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Abstract—The accuracy of the estimation of time-delay and
channel coefficients in Orthogonal frequency division multi-
plexing (OFDM) communication systems can be improved by
reducing the variability of channel coefficients, i.e. reducing
channel covariance and increasing channel mean for a given
power. First, we prove that the effect of channel variability
between different OFDM symbols cannot be directly captured
by extending expected Crámer Rao bound (ECRB) for one
OFDM symbol to M OFDM symbols. Then, the effect of channel
variations between different OFDM symbols is modeled as the
variations of channel covariance and channel mean for one
OFDM symbol and a given channel power. A pilot design
approach based on per-symbol signal to noise and interference
ratio (SINR) for a given time-delay estimation accuracy is
investigated. The results show that reducing channel covariance
and improving channel mean for a given channel power leads to
more accurate estimation of time-delay and channel coefficients.
Furthermore, one can save the total power for a given estimation
accuracy and channel capacity.

Index Terms—OFDM, ECRB, joint pilot design, SINR, channel
variability.

I. INTRODUCTION

Location awareness is one of the fundamental characteristics
of cognitive radio (CR). Applications of location awareness
can require different level of positioning accuracy. For in-
stance, indoor positioning usually requires higher positioning
accuracy. Also, one of the crucial aspects for developing
a cooperative positioning system is to establish an accurate
positioning method. On the other hand, one needs to keep the
communications rate above a certain level at the same time.
Therefore, designing a sequence that can satisfy both require-
ments simultaneously based on the system specifications for
time-delay estimation (This can be converted to the distance
measurements) accuracy and channel capacity is of interest.

Pilot symbols are widely used for estimation and syn-
chronization in communications and navigation systems. For
instance, pilot design in the estimation of time-delay can be
used for ranging in global navigation satellite systems (GNSS).
Since the choice of pilot design significantly affects estimation
performance, it is of critical importance to find the optimal
pilots that can improve the estimation accuracy.
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To date, different approaches have been adopted to de-
sign pilot symbols that improve the performance of channel
estimators [1]–[3]. The results show that equi-spaced, equi-
powered pilots are optimal in terms of minimum mean square
error (MMSE). Pilot designs based on carrier frequency offset
(CFO) estimation [4], or joint channel and CFO estimation [5]
are considered by others. However, pilot design based on joint
time-delay and channel estimation has received little attention.
In [6], a pilot design for joint channel and time-delay based
on hybrid CRB (CRB) is presented. However, the bound is
not a tight bound comparing to the other bounds, e.g. ECRB.
A Pilot design based on joint CRB of channel and time-delay
is proposed in [7]. However, since CRBs in [7] are functions
of specific channel realizations, the resulting pilots are not
guaranteed to be optimal for all instances of random channels.
The problem has been solved by designing based on averaging
the CRB over a set of channel realizations known as ECRB.
Note that in [7], [8], it is assumed that the design is based on
one OFDM symbol.

In this paper, we use ECRB for joint time-delay and channel
coefficients [8] to avoid the design for only a specific type
of channel and rather dealing with channel statistics. On the
one hand, the effect of channel variations between different
OFDM symbols is not captured by extending the model for
one OFDM symbol to several symbols. On the other hand,
channel variations between different OFDM symbols can be
modeled as variations of channel covariance and channel
mean for a given power. Sequential methods for updating
MMSE for different symbols (e.g., Kalman filters) provides
insight to our approach of updating channel covariance and
channel mean between different OFDM symbols. However,
applying sequential methods of updating MMSE of time-
delay and channel coefficients requires the estimation of time-
delay as a non-linear parameter resulting the use of extended
Kalman filters [9] which is beyond the scope of this paper.
Consequently, we use an alternative approach by changing
channel covariance and mean for a certain channel power to
model variations between different OFDM symbols. A pilot
design approach for optimization based on per-symbol signal
to interference and noise ratio (SINR) for a given time-delay
estimation accuracy is investigated. Results show a significant
improvement in terms of estimation accuracy and saving the
total power by reducing channel variability.978-1-4799-5863-4/14/$31.00 c⃝2014 IEEE



II. SIGNAL MODEL AND ECRB

In this section the signal model and ECRB of time-delay
ECRBτd and the trace of ECRB of channel coefficients
tr{ECRBh} for one OFDM symbol and M OFDM symbols
are briefly explained.

A. Signal Model

We use the following OFDM channel model

Y = Ω(τd)h+W , (1)

where
Ω(τd) = XΓ(τd)FL, (2)

and X represents an N × N diagonal matrix of the input
with the kth diagonal element X[k] representing the input
at the kth subcarrier for k = −N

2 + 1, . . . , N
2 for even

values of N and k = −N−1
2 , . . . , N−1

2 for odd values of N ,
Γ(τd) is an N × N diagonal matrix with the kth diagonal
element exp(−j2 π

Ts
kτd) where τd is the time-delay, Ts is the

OFDM symbol length, FL contains the first L columns of
a Discrete Fourier Transform (DFT) matrix centered around
zero, h is an L× 1 column vector representing channel coef-
ficients, W is zero-mean complex Gaussian noise distributed
as CN (0, σ2

wI), and finally Y is an N×1 vector representing
the output signal.

B. ECRB for One OFDM Symbol

Using the Fisher Information Matrix (FIM) for the joint
estimation of time-delay τd and channel coefficients h [7], one
can obtain the CRB. However, CRB depends on the channel
coefficients h. To find a bound that does not depend on the
channel coefficients h but channel statistics, i.e. channel mean
µh and covariance Σh, one can take the expectation of CRB
with respect to channel coefficients h and use the Laplace
approximation, i.e. E[XY ] ≈ E[X]

E[Y ] , to obtain the approximated
ECRB as [8] [

ECRBτd

tr{ECRBh}

]
≈ σ2

w

2

[
J−1
τd
Jh

]
, (3)

where

Jτd = tr{(M1 −M2)Σh}+ µH
h (M1 −M2)µh, (4)

and

Jh = 2tr{Q−1}+ J−1
τd

(
tr{M qΣh}+ µH

h M qµh

)
, (5)

with M1, M2, and M q defined as
M1 = FH

LDPDFL, M2 = FH
LPDFLQ

−1FH
LPDFL,

and M q = FH
LPDFLQ

−1Q−1FH
LPDFL respectively.

Also, Q = FH
LPFL, P = XHX is an N × N

diagonal matrix representing pilot powers, D = 2π
Ts

×
diag{−N

2 + 1, . . . , N
2 } for even values of N and D =

2π
Ts

×diag{−N−1
2 , . . . , N−1

2 } for odd values of N , µh = E[h]
is the channel mean, and Σh = E[(h−µh)(h−µh)

H ] is the
channel covariance matrix. Throughout the paper we assume
2
σ2
w

is set to one to simplify the notation.

C. ECRB for M OFDM Symbols

Using a simple extension to our model in (1) for M OFDM
symbols, we obtain Y 1

...
Y M

 =

Ω1(τd) . . . 0
...

. . .
...

0 . . . ΩM (τd)


 h1

...
hM

+

W 1

...
WM

 ,

(6)
where

Ωi(τd) = XiΓ(τd)FL, (7)

and Xi is an N ×N diagonal matrix of input at the the ith
OFDM symbol with the same definition as in (2), hi is the
channel coefficient vector of the ith OFDM symbol assuming
to be correlated with the channel coefficient vector of the jth
OFDM symbol hj , and W i is a zero-mean complex Gaussian
noise of the ith OFDM symbol distributed as CN (0, σ2

wI), and
assumed to be independent of W j for different values of i and
j. Applying the same approximation and assumption for the
case of single OFDM symbol, we obtain the ECRB for M
OFDM symbols as[

ẼCRBτd

tr{ẼCRBh}

]
≈ σ2

w

2

[
J̃−1
τd

J̃h

]
, (8)

where

J̃τd = tr{(M̃1 − M̃2)Σ̃h}+ µ̃H
h (M̃1 − M̃2)µ̃h, (9)

and

J̃h = 2tr{Q̃
−1

}+ J̃−1
τd

(
tr{M̃ qΣ̃h}+ µ̃H

h M̃ qµ̃h

)
, (10)

with M̃1 = diag{M (i)
1 }Mi=1, M̃2 = diag{M (i)

2 }Mi=1,
M̃ q = diag{M (i)

q }Mi=1, µ̃h = [µT
1 . . .µT

M ]T where µi

is the channel mean at ith OFDM symbol, and Q̃ =

diag{Qi}Mi=1. Also, we define M
(i)
1 = FH

LDP iDFL,
M

(i)
2 = FH

LP iDFLQ
−1
i FH

LP iDFL, Qi = FH
LP iFL,

and M (i)
q = FH

LP iDFLQ
−1
i Q−1

i FH
LP iDFL where P i =

XH
i Xi is an N×N diagonal matrix representing pilot powers

of the ith OFDM symbol. Finally, Σ̃h represents a Block-
Toeplitz matrix [10] defined as

Σ̃h =


Σ0 Σ1 . . . ΣM−1

ΣH
1

. . . . . . ΣM−2

...
. . . . . .

...
ΣH

M−1 ΣH
M−2 . . . Σ0

 , (11)

with (Σk)k=0,...,M−1 are L × L matrices (not necessarily
Toeplitz) representing channel covariance matrix of symbol
i for k = 0 and cross correlation matrices between different
OFDM symbols for k ̸= 0. This is due to the fact that channel
has the same covariance matrix for different OFDM symbols
and cross correlation matrix between symbols i and j depends
on i − j. However, channel coefficients can have different
means µi=1,...,M for different OFDM symbols. The entries



of each sub matrix Σk are of the form (Σk)u,v = σk
u,v , for

u, v = 1, . . . , L. Consequently, (9) and (10) can be written as

J̃τd =
∑M

i=1[trace{(M (i)
1 −M

(i)
2 )Σ0}

+ µH
i (M

(i)
1 −M

(i)
2 )µi].

(12)

J̃h =
∑M

i=1[2tr{Q−1
i }+ J̃−1

τd
(tr{M (i)

q Σ0}
+ µH

i M (i)
q µi)].

(13)

From (12) and (13) it turns out that channel correlation Σk ̸=0

does not affect the ECRB. Next, we propose an alternative
approach to consider the effect of channel variations by
changing channel covariance and mean for a given channel
power and design the pilots based on the new model.

III. PILOT DESIGN

In this section, first a model for channel uncertainty be-
tween different OFDM symbols for a given channel power is
presented. Second, we propose a pilot design based on signal
to interference and noise ratio (SINR) (the effect of channel
estimation error is considered as interference) for a given
accuracy in the estimation of time-delay. Note that we assume
time-delay τd is fixed within estimation phase and channel
variations is due to fast variations of the amplitudes [11] that
changes channel statistics, i.e. channel mean and covariance
for different OFDM symbols.

A. Modeling the Channel Uncertainty

We propose a novel method to model channel uncertainty
between different OFDM symbols by scaling channel mean
and covariance for a given power Ph (this is due to the fact
that channel power between different OFDM symbols does not
change) defined as E[||h||2], the operation ||.|| is the norm of
a vector. A coefficient a2 is defined to change the channel
covariance as a2Σh, and a coefficient b to change the channel
mean as bµh. Using the expected value of a quadratic function,
the total channel power Ph is

Ph = a2ϵ2 + b2µ2, (14)

where

ϵ2 = tr{Σh} = E[||h− µh||2], (15)

µ2 = µH
h µh. (16)

Actually, (14) means that we are scaling the covariance with
the coefficient a2 and the mean squared with the coefficient
b2 in such a way that their sum remains constant. From (14),
for a fixed value of b2 the coefficient a2 can be written as

a2 =
Ph − b2µ2

ϵ2
. (17)

The coefficients a2 and b2 are used in the next part to
investigate the effects of channel uncertainty on pilot design.

B. Optimization Problem for Pilot Design

The design problem can be formulated as

(P1)



max
pp,pd

1
N

∑
k∈D SINRk(pp,pd, b)

s.t. J−1
τd

(pp, b) ≤ ϵ

1Tpp + 1Tpd ≤ Pt

pT
p pd = 0

pp ≽ 0;pd ≽ 0,

(18)

where 1 is the all-one vector, Pt is the total power, D is the
set of subcarriers used for data transmission that is not fixed,
pp represents power allocated to the subcarriers for estimation
or pilots, pd stands for power allocated to subcarriers for data
transmission or data, and SINRk(pp,pd, b) is SINR for kth
subcarrier of a given channel variability parameter b defined
as

SINRk(pp,pd, b) =
pd,k|H(k)|2

pd,kF k,LJh(pp, b)F
H
k,L + σ2

, (19)

where pd,k is the kth entry of data vector pd, F k,L is
the kth row of FL representing first L columns of dis-
crete Fourier transform (DFT) matrix (Note that the term
Fk,LJh(pp, b)F

H
k,L is interpolation of the estimated values of

channel coefficients to obtain the value at the kth subcarrier
for data transmission), and H(k) = F k,Lh. Also, Jτd(pp, b)
and Jh(pp, b) are defined as

Jτd(pp, b) = a2tr{(M1 −M2)Σh}
+ b2µH

h (M1 −M2)µh,
(20)

and

Jh(pp, b) = 2Q−1 + J−1
τd

(pp, b)(a
2M qΣh

+ b2M qµhµ
H
h ),

(21)

where a2 is defined in (17). The first constraint in problem
(P1) limits the minimum accuracy in the estimation of time-
delay to ϵ, second constraint force the total power for data
and pilot to be less than or equal to Pt, the third constraint
makes the problem a combinatorial optimization that is a non-
convex problem, and the last constraint is due to positive
values of data and pilot. Instead of solving the non-convex
optimization problem (P1), we solve the following relaxed
optimization problem obtained by omitting the third constraint
in (P1). By omitting the third constraint in (P1) and solving
the relaxed problem (P2) only a few subcarriers are used as
pilots with higher amplitudes and the rest of subcarriers with
smaller amplitudes are set for data transmission.

(P2)


max
pp,pd

1
N

∑
k∈D SINRk(pp,pd, b)

s.t. J−1
τd

(pp, b) ≤ ϵ

1Tpp + 1Tpd ≤ Pt

pp ≽ 0;pd ≽ 0.

(22)



Problem (P2) can be written in a semi-definite programming
(SDP) form using the Schur complement formula as

(P3)



max
{tk},pp,pd

∑
k∈D tk

s.t. SINRk(pp,pd, b) ≥ tk∑L−1
i=0

[
λiu

H
i M1ui − 1

Lϵ
−1

√
λiu

H
i BH

√
λiBui

1
LQ

]
≽ 0

1Tpp + 1Tpd ≤ Pt

pp ≽ 0;pd ≽ 0,
(23)

with λi and ui being the ith eigenvalue and eigenvector of
a2Σh + b2µhµ

H
h respectively, tk is an auxiliary parameter,

and B is defined as FH
LPDFL. Problem (P3) is a convex

optimization problem due to the linear cost function and the
fact that the constraints are in the form convex functions. Note
that at sufficiently high SNR (Pd,k/σ

2 ≫ 1 for the constraint
to be active or Pd,k > 0) the first constraint can be written
as tkF k,LJh(pp, b)F

H
k,L ≤ |H(k)|2 that is a convex function

with respect to pp, i.e. it is of the form of a matrix fractional
function that is convex [12].

It can be proved that by increasing factor b (increasing chan-
nel mean µh and reducing channel covariance Σh for a given
channel power Ph) both J−1

τd
(pp, b) and Jh(pp, b) decrease,

see the Appendix for comparing the results for b2 = 0 and
b2 = Ph/µ

2. This means the constraint J−1
τd

(pp, b) ≤ ϵ is
fulfilled with less amount of the total power Pt for the same
time-delay accuracy. Also, decreasing Jh(pp, b) by increasing
b leads to higher value of SINRk(pp,pd, b) for a given total
power Pt based on the formulation in (19). Consequently, one
can obtain the same time-delay accuracy and per-symbol SINR
using less amount of total power Pt.

IV. SIMULATION RESULTS

In this section, the effect of different channel mean µh and
covariance Σh on the bounds, capacity, and total power is
investigated. The channel covariance matrix is Σh = 1

LI . We
assume a channel impulse response of length L = 4 with the
mean value of µT

h = [1, 0, 0, 0] and an OFDM signal with
N = 40 subcarriers. The total power for joint data and pilot
design is set to Pt = 5.

Note that only to reduce the simulations time for joint data
and pilot design we use Pt = 5 and minimum estimation
accuracy of time-delay of the order 10−3. Obviously, one
can increase the total power and apply minimum estimation
accuracy of time-delay of the order 10−9 or smaller values that
are closer to realistic values of time-delay used for positioning
purposes. Figure 1 studies the effect of different values
of b on J−1

τd
and Jh. Note that the values of J−1

τd
and Jh

are normalized by multiplying the results with ( N
Ts
)2 and 1

L
respectively. It can be observed that by increasing the value
of b or equivalently by reducing channel covariance Σh and
improving the channel mean µh for a fixed power Ph, both
J−1
τd

and Jh decrease.
Figure 2 shows the percent of required increase in the total

power Pt for b2 = 0 to obtain the same time-delay estimation
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Fig. 1. Decreasing patterns of (top) J−1
τd and (bottom) Jh by increasing b.
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Fig. 2. Total power increase required for b2 = 0 to obtain the same time-
delay accuracy and per-symbol SINR as b2 = Ph/µ

2.

accuracy and per-symbol SINR as in b2 = Ph/µ
2. In other

words, to achieve the same data transmission rate and time-
delay estimation accuracy for the case of b2 = Ph/µ

2, one
needs to increase the total power Pt for the case of b2 = 0.
Intuitively, this means that the more we are uncertain about
the channel, the more we need to increase total power Pt to
obtain the same performance. Also, the amount of required
increase in the total power Pt increases by more time-delay
estimation accuracy ϵ, i.e. smaller values of ϵ.

Finally, Figure 3 shows the increasing pattern of the lower
bound of capacity which is defined as a logarithmic function
of per-symbol SINR as

Clb =
1

N

∑
k∈D

log(1 + SINRk(pp,pd, b)), (24)

with respect to upper bound of time-delay estimation accuracy
ϵ for b2 = 0 and b2 = Ph/µ

2. It is clear that the capacity is
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Fig. 3. (top) Increasing pattern of the lower bound of capacity Clb with
respect to minimum time-delay estimation accuracy ϵ for b2 = 0 and b2 =
Ph/µ

2, and (bottom) the difference between lower bound of capacity for
b2 = 0 and b2 = Ph/µ

2 (∆Clb) with respect to minimum time-delay
estimation accuracy ϵ.

increased for all the values of time-delay estimation accuracy
for b2 = Ph/µ

2. Also, the increase in the amount of capacity
is more evident for higher time-delay estimation accuracy, i.e.
smaller values of ϵ. The bottom plot shows the percentage of
difference between lower bound of capacity for b2 = 0 and
b2 = Ph/µ

2.

V. CONCLUSION

A model for channel variability of different OFDM symbols
is proposed based on varying channel mean and covariance
for a given channel power. The effect of channel variability
on the joint design of pilot and data power allocations is
investigated. Joint design of data and pilot power allocations
is turned from a combinatorial (non-convex) optimization to
an SDP optimization (convex) problem. The results show that
by reducing channel covariance and increasing channel mean
for a given channel power the estimation accuracy of channel
and time-delay is improved. Also, in terms of saving the total
power for a given time-delay accuracy and per-symbol SINR
one can save up to 25% for the case of knowing the exact value
of channel mean with channel covariance matrix of zero. Fi-
nally, simulations verify increasing the capacity by increasing
channel mean and reducing channel covariance. Consequently,
in an OFDM system with correlated OFDM symbols one can
use the information from the previous symbols to improve the
estimation accuracy and per-symbol SINR.

APPENDIX

Considering the fact that estimated channel coefficients ĥ
and error in the estimation e are related to the actual channel
coefficients h as h = ĥ+ e, and also noting that error in the
estimation of channel coefficients e is a zero-mean Gaussian

variable with E[eeH ] = σ2
eI , one can obtain

Σh = E[eeH ] =

L−1∑
i=0

σ2
eviv

H
i , (25)

and
µhµ

H
h = ||h||2uuH , (26)

where vi represents the ith eigenvector defined as an all-zero
vector of length L with ith entry of one, ||h||2 is the channel
norm, and u is th6e eigenvector with uHu = 1. So, in order
to prove the value of J−1

τd
and Jh for b2 = Ph/µ

2 is smaller
than the corresponding values for b2 = 0, it is sufficient to
show that M(||h||2uuH − σ2

eI) ≽ 0 (Multiplication of two
hermitian and positive semi-definite matrices (PSD) is a PSD
matrix) where M stands for a hermitian and PSD matrix
that can be replaced by M1 −M2 and M q for Jτd and Jh
respectively. This is always true using the definition of a PSD
matrix provided that ||h||2||z||2 − σ2

e ||x||2 ≥ 0 for x being
an arbitrary vector and ||z||2 = xHuuHx. This condition is
always fulfilled practically since σ2

e is sufficiently small.
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