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Abstract—This paper addresses the problem of integrity mon-
itoring in global navigation satellite system (GNSS) receivers.
A new technique is proposed to quickly detect the presence of
corrupted measurements caused by either multipath or spoofing
threats. To do so, the symmetry of the correlation curve is
permanently monitored, and a CUSUM-based sequential test is
applied later on. Numerical results are provided to validate the
technique and show its effectiveness.

I. INTRODUCTION

The use of Global Navigation Satellite System (GNSS)

receivers has spread in the past years due to the increasing

demand of autonomous positioning and location-based ser-

vices (LBS). Nowadays, GNSS is used as the main tool for

localisation in many applications, among which are airplane

landing, maritime, railway or road guidance, just to mention

a few. The criticality of these activities requires an alert to

be raised whenever the integrity of the navigation solution

cannot be guaranteed, and this often has to be done in less

than 2 seconds [1]. In this context, the concept of integrity
refers to the level of trust that the user can expect from

the results provided by the receiver. In the recent years,

integrity has become of great importance due to the increasing

demand of reliable navigation for critical applications, and

the emergence of commercial services where a given service

license agreement (SLA) needs to be guaranteed (e.g. road

tolling). Currently, there are different approaches to measure

the level of integrity such as the use of Ground or Satellite

Based Augmentation Systems (GBAS or SBAS) or the im-

plementation of Receiver Autonomous Integrity Monitoring

(RAIM) techniques. However, other alternatives are necessary

for standalone receivers, where the need of low complexity

techniques is a usual requirement. In this sense, signal-level

techniques are a good solution for extracting the information

present at the physical-layer, thus providing a faster integrity

response without having to resort to the output observables or

the navigation solution.

One of the phenomena that can degrade the quality of the

navigation signals is the well-known multipath effect. It is

caused by the reception of multiple reflections of the authentic

signal coming from objects surrounding the user receiver.

Multipath represents one of the major sources of error in

GNSS introducing errors in the pseudorange and carrier phase
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measurements, which in turn produce errors in the computation

of the Position, Velocity and Time (PVT) solution. Together

with multipath, another concerning threat for reliable satellite

navigation is the transmission of spoofing signals, i.e. the

deliberate replication of GNSS signals. This kind of intentional

interference is only feasible in open GNSS where all the

information regarding the signals is public, and thus the signal

can be easily replicated [2].

In the presence of multipath or spoofing, the effects at the

signal level share important similarities. Mainly, the two phe-

nomena produce a distortion of the correlation peak between

the received signal and the local replica, and the expected

triangular shape of the main correlation lobe is no longer

symmetric. This fact was exploited by the authors in [3], [4]

for introducing so-called Slope Asymmetry Metric (SAM),

with the objective of detecting the presence of multipath

and spoofing. By exploiting the geometric properties of the

correlation peak, a faulty signal can be easily detected, and

the user has the possibility to discard the satellite and avoid

the propagation of errors in the measurements to the PVT

solution. Nevertheless, the problem of fault detection was

actually not addressed in previous works on the SAM metric,

where the emphasis was placed, instead, on the preliminary

characterization of this metric, and the performance validation

in realistic working conditions. The purpose of the present

work is thus to fill this missing gap. To so do, we will

propose a SAM-based sequential test capable of detecting

sudden changes in the expected behaviour of the correlation

shape. The underlying principle of this test is based on the

CUSUM algorithm [5], which is very well-suited for quickest

detection problems (as it is the case in integrity monitoring

applications) and can be easily implemented with a very low

complexity.

The paper is structured as follows: in the Section II, the op-

timal configuration of the SAM and its statistical behaviour are

presented. Later in Section III, the fundamentals of sequential

testing are presented and the use of the CUSUM algorithm for

detection of integrity anomalies is proposed. Finally, Section

IV presents different simulation results in order to show the

performance of the proposed method and relevant conclusions

about the presented work are drawn in Section V.



II. SLOPE ASYMMETRY METRIC

As previously introduced, the SAM metric exploits the

triangular shape that can be observed in the central part of the

autocorrelation function of most GNSS signals. In particular,

this metric compares the symmetry of the left and right slopes

on both sides around the maximum correlation peak. Ideally,

both slopes should be equal but with opposite sign, and thus

their sum should equal zero. Based on this observation, the

first step for calculating this metric consists on fitting each

side of the correlation peak by a straight line. To do so, let

us first represent the received signal correlation curve at n-th

code period and time instant t, by the following signal model:

zn(t) =
√
SNRexp{θa}R(t) + ηn(t), (1)

where SNR and θa are the Signal-to-Noise-Ratio and phase

of the authentic signal, R(τ) is the correlation function of

the spreading code, and ηn is the correlated noise component,

which has a complex Gaussian distribution with zero mean

and variance σ2
η = 1.

In order to compute the SAM metric, we will consider a set

of L correlation samples on each side of the received signal

correlation curve, taken at time instants τk equi-spaced by

TΔ. Since we are focusing on GPS L1 C/A signals, we will

consider that LTΔ ≤ Tc, with Tc the chip period. The corre-

lation samples from the left and right slopes will be stacked

into the (L × 1) vectors zl,n
.
= [zn(τ1), zn(τ2), . . . , zn(τL)]

T

and zr,n
.
= [zn(τ−1), zn(τ−2), . . . , zn(τ−L)]

T , respectively.

For any two values of zn(τk) their covariance is given by:

cov{zn(τi), zn(τj)} = σ2
ηR(τi − τj) (2)

where it can be seen that samples with |τi− τj | < Tc turn out

to be correlated, and this will have an impact on the behaviour

of the SAM metric.

Using the correlation samples in zl,n and zr,n, we will

obtain the least-squares (LS) estimate of the straight line that

best fits these measurements. The LS estimates for the slope

â and offset b̂ of each line are obtained as [â, b̂]T = M#z,

where M# represents the Moore-Penrose inverse of matrix

M =
(
T 1

)
being T the column vector containing the

correlation lags of each correlator value and 1 a column vector

of L ones. Using either zn = {zl,n, zr,n} , we obtain the

estimates of the slopes for the left line, âl(n), and for the right

linel, âr(n), respectively. Then, the SAM metric becomes:

SAM(n)
.
= âl(n) + âr(n). (3)

Note that, if any symmetry distortion is produced in the

received signal correlation, the metric will exhibit μSAM
.
=

E [SAM(n)] �= 0. This effect will be used to detect any

possible degradation that multipath or spoofing can cause to

the received signals. In the presence of either these two threats,

the correlation output will be affected by an additional replica

according to:

za+r
n (τk) =

√
SNRexp{θa}R(τk)

+

√
SNR

D/U
exp{jΔθr}R(τk −Δτr) + ηn,(4)

where the subscript a+r indicates authentic plus replica sig-

nals. The power of these two signals is related through D/U
.
=

Pa/Pr and Δθr and Δτr represent the relative phase and

code delay of the replica with respect to the authentic/original

signal.

A. Optimal configuration for the estimation of the slopes

The estimation of the correlation slopes will determine the

performance of the SAM metric for detecting the replica. In

order to find optimal configuration, the spacing between cor-

relators TΔ and their number L will be studied by comparing

the performance in terms of noise and integrity detection capa-

bilities. The target is to make the SAM metric very sensitive to

anomalies affecting the region close to the prompt correlator,

since these are the ones introducing larger errors in the time-

delay estimation of the received signal, and subsequently, in

the resulting pseudorange. For this reason we would like to

use correlators close to the prompt one, when computing the

metric.

Figure 1 shows the SAM envelope for three sets of cor-

relators in the range from −0.5 to 0.5 chips. In particular,

one set with L = 3 correlation samples given by S1 : τ|k| =
{0.1, 0.2, 0.3}, and two different sets with L = 4 given by S2 :
τ|k| = {0, 0.1, 0.2, 0.3} and S3 : τ|k| = {0.2, 0.3, 0.4, 0.5}. A

replica signal with a relative power D/U = 6 dB has been

added, whose relative delay Δτr is varied from -0.5 to 0.5

chips.
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Fig. 1. SAM envelope as a function of the relative delay of a replica signal
(i.e. multipath/spoofing) with D/U = 6 dB.

We can observe how those sets excluding the prompt corre-

lator (i.e. S1 and S3) become very insensitive to the presence

of replica signals closely aligned with the authentic one. This

effect is totally undesired since the detection of anomalies

close to prompt is essential. This blind effect is caused by

the fact that both estimated slopes âl and âr are affected by

the same bias but opposite sign. Thus, the resulting SAM does

not reflect any asymmetry in the signal. In contrast, the set S2

that uses the prompt correlator, reflects the asymmetry in the

signal even for short replica delays. For this reason, the prompt



correlator should always be included in the computation of

each slope.

For selectioning the number of correlators, two elements

will be evaluated, namely the SAM envelope, which indicates

the level of degradation suffered by the correlation peak in the

presence of a replica, and the variance of the SAM metric.

Note that a low variance is desired since that would make

easier the detection of an anomaly, reducing at the same time

the rate of false alarms.

In order to carry out the estimation of a slope, a minimum

of L = 2 correlators is needed per side. This configuration has

the advantage that requires few correlators, which is always

desirable for the sake of reducing the complexity of the

receiver processing. More correlators can be added as inputs

to the linear regression problem. This would improve the

estimation of the slopes if the correlators were uncorrelated.

However, for the case under study, pairs of correlators at

instants τi and τj are actually correlated through R(τi − τj).
Figure 2 shows the SAM envelope for different configura-

tions using τ|k| = kTΔ for k = 0, . . . , L − 1 and different

values of TΔ. Black lines represent the asymmetry error when

using L > 2 correlators per side spaced TΔ = 0.1 chips re-

spectively. The coloured lines are the SAM envelopes for those

cases in which L = 2 correlators are selected for each slope.

The results show that there is no significant improvement in

terms of bias in the peak symmetry when more correlators

are added. This is caused by the high correlation between

the values used in the regression problem. Consequently, the

decision made regarding the number of correlators is that

L = 2 should be used for computing each slope.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Multipath delay [chips]

S
A

M
 e

nv
el

op
e

3 correlators. 0.1 chips spaced
4 correlators. 0.1 chips spaced
5 correlators. 0.1 chips spaced
6 correlators. 0.1 chips spaced
2 correlators. 0.1 chips spaced
2 correlators. 0.2 chips spaced
2 correlators. 0.3 chips spaced
2 correlators. 0.4 chips spaced
2 correlators. 0.5 chips spaced

Fig. 2. SAM envelope as a function of the relative delay of a replica signal
(i.e. multipath/spoofing) with D/U = 6 dB.

From all the possible configurations that involve the use

of L = 2, the best results for detecting close replicas are

obtained when the spacing between correlator TΔ is small.

In these cases the level of asymmetry is more significant for

replica delays close to Δτr = 0 but becomes smaller when

the correlators are further spaced.

Together with the SAM envelope, another figure of merit

that will determine the detection performance of the metric

is its variance. For the specific case of L = 2, the variance

of the SAM can be calculated from the statistical behaviour

of correlators using the propagation of uncertainty [6]. Being

the metric SAM a function of the correlators z(τ), we can

obtain its variance with σ2
SAM = AΣAT, where the matrix

A is the Jacobian matrix formed from the partial derivatives

of the SAM with respect to each of the correlators and Σ is

the covariance matrix of the correlators, which can be built

from (2). Note that these two elements describe how the input

variables (correlators) are related to each other and with the

metric SAM. For L = 2 the variance of the SAM yields:

σ2
SAM =

2

T 2
Δ

(2−R(τ−2 − τ−1) +R(τ−2 − τ1)

− R(τ−2 − τ2)−R(τ−1 − τ1)

+ R(τ−1 − τ2)−R(τ2 − τ1)). (5)

Replacing the correlators at τ−1 and τ1 with the prompt

correlator (i.e. τ−1 = τ1 = 0), we can evaluate the variance of

the metric for different values of the furthest correlator delay,

in this case τ−2 = −TΔ and τ2 = TΔ. Figure 3 shows that the

variance of the SAM metric decreases inversely quadratically

to the spacing between correlators TΔ. Thus, with the objective

of reducing the variability of the metric the two correlators

of each side should be as spaced as possible. On the other

hand, as shown previously, increasing the space between the

two correlators of each side reduces the detection capabilities

for short delay replicas. Therefore, the choice of TΔ will

determine the trade-off between the mean value of the SAM

metric and its variance.
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Fig. 3. Evolution of the SAM variance as a function of TΔ for L = 2 and
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B. SAM statistical characterisation

The statiscal behaviour of the metric will be studied in two

different situations: first, when only the authentic signal is

present, and second, when a replica of the signal is present.

In each case, we will use (1) and (4) to represent the correlator

outputs.



For the case of L = 2 and τ−1 = τ1 = 0, we have a total

of three correlators distributed along the correlation function.

Based on (1), the correlator zn(t) is a random complex value

with a Gaussian distribution according to:

zn(t) ∼ N (
√
SNRexp{jθa}R(τ), σ2

η). (6)

The estimation of the slopes â is also normally distributed

since it is a linear combination of the correlators zn(t).
Besides, since they have the same mean but opposite sign,

the resulting SAM has zero mean. The metric SAM is thus

distributed as:

SAM(n) ∼ N (0, σ2
SAM). (7)

In order to carry out a detection process, and since the

SAM metric will be complex valued, we take here the squared

absolute value of the SAM. As a result, we obtain a random

variable that is distributed according to a chi-squared distribu-

tion with two degrees of freedom and mean and variance:

E
[|SAM(n)|2] = σ2

SAM, (8)

var
[|SAM(n)|2] = (σ2

SAM)2. (9)

In the hypothetical case that a replica is present in the

incoming signal, the correlator values are no longer determined

by (1) since the presence of the replica has to be taken into

account. In this scenario, the obtained SAM maintains the

variance of (5) but its mean value is different from zero. More

specifically, it is a value that depends on the power, the phase

and the delay of the replica according to:

μSAM =

√
SNR

D/U

exp{jΔθr}
Ts

β, (10)

where β
.
=R(τ−1 −Δτr)−R(τ−2 −Δτr) +R(τ2 −Δτr)−

R(τ1−Δτr). As can be seen, if the relative delay of the replica

is Δτr = 0, the mean value of the SAM is also equal to 0

because the two signals are aligned in time and no deformation

is observed on the final peak. The variance in this scenario is

equal to (5).

In this case, when the squared absolute value of the SAM

is calculated, we obtain a non-central chi-squared distributed

random variable due to the bias present in (10), and mean and

variance:

E
[|SAM(n)|2] = |μSAM|2 + σ2

SAM, (11)

var
[|SAM(n)|2] = 2|μSAM|2σ2

SAM + (σ2
SAM)2. (12)

Note that in the case that μSAM = 0, the resulting distribution

matches the one obtained in the absence of replica.

The following section will use the statistical analysis pre-

sented here for implementating a sequential detection test.

III. SEQUENTIAL PROBABILITY RATIO TESTS

A. Fundamentals

A Sequential Probability Ratio Test (SPRT) is a procedure

for quickly detecting ”change” events in a signal under anal-

ysis. The concept of Sequential Analysis was introduced by

A. Wald in the 40’s [7]. The benefit of SPRT with respect

to classical hypothesis testing, such as the Likelihood Ratio

Test (LRT) is that, in general, it requires an expected number

of observations considerably smaller. This means that the

sequential test is able to made a decision at an earlier stage

than other sorts of testing. This property of the SPRT has

attracted the attention of researchers from the field of finance

and medicine. In the field of GNSS, some contributions can be

found mostly for integrity applications at the observable level

[8]. A decade after Wald presented his work on SPRT, Page

[5] introduced the Cumulative Sum (CUSUM) algorithm as a

specific case of SPRT, which is nowadays widely used due to

its simplicity. The work of Page was later extended by others

such as [9]–[11].

A general SPRT is defined by the decision rule d that is

taken at every stopping time T , i.e. every time the observation

made exceeds some predefined upper and lower values A and

B. For a given stopping time T , the decision rule indicates

whether the null (H0) or the alternate hypothesis (H1) are

accepted, or whether the confidence reached so far is not

enough, and thus a new observation is needed before a decision

can be made. In this way, the test is ran in a sequential manner

until a decision is made.

In the case of the CUSUM algorithm it is assumed that,

initially (i.e. under H0), the random process y under study

follows some statistical distribution p0(y). Thus, the problem

becomes whether or not the observation y changes at some

instant t0, and follows a new distribution p1(y), corresponding

to the alternate hypothesis H1. The detection problem can thus

be expressed as:⎧⎨
⎩

H0 : yn ∼ p0(y), ∀n
H1 : yn ∼ p0(y), n < t0,

yn ∼ p1(y), n ≥ t0.

(13)

The statistic used in the algorithm is built from the Log-

Likelihood Ratio LLR = log p1(y)
p0(y)

. The stopping time in this

case can be written as:

T
.
= min(n : g(n) ≥ h), (14)

g(n) = [g(n− 1) + LLR(n)]+, (15)

where [x]+
.
= max(0, x) and h is the threshold that guarantees

that the time between false alarms (T 0) is beyond a given false

alarm rate α:

T 0 ≥ eh =
1

α
. (16)

This threshold can be derived from the inequalities of Wald

[7] for the selection of the thresholds in a SPRT. From this

result, Lorden [10] demonstrated the optimality of the CUSUM

algorithm for reducing the worst mean delay for detection T 1.

One of the drawbacks of the CUSUM algorithm is that its

optimality is subject to detect exactly the change for which is

designed. Meaning that smaller or larger changes in the actual

model may cause the test to perform far from optimal. This

lack of optimality is shown in Figure 4 where a CUSUM test

is carried out to detect a change in the mean of a process,

while the variance σ2 is maintained. For this test, a value of

α = 0.05 is selected. It can be seen in the upper figure that



when the ratio between the selected mean μtuned and the actual

mean of the change μreal is different from 1, the CUSUM

needs significantly more time to detect the change. For what

concerns the false alarm rate, even though the obtained value

is below the configured α, an increment of the number of

false alarms is observed when the selected mean is far from

the actual one.
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proposed algorithm for different values of real and tuned mean.

B. Sequential test for detection of changes in SAM

The statistical behaviour of the SAM presented in Section

II-B will help us in implementing an integrity monitoring

technique based on the CUSUM algorithm. As previously

seen, the squaring operation on the SAM metric forces us to

work with a chi-squared distributed random variable, instead

of a conventional Gaussian one (as expected by the CUSUM

algorithm). A way to circumvent this problem is to take advan-

tage of the Central Limit Theorem, and let Nacc observations

to be averaged before using them for detection purposes. By

doing so, we know that if Nacc is large enough (Nacc > 50

according to [12, p. 46]), the resulting averaged metric:

SAM(m)
.
=

1

Nacc

Nacc∑
n=1

|SAM(n−mNacc)|2 (17)

can be approximated by a normal distribution whose mean

coincides with the mean of the averaged variable, and whose

variance is Nacc times lower. Therefore, the resulting distri-

bution in the absence of threats is:

p0(SAM) = N (σ2
SAM, (σ2

SAM)2/Nacc), (18)

while the presence of a threat modifies the distribution as:

p1(SAM) =

N (|μSAM|2 + σ2
SAM, (2|μSAM|2σ2

SAM + (σ2
SAM)2)/Nacc).

(19)

In other words, the detection procedure consists on a change

in the mean and the variance of a normal distribution. For this

case the LLR can be easily derived resulting in:

LLR(SAM(m)) =

log

(
σ0

σ1

)
+

(SAM(m)− μ0)
2

2σ2
0

− (SAM(m)− μ1)
2

2σ2
1

. (20)

where μ and σ represent the mean and standard deviation of

the probability density functions p0(SAM) and p1(SAM).

IV. SIMULATION RESULTS

In order to assess the performance of the proposed se-

quential test for the correlation asymmetry detection, we will

simulate different GPS L1 C/A signal scenarios. For this

evaluation, the correlation values zn(t) are obtained with an

integration time of Ti = 1 ms and the squared magnitudes of

the SAM metric are accumulated during Nacc = 100 samples.

The number of correlators to estimate each slope is set to

L = 2 and a correlator spacing of TΔ = 0.2 chips is chosen.

This decision is based on the detection capabilities and the

noise level of the metric as discussed in Section II.

A. Performance of the test based on expected multipath

For this scenario an expected replica of D/U = 12 at

Δτr = 0.2 chips is selected. This expected replica power, from

now on D/Utuned, is a design parameter that we set in order

to detect replicas with larger power values. Since replicas with

D/U < D/Utuned cause a greater deformation in the corre-

lation peak, the obtained μSAM will also increase, according

to (10), hence reducing the detection interval. This effect can

be observed in Figure 5 where the mean detection delay is

shown for different D/U and different values of C/N0. The

results confirm that, even though the experiment is design to

detect a replica of D/Utuned = 12 dB, greater replicas are

also detected with even shorter delay. For observed D/U >12

dB, the algorithm detects the change only in rare occasions.

This fact can be used to design a replica detection algorithm

with the ability of ignoring low power replicas. For instance,

if a receiver is design to work in an environment with an

expected D/U occasioned by multipath, the tuned value in the

CUSUM could be chosen to ignore any replica lower from that

value. However, in this case, the algorithm will not work under

optimal conditions since the specified change in the mean will

not match, in general, the observed one. As explained in the

previous section, the optimality of the CUSUM algorithm is

subject to the correct modelling of the change. Meaning that

for selected D/Utuned the detection of any different replica

power will take more time to be detected than if the algorithm

was designed exactly to detect that change. This effect can

be observed in Figure 6 where for different observed D/U
we can see the additional time required to detect due to the



misalignment between the design power and the observed one.

Note that the optimal value in each case corresponds to the

case in which D/Utuned = D/Ureal. The additional detection

delay is a drawback of the proposed algorithm for designing

the CUSUM method for a wide number of cases instead of

for each specific situation. However, as long as the application

allows a certain margin in the detection delay, the designer

could tune the algorithm to take into account this extra delay.
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B. Effect of the chosen false alarm rate

In this case we analyse the false alarm rate α that has to be

specified in the algorithm and which determines the threshold

according to equation (16). Note that the obtained threshold

will act as an upper bound as demonstrated in Figure 4 where

the obtained false alarm never exceeded the selected α. For

this experiment we tune the algorithm to detect a replica of

D/U = 12 dB and we evaluate the mean detection delay for a

range of pre-set false alarm rates α between 1E-5 and 2.5E-3.

Figure 7 shows how the mean detection time increases as the

rate of false alarms is decreased. In addition, larger detection

intervals are required to obtain the same false alarm rates when

the power level of the observed signal decreases.
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Fig. 7. Evolution of the obtained mean detection delay with the selected
false alarm rate.

As explained in the previous section the pre-set false alarm

rate α defines the threshold that guarantees the obtained

probability of false alarm to be always below α. For the

specific case of D/U = 12 dB, Figure 8 shows how the

observed false alarm increases with α for different C/N0.

Note that rate of false alarms in the experiment grows at a

lower rate than the pre-set value α. This means that during

the tuning of the proposed algorithm, the designer should take

into account that the value α is not the desired false alarm

rate but an upper threshold.
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Fig. 8. Obtained false alarm rate as a function of the set upper threshold for
the false alarm.



V. CONCLUSIONS

The use of of the CUSUM algorithm has been investi-

gated in this paper with the objective of a quick detection

of anomalies in the expected shape of satellite navigation

signals. The use of this sort of sequential test allows the

GNSS receiver to easily and quickly alert the user about

the presence of a signal replica. This kind of signal can be

present in the received signal either unintentionally, due to

environmental reflections of the LOS signal, or intentionality

due to a spoofing attack. The presence of a replica is measured

with a metric that reflects the asymmetry of the expected

correlation peak and which is monitored with the change

detection algorithm. An exhaustive analysis of the behaviour

of this metric has been presented here which allows to carry

out a mechanism for detecting the moment in which the replica

appears. The simulation results presented allow to understand

how the proposed algorithm should be tuned to exploit its

optimal properties in terms of detection delay and false alarm

rate. Moreover, these results allow to design the algorithm to

be tolerant to certain ranges of replica power at the expense

of a slower detection of the actual replica.
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