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Abstract—We study the uplink performance of a massive
multiple-input multiple-output (MIMO) system with one-bit ana-
log to digital converters (ADCs) in the presence of a disruptive
jammer. We propose spatial Sigma-Delta (Σ∆) quantization with
an interference cancellation feedback beamformer (FBB Σ∆) to
mitigate the adverse impact of the jammer on the system perfor-
mance. Then we analyze the performance of this architecture by
adopting an appropriate linear model and present a recursive
algorithm to calculate the power of the quantization noise.
Simulation results show that the spatial FBB Σ∆ architecture
can achieve the same symbol error rate as in systems with high-
resolution ADCs.

Index Terms—Massive MIMO, one-bit ADCs, sigma-delta,
jamming, interference mitigation, beamforming.

I. INTRODUCTION

To decrease the power consumption of massive multiple-
input multiple-output (MIMO) systems, architectures with
low-resolution analog to digital converters (ADCs) have been
studied extensively in the literature [1]- [6]. Although coarse
quantization degrades the performance of the system, it has
been shown that it can be alleviated by increasing the num-
ber of antennas [1] or exploiting more complicated signal
processing techniques [7]. Recently, the idea of temporal Σ∆
quantization has been extended to the spatial domain [8]–[11].
It has been shown that, using minimal additional hardware in
the analog domain, the resulting spatial one-bit Σ∆ architecture
can shape the quantization noise to angles of arrival away
from those that correspond to the users of interest. Hence,
performance close to that of systems with high-resolution
ADCs can be achieved while reducing power consumption
and complexity.

One drawback of using one-bit ADCs not addressed in
previous work is its susceptibility to strong interference, which
can occur in MIMO systems when a jammer is present. Since
a one-bit ADC has zero dynamic range, a moderately strong
jammer can effectively swamp the relatively weak signals of
interest and significantly degrade performance. With one-bit
ADCs, jammer mitigation must occur in the RF domain prior
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to sampling, in order for the coarsely quantized ADCs to reveal
the dynamics of the signals of interest.

In this paper, we show that the feedback employed by the
spatial Σ∆ architecture can be generalized for this purpose. The
genesis of the idea comes from work described in [12], which
is based on the use of temporally oversampled Σ∆ ADCs.
Instead of simply using feedback of the delayed ADC output
as in a standard temporal Σ∆ architecture, the approach of [12]
employs an analog feedback beamformer (FBB) designed to
temporally null the interference. Unlike [12], in the method
presented here we take a different approach that does not
employ temporal oversampling, but instead uses the spatial
Σ∆ architecture. In particular, the feedback between adjacent
antennas is generalized to include an FBB signal that also
serves to spatially null the interference. We generalize the
approach of [11] to develop an equivalent linear model for
the Σ∆ array that includes the FBB signal and sets the output
level of the one-bit quantizers. Simulations show that while the
ordinary spatial Σ∆ architecture is not effective in adequately
alleviating the impact of the jammer, our proposed spatial FBB
Σ∆ quantizer can provide performance that is close to that of
an unquantized system.

In the next section we outline the basic system model. In
Section III, some background on temporal FBB Σ∆ modulation
is provided and the spatial FBB Σ∆ architecture is proposed.
Then we adopt the equivalent linear model developed in [11]
to analyze the FBB Σ∆ array. Simulation results are presented
in Section IV, followed by our conclusions.

Notation: We use boldface letters to denote vectors, and
capitals to denote matrices. The symbols (.)∗, (.)T , (.)H , and
(.)† represent conjugate, transpose, conjugate transpose, and
pseudo inverse, respectively. A circularly-symmetric complex
Gaussian (CSCG) random vector with zero mean and covari-
ance matrix R is denoted n ∼ CN(0,R). The identity matrix
is denoted by I and the expectation operator by E [.]. For
a complex value, x = xr + j xi , we define xr = Re [x] and
xi = Im [x].

II. SYSTEM MODEL

Consider the uplink of a massive MIMO system consisting
of a legitimate, single-antenna user that sends its signal to a
base station (BS) equipped with a uniform linear array of M
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antennas. In addition, a jammer is present that aims to impair
the performance of the legitimate user. Accordingly, the M×1
received signal at the BS is

x =
√

pgUsU + n +
√

qgJ sJ, (1)

where p represents the average transmission power from the
user, gU = 1/

√
L

∑L
`=1 υ`a (θ`) is the user’s channel vector

where L denotes the number of signal paths, υ` ∼ CN (0,1)
is the complex channel gain for the `-th path, and

a (θ`) = [1, e−j2π
d
λ sin(θ` ), · · · , e−j(M−1)2π d

λ sin(θ` )]T (2)

denotes the array response vector for angle of arrival θ` ,
where d and λ represent the antenna spacing and the carrier
wavelength, respectively. The symbol sU ∈ C transmitted from
the user satisfies E

[
|sU |2

]
= 1, and n ∼ CN

(
0, σ2

n I
)

denotes
additive CSCG receiver noise at the BS. In addition, q repre-
sents the jammer’s average power, gJ = 1/

√
L

∑L
j=1 υj a

(
θ j

)
is the channel vector between the jammer and the BS, and sJ
denotes the jammer’s signal, where E

[
|sJ |2

]
= 1.

In a standard implementation involving one-bit quantization,
each antenna element at the BS is connected to a one-bit
ADC. In such systems, the received baseband signal at the
mth antenna becomes

ym = Qm (xm) , (3)

where Qm (.) denotes the one-bit quantization operation ap-
plied separately to the real and imaginary parts as

Qm (xm) = αm,rsign (Re (xm)) + jαm,isign (Im (xm)) . (4)

The output voltage levels of the one-bit quantizers are repre-
sented by αm,r and αm,i . While the value of the output level
is irrelevant for standard one-bit quantization, in the case of
Σ∆ quantization the selection of adequate output levels is of
paramount importance and the necessity for this more general
approach will become apparent later1. Furthermore, we will
allow these levels to be a function of the antenna index m,
unlike most prior work which assumes that the output levels
are the same for all antennas. Finally, the received baseband
signal at the BS is given by

y = Q (x) =
[
Q1 (x1) ,Q2 (x2) , · · · ,QM (xM )

]T
. (5)

III. Σ∆ ARCHITECTURE

A. Temporal FBB Σ∆ Modulation

In this subsection, we elaborate on the temporal FBB Σ∆

modulation approach of [12] to clarify the noise shaping
characteristics of this technique. Fig. 1(a) shows a block dia-
gram representing the Nth-order temporal FBB Σ∆ modulator
with feedback weights w = [w0, · · · ,wN−1]

T . To shape the
quantization noise, the weighted output signals are fed back
and subtracted from the input (∆-stage), and then this error is
integrated (Σ-stage).

1While the one-bit ADC output levels will be optimized, this is a one-time
optimization and the values do not change as a function of the user scenario
or channel realization. Thus the ADCs are still truly “one-bit.”
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Fig. 1. (a) Block diagram for the N th-order temporal FBB Σ∆ modulator.
(b) Equivalent linear model for the quantizer.

To characterize the transfer function of this non-linear
system, we substitute the one-bit quantizer with the equivalent
linear model depicted in Fig. 1(b). The input-output relation-
ship of the FBB Σ∆ quantizer can then be written as

Y (z) = A(z)X (z) + B(z)Q (z) , (6)

where X (z) =
∑∞

n=0 x [n] z−n denotes the z-transform and

A(z) =
γ

1 + (γw0 − 1) z−1 + γw1z−2 + · · · + γwN−1z−N
(7)

B(z) =
1 − z−1

1 + (γw0 − 1) z−1 + γw1z−2 + · · · + γwN−1z−N
. (8)

Unlike ordinary Σ∆ modulation that passes the signal through
an all-pass filter and the quantization noise through a high-
pass filter, in (6) we see that X(z) is passed through A(z)
and Q(z) through B(z) for FBB Σ∆ modulation. Hence, this
approach not only provides a tool for shaping the quantization
noise, but proper design of the feedback weights w allows
for temporal filtering that passes the desired signal while
eliminating undesirable contributions from other sources such
as a jammer.

B. One-Bit Spatial FBB Σ∆ Modulation

The idea underlying temporal FBB Σ∆ modulation can
be adapted to the angle domain, in order to spatially shape
the quantization noise in a desired way and remove inter-
ference. Instead of forming the ∆ component using delayed
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Fig. 2. Spatial FBB Σ∆ architecture.

samples of the quantized input as in the temporal case, we
use the quantized signals from adjacent antennas. A direct
translation of the temporal Σ∆ concept to the angle domain
pushes the quantization noise to higher spatial frequencies,
which correspond to angles away from the array broadside
(|θ | � 0◦), while oversampling (i.e., reduced d/λ) pushes
the signals of interest near broadside closer to zero spatial
frequency. However, by phase-shifting the quantization error
in the feedback loop prior to the Σ stage, the quantization
error can be shaped away from a band of spatial frequencies
that is not centered at zero. This bandpass approach has
been proposed for spatial Σ∆ architectures in [9], [11]. It
is worthwhile to note that although ordinary Σ∆ modulation
provides a noise shaping characteristic, FBB Σ∆ not only
shapes the quantization noise, but also suppresses the extra
quantization noise caused by the jammer with appropriate
feedback beamforming.

Fig. 2 shows the architecture of the angle-steered FBB Σ∆

array. Using Fig. 2, we can formulate a compact input-output
description of the spatial FBB Σ∆ array by defining

U =


1

e−jφ 1
...

. . .
. . .

e−j(M−1)φ · · · e−jφ 1


(9)

V = e−jφZ−1UW , (10)

where2

Z−1 =


0
1 0
...

. . .
. . .

0
. . . 1 0


(11)

W =



w0 0
w1 w0
...

. . . w0

wN−1
. . .

. . .
. . .

...
. . .

. . .
. . .

. . .

0 · · · wN−1 · · · w1 w0


, (12)

and expressing the input to the quantizers as

r = Ux − V y. (13)

The output of the angle-steered one-bit FBB Σ∆ array is then
defined by

y = Q (r) . (14)

To analyze the performance of spatial Σ∆ processing, we
will represent the one-bit quantization operation in (14) with
an equivalent linear model [11]

y = Q (r) = Γr + q, (15)

where Γ = diag (γ1, . . . , γM ) with

γm =
E

[
rmy∗m

]
E

[
|rm |2

] = αmE [|Re [rm]| + |Im [rm]|]
E

[
|rm |2

] , (16)

and q denotes the effective quantization noise. In (16), it
is assumed that rm is circularly symmetric. This assumption
implies that identical values should be selected for the output
levels of the real and imaginary quantizers, and thus we
will let αm represent both αm,r and αm,i . Following the
same reasoning as in [11], we will set Γ = I by choosing
an appropriate value for each αm. Therefore, we obtain the
following mathematical model for the FBB Σ∆ architecture:

y = B−1Ux + B−1q, (17)

where B = I + V . Equation (17) is the spatial equivalent of
the temporal FBB Σ∆ description in (6), with the following
equivalences:

B−1U ←→ A(z) (18)

B−1 ←→ B(z). (19)

Note that the condition Γ = I and assuming that rm is
approximately Gaussian leads to the following choice for the
output levels [11]:

α?m =

√
πE

[
|rm |2

]
2

. (20)

2Note that Z−1 is the spatial domain equivalent of the delay operator z−1

for the z-transform in the time domain.
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Next, we calculate the power of the equivalent quantization
noise q, which is needed both to analytically assess the system
performance and to compute α?m. In the discussion below, we
show how to express (20) in terms of the statistics of the
array input x, which illustrates how the quantizer output levels
can be analytically chosen in a practical setting. Moreover,
we will show how spatial FBB Σ∆ impacts the power of the
quantization noise and elaborate on how it differs from the
ordinary spatial Σ∆ approach.

With Γ = I , (15) becomes

y = r + q. (21)

Since rm and qm are uncorrelated, and using (20), we obtain

E
[
|qm |2

]
= E

[
|ym |

2] − E [
|rm |2

]
=

( π
2
− 1

)
E

[
|rm |2

]
. (22)

To determine E
[
|rm |2

]
, we substitute (21) into (13), so that

r = B−1Ux − B−1V q. (23)

Let us denote Ψ = B−1U and Υ = B−1V . It is clear that Ψ is
a lower triangular matrix and Υ is a lower triangular matrix
with zeros along the main diagonal. In addition, following the
same reasoning as in Appendix A of [1], it can be shown that
E

[
xm′q∗m

]
≈ 0, ∀m,m′ ∈ M = {1, · · · ,M}. This results in

Rqx ≈ 0. Therefore,

Rr ≈ ΨRxΨ
H + ΥRqΥ

H . (24)

Eq. (24) implies that

E
[
|rm |2

]
≈

{ [
ΨRxΨ

H
]
mm

m = 1[
ΨRxΨ

H
]
mm
+

[
ΥRqΥ

H
]
mm

m > 1
(25)

To approximate E
[
|rm |2

]
, and for the sake of analysis, we

assume Rq is diagonal. Since Υ is a lower triangular matrix
with zeros along the main diagonal, we only need the first m−1
diagonal elements of Rq to specify E

[
|rm |2

]
. Hence, we can

recursively calculate E
[
|rm |2

]
for m > 1 using (22) and (25).

In the next section, we show that the diagonal elements of Rq

are much smaller than those for the ordinary Σ∆ architecture.
This is because of the appropriate design of the feedback
weights that lead to the elimination of strong interference
before the one-bit quantization.

IV. NUMERICAL RESULTS

This section describes the results of several Monte Carlo
simulations in order to illustrate the performance of the FBB
Σ∆ quantizer. In our simulations, we assume L = 20 multipath
arrivals for both the legitimate user and the jammer with angles
of arrival randomly uniformly distributed in θl ∈ [θ0−δ, θ0+δ],
where the center angle θ0 is different for the user and the
jammer. We set θ0u = −20◦ and θ0 j = 60◦ for the desired user
and jammer, respectively, with δ = 5◦. We further assume
d/λ = 1/4, 8-PSK symbols, and 105 trials. The steering angle
of the FBB Σ∆ array is set to φ = 2π d

λ sin
(
θ0u

)
. We let

σ2
n = 1, so that p and q denote the SNR of the user and the

jammer, respectively. In all simulations, we consider a strong
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Fig. 3. Spatial spectrum of the quantization noise for the FBB Σ∆, regular
Σ∆, and standard one-bit architectures when d = λ/4, p = 0 dB, q = 20 dB,
and N = 50.

interference setting with q = 20 dB. We also assume that θ0u
and θ0 j are known at the BS3. Hence, following the same
reasoning as in [12], the feedback weights are estimated as

w =
(
e−jφZ−1UȲ

)†
(Ux̄ − ȳ) , (26)

where

Ȳ =



ȳ0 0

ȳ1
. . .

...
. . . ȳ0

...
...

...
ȳM−1 · · · ȳM−N


, ȳ = βa

(
θ0u

)
(27)

x̄ = βa
(
θ0u

)
+ a

(
θ0 j

)
. (28)

and β is a constant. In the simulations that follow, we selected
β =
√

10. Then, the solution in (26) is followed by iterative
refinement (see Section III-C in [12]) to find the desired
feedback weights.

Fig. 3 shows the simulated and analytically derived quanti-
zation noise power density which is defined as

ρq (θ) ,
1
M

a (θ)H R a (θ), (29)

where R is the covariance matrix of the quantization noise
for each approach (standard one-bit, Σ∆, or FBB Σ∆). In this

3Note that, although here we consider a single jammer in a known location,
the feedback weights can in general be designed to reduce the impact of
signals arriving from multiple sectors in which the jammers are known to lie,
without precise knowledge of the actual jammer locations.
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Fig. 4. Symbol error rate versus p for a system with θ0u = −20◦ and
θ0 j = 60◦, d = λ/4, q = 20 dB, N = 50.

figure, we set the order of the FBB Σ∆ filter at N = 50.
We see that the quantization noise power for the FBB Σ∆

array is substantially lower over the angles where the user is
present, while the effect is the opposite for standard one-bit
quantization – the quantization noise is higher for angles where
the amplitude of the received signals is larger. In addition,
we see that even the ordinary Σ∆ array suffers from large
quantization noise in the presence of strong interference. We
also observe that there is excellent agreement between the
simulations and our theoretically derived expressions for both
cases. Note that careful design of the quantizer output levels is
a critical component in achieving the desired Σ∆ noise shaping
characteristic shown here.

In Fig. 4, we compare the symbol error rate of the FBB Σ∆

array with that of a system with high-resolution ADCs and a
system with high-resolution ADCs and no strong interference,
i.e., xp =

√
pgUsU + n, as a benchmark. The methods that do

not allow FBB in the RF domain must attempt to cancel the
interference digitally, after the quantization. Consequently, for
the systems implemented with high-resolution ADCs, standard
one-bit ADCs, and the original spatial Σ∆ architecture, we
project the sampled signal onto the subspace orthogonal to
the interference in the digital domain. Denoting the signals re-
ceived by the standard one-bit and Σ∆ architectures by y1 and
yΣ∆, respectively, the signals after the projection for the three
methods are given by B−1Ux, B−1Uy1, and B−1UyΣ∆. We
assume perfect channel state information (CSI) is available and
use the maximum ratio combiner (MRC) at the BS to decode
the 8-PSK symbols. Fig. 4 shows the superior performance of
the one-bit FBB Σ∆ architecture which achieves performance
equivalent to that of a system with only high resolution ADCs.
This performance is achieved with only minimal additional
hardware in the analog domain, and thus has significantly

reduced complexity and energy consumption compared with a
system employing high-resolution ADCs.

V. CONCLUSION

We presented a new spatial one-bit FBB Σ∆ architecture for
mitigating strong interference in massive MIMO systems with
one-bit quantization. We showed that this simple architecture
can effectively compensate for the vulnerability of one-bit
ADCs against strong interference. The critical challenges in
designing this architecture are to find the appropriate output
levels for the one-bit quantizers and the values for the feedback
weights. A recursive algorithm was proposed to specify the
quantizers’ output levels. The feedback weights were designed
by adopting an algorithm used previously for a temporal FBB
Σ∆ implementation. However, the behaviour of the feedback
weights indicates that they amount to a spatial beamformer
pointing in the direction(s) of the interference, and hence
could be designed by a less complicated approach. Interesting
directions for future work include studying the impact of angle
estimation errors on the performance of the FBB Σ∆ architec-
ture, or using the approach for combined quantization noise
shaping and transmit beampattern design for the downlink with
low-resolution digital-to-analog converters.
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