29) and ǫ is the minimum

accuracy in the estimation, constraint 1
Tpd + 1

Tpp ≤ Pt

limits the total power in the design of data and pilots to

be smaller than Pt, pT
p pd = 0 means that subcarriers used

for data transmission cannot be used as pilots which leads

to a combinatorial optimization that is not convex. To solve

this issue, we use the relaxation approach [10] by omitting

the constraint pT
p pd = 0 and solving the relaxed problem.

Solving the relaxed problem, one needs only a few subcarriers

as pilots with higher amplitudes while the rest are set for data

transmission. Finally, pp º 0 and pd º 0 emphasizes that

pilots and data are non-negative values where º is an element-

wise operator.

VI. SIMULATION RESULTS

In this section we present the simulation results based on

the asymptotic bounds. We use the simulation parameters

as follows. The number of channel taps L = 4, number

of subcarriers N = 40, noise power σ2 = 0.01, min-

imum accuracy in time-delay estimation using asymptotic

bound is set to ǫ = 0.001 and ǫ = 0.0001, and a diag-

onal channel covariance matrix has been used with (Rh =
diag([1.8949; 1.6222; 1.4209; 1.9405])).

Fig. 1 and Table. I show the asymptotic behavior of the bounds

for channel coefficients and time delay estimation respectively.

Fig. 1 shows that after 40 subcarriers the asymptotic bound for

channel coefficients converges to the non-asymptotic ECRB

of channel coefficients. Note that convergence behavior of

the asymptotic ECRB of time delay is faster than channel

coefficients due to the fact that it decreases by a factor of N3

while the asymptotic ECRB of channel coefficients decreases

by a factor of N . Therefore, to make the difference visible we

used the Root Mean Square Error (RMSE) of the difference

between asymptotic and non-asymptotic ECRB of time delay.
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Fig. 1. Asymptotic behavior of ECRBas

h
versus number of subcarriers N .

TABLE I
RMSE OF THE DIFFERENCE BETWEEN ASYMPTOTIC AND

NON-ASYMPTOTIC ECRB OF TIME-DELAY

N 10 50 100 150

RMSE [dB] -56.3961 -86.8914 -98.9957 -106.1279

As it is clear from Fig. I the difference is of the order of

−56dB to −106dB for N from 10 to 150 respectively.

Fig. 2 shows ergodic capacity for closed-loop system C̄CL ob-

tain based on the optimization problem in (37) and (38) versus

SNR. From Fig. 2, it is clear that by improving the accuracy

in the estimation of time-delay C̄CL is reduced considerably

for SNR below 30dB while by increasing SNR the effect of

time-delay estimation accuracy on C̄CL is reduced.

VII. CONCLUSION

Applying asymptotic bounds one can use the simpler expres-

sions of the bounds to the optimization problem specially by

increasing the number of subcarriers N and channel taps L.

In this paper, the performance of near-optimal pilot and data

power allocations for the case of asymptotic bounds has been

compared with the traditional non-asymptotic bounds. Results

show that after a certain number of subcarriers which can be

as low as N = 40, asymptotic bounds converge to the non-

asymptotic bounds. Further, the performance of pilot power

allocations is only affected negligibly even for the limited

number of subcarriers and channel taps.
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