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Abstract—The multipath signals will degrade the tracking
performance and increase the positioning errors of the Global
Navigation Satellite System (GNSS). Superior multipath mitiga-
tion can be obtained by jointly estimating the angles of arrival
and delays of both the line of sight signal and the multipath
signals. In to do so, this paper proposes the use of the multiple
Bayesian learning (MSBL) method together with the joint angle
and delay estimation technique in GNSS multipath scenarios.
Moreover, to further enhance the resolution, off-grid estimation
is adopted to delay while on-grid estimation is kept for angle
to reduce the complexity. Simulation results are presented to
evaluate the performance of the proposed joint on-grid angle
and off-grid delay estimation based on MSBL algorithm under
several multipath scenarios and it is shown to outperform existing
methods even in the most difficult cases of spatially correlated
multipath signals and low carrier-to-noise ratio.

Index Terms—GNSS multipath signals, Multiple sparse
Bayesian learning, Joint angle and delay estimation, off-grid
estimation

I. INTRODUCTION

The GNSS receiver is often influenced by multipath sig-
nals which will cause tracking performance degradation and
positioning error increase [1]. To address these problems, the
estimation of parameters for GNSS multipath signals in multi-
antenna GNSS receiver has attracted a lot of attention as it can
be used for the purpose of multipath mitigation [2].

Many techniques have been proposed in the literature uti-
lizing multiple antenna for GNSS multipath parameter esti-
mation[3]. Space-Alternating Generalized Expectation maxi-
mization (SAGE) [4-5] is based on the maximum likelihood
(ML) principle and separates multipath signals and estimating
parameters of each path iteratively. However, SAGE can only
guarantee local optimality and its performance is extremely
sensitive to initial values. Different from SAGE, subspace-
based methods like multiple signal classification (MUSIC) [6]
method and estimating signal parameters via rotational invari-
ance techniques (ESPRIT) [7] are also well known. Although
subspace-based methods have relatively lower computational
complexity, their performance is suboptimal and ineffective
for coherent signals. JADE is proposed in [8] to estimate
the signal parameters by vectoring spatial and temporal data
and it has been applied for GNSS multipath discrimination
[9-11]. Nevertheless, it is worth pointing out that most of
these methods mentioned above only work satisfactorily with

signals with low spatial or temporal correlation. Moreover,
such methods also face a degradation in low carrier-to-noise
ratio (C/N0).

In this paper, an alternative approach is followed by formu-
lating the problem using a compressed sensing perspective.
With this approach, the signals in a specific domain can be
sparsely representative by multiple fixed grid points, then
parameters could be estimated from the corresponding grid
points which is also called on-grid estimation [12]. Among
all the compressed sensing methods, sparse Bayesian learning
(SBL) [13] and multiple sparse Bayesian learning (MSBL)
[14] use a Bayesian approach together with the expectation
maximization where two advantages indicate that the global
minima of SBL are always the sparsest one and SBL has much
few local minima. It is also robust to highly correlated signals
which brings the huge advantage for distinguishing GNSS
multipath signals. To immensely improve the direction-of-
arrival (DOA) estimation performance without dense sampling
grids, the off-grid sparse Bayesian inference method was
proposed in [15].

Inspired by the above methods, the joint DOA and delay es-
timation problem for GNSS multipath scenario is investigated
in this paper. The application of the temporally beamspaced
joint spatial and temporal domain sparse model improves the
multipath discrimination and increases the number of paths
whose parameters can be estimated. To fully exploit the supe-
riority of robustness against multipath signals and adaptiveness
to low C/N0 values, we proposed the combination of JADE
and MSBL in a GNSS context. Besides, considering that
more accuracy is required in the temporal domain than the
spatial domain because the GNSS pseudorange observable is
a time delay estimate, on-grid estimation is used particularly
on DOA to greatly reduce the computational overhead. While
for time delay, the application of off-grid estimation brings
a more accurate estimate with fewer number of grids. Thus,
an algorithm named joint on-grid DOA and off-grid delay
estimation based on MSBL (JAODE-MSBL) is proposed.

Notation: Matrices are denoted by capital letters in boldface
(e.g., A), and vectors are denoted by lowercase letters in
boldface (e.g., a). E {·} denotes the expectation operation.
CN (µ,Σ) denotes the complex Gaussian distribution with the
mean µ and variance Σ. ‖·‖2F , ‖·‖22, ⊗, �, Tr {·}, vec {·},
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diag {·}, (·)−1, (·)T , (·)H denote the Frobenius norm, the `2
norm, the Kronecker product, the Hadamard product, the trace
of a matrix, the vectorization of a matrix, the diagonalization
of a matrix, the inversion, the matrix transpose and the
Hermitian transpose, respectively.

II. SYSTEM MODEL

We take Global Positioning System (GPS) as our target
application system. Consider the wavefield generated by K
rays located at θ with corresponding time delay τ , where
θ = [θ1, . . . , θK ]

T and τ = [τ1, . . . , τK ]
T . Under the nar-

rowband approximation, the vector y (t) at the output of an
Mθ elements array for one specific satellite signal can be
represented as

y (t) =
K∑
k=1

γka (θk) c (t− τk) + e (t) (1)

where y (t)
.
= [y1 (t) , . . . , yMθ

(t)]
T . a (θk) and γk are the

steering vector and the amplitude of k th ray, respectively.
The c (t− τk) denotes the k th ray within known signal
waveform c (t) of C/A code and unknown delay τk. e (t)

.
=

[e1 (t) , . . . , eMθ
(t)]

T is the Gaussian noise contribution, un-
correlated with the signals. In this paper, we assume that the
number of rays is already known.

The spatial observations are collected along N periods of
C/A codes with L samples in each period. Thus, the samples
of the n th period of the observation interval lead to

Yb(n)
.
=[y(((n− 1)L+1)Ts) , . . . ,y(((n− 1)L+L)Ts)] (2)

where Ts is the sample interval and l = 1, . . . , L, n =
1, . . . N . Likewise, the sampled and shifted waveform is

c (τk)
.
= [c (Ts − τk) , . . . , c (LTs − τk)]

T
. (3)

The computation of the parameters in (1) is complicated
due to the length of sequence and sampling interval. To reduce
the data amount, we compress the received signal Yb (n) in
the temporal domain. The compression can be expressed by
multiplying the received signal with a correlator bank matrix
B ∈ CMτ×L and then by vectorizing the results we get
ys [n] ∈ CMθMτ×1,

ys (n) = vec(Yb (n) ·BH)
=
(
A (θ)⊗RT (τ , τ̄ )

)
γs + es (n)

(4)

with r (τk, τ̄mτ )
.
= cH (τk) c (τ̄mτ ) , k = 1, . . . ,K, mτ =

1, . . . ,Mτ being the element of the matrix R (τ , τ̄ ) ∈
CK×Mτ and the array manifold matrix defined as A (θ)

.
=

[a (θ1) , . . . ,a (θK)]. The matrix B correlates the received
signal B .

= [c (τ̄1) , . . . , c (τ̄Mτ )]
T with Mτ replicas of c (τ)

with different delays τ̄mτ . The set of the delay τ̄ is uniformly
distributed around the peak of the correlation function.

To exploit the sparsity in both spatial and temporal domains,
we could extend ys (n) into a joint two dimensional spatial
and temporal sparse model by using the concept of sparse
representation. According to the unequal treatment of both

spatial and temporal domains, we come up with a joint on-grid
DOA and off-grid delay sparse model.

Let θ̃ .
=
[
θ̃1, . . . , θ̃Nθ

]
be the uniformly fixed sampling spa-

tial grids with fixed DOA interval rθ in the range [−90◦, 90◦],
similarly, for the time delay, let τ̃ .

= [τ̃1, . . . , τ̃Nτ ] be the
uniformly fixed sampling time grids with fixed delay interval
rτ in the range [−Tc, Tc] where Tc denotes the time duration
per C/A code. As for off-grid parameters vector, βτ

.
=

[β1, . . . , βNτ ]
T is designed where βnτ

.
= τk− τ̃nτk is assumed

to be uniformly distributed in the interval
[
− 1

2rτ ,
1
2rτ
]
, with

τ̃nτk being the nearest grid to the k th signal. Thus, we can
construct an on-grid DOA and off-grid delay over complete
basis matrix

Φ (βτ ) = A⊗ (C +Bτdiag (βτ )) (5)

where A =
[
a
(
θ̃1

)
, . . . ,a

(
θ̃Nθ

)]
∈ CMθ×Nθ . C ∈

CMτ×Nτ is composed of the element r (τ̄mτ , τ̃nτ ) with mτ =
1, . . . ,Mτ , nτ = 1, . . . , Nτ . Bτ ∈ CMτ×Nτ is the first
order Taylor series expansion derivation of b (τ̄mτ , τ̃nτ )

.
=

∂r(τ̄mτ ,τ̃nτ )
∂τ̃nτ

.
By extending to multiple measurement vectors model, de-

note the matrices Y .
= [ys (1) , . . . ,ys (N)] ∈ CMθMτ×N and

E
.
= [es (1) , . . . , es (N)] ∈ CMθMτ×N , then the joint on-grid

DOA and off-grid delay estimation sparse model becomes

Y = Φ (βτ )X +E (6)

with complex source amplitudes X = [xs[1] , . . . ,xs[N ]] ∈
CNθNτ×N that only few of them are zero. The matrix X of
interest is sparse that all the columns of X are sparse and
share the same support.

III. EXISTING METHODS

In this section, two typical methods, SAGE and MUSIC for
spatial and temporal estimation are briefly reviewed in GNSS
multipath environment.

A. Spatial and Temporal Estimation based on SAGE

SAGE iteratively approximates the ML estimator and has
been successfully applied for parameter estimation in GNSS
[5]. The core idea of SAGE is performing a sequence of
maximization steps in spaces of lower dimension.

Denote sk (t)
.
= γka (θk) c (t− τk) in (1). Thus, we get the

sampled Sb,k and Eb,k for each ray. Follow the introductions
in [4] and [5], SAGE can be implemented by two main steps.
The one expectation step is

X̂b,k = Yb −
K∑

k′=1,k′ 6=k

Sb,k′ . (7)

Then the following step is maximization,

θ̂k = arg max
θk

{∣∣∣aH (θk) X̂b,kc(τ̂k)
H
∣∣∣2} (8)

τ̂k = arg max
τk

{∣∣∣aH (θ̂k) X̂b,kc(τk)
H
∣∣∣2} . (9)

Obviously, SAGE is quite sensitive to initialization due to (7).
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B. Spatial and Temporal Estimation based on MUSIC

MUSIC is a promising super-resolution subspace-based
method and was proposed by extending the geometric concepts
to obtain a reasonable approximate solution in the presence of
noise. In this paper, the joint angle and delay estimation based
on MUSIC is implemented on model (4).

Nevertheless, MUSIC is not the proper algorithm in mul-
tipath discrimination. To conquer this problem, spatial s-
moothing [16] is applied as well by forming the submatrix
Um

.
= ΨJ

(
A (θ)⊗RH (τ , τ̄ )

)
where ΨJ

.
= [IJ ,0J,Mθ−J ].

So the Mθ − J + 1 groups could be gathered by sliding

Ts
.
= Um

[
Iγs,Φsγs, . . . ,Φ

Mθ−J+1
s γs

]
+Es (10)

where Φs = diag
{
ejd sin(θ1), . . . , ejd sin(θK)

}
is the phase dif-

ference matrix contributing to resolving the multipath signals.
By taking the noise subspace ÛN via eigen-decomposition of
TsT

H
s , we could search the parameters with the spectrum{

θ̂, τ̂
}

= arg max
θ,τ

{
1

UH
m ÛN Û

H
NUm

}
. (11)

IV. SPATIAL AND TEMPORAL ESTIMATION BASED ON
MSBL

In this paper, a sparse Bayesian rules based method is
proposed to settle the multipath resolvation using model (6).
The problem at hand of the joint on-grid DOA and off-grid
delay estimation is converted to find not only the set of non-
zero indices of the matrix X but also the off-grid parameters
vector βτ for delay. To realize the JAODE-MSBL algorithm,
the distribution assumptions are given as follows.

We assume that the additive noise in (6) is complex Gaus-
sian noise with variance σ2 and zero mean value. When σ2

is assumed to be unknown, by defining a hyperparameter, i.e.,
the precision, αn

∆
= σ−2. Then we have

p (Y |X, αn,βτ )

=
N∏
n=1
CN

(
ys (n) |Φ (βτ )xs (n) , α−1

n IMθ,Mτ

) (12)

and a Gamma distribution is used to describe the inverse of
noise variance

p (αn; a, b) = B (αn| a, b) (13)

where B (αn| a, b)
.
=[Γ (a)]

−1
baαa−1

n e−bαn with the Gamma
function Γ (a)

.
=
∫∞

0
xa−1e−xdx. a and b are the hyperparam-

eters for αn.
For the prior of complex source amplitudes X , it can

be seen as independent both across C/A codes and space-
time domain, which follows a zero-mean complex Gaus-
sian distribution with DOA-delay-dependent variance α =
[α1, . . . , αNθNτ ]

T and Υ = diag (α),

p (X|α) =

N∏
n=1

CN (xs [n]| 0,Υ). (14)

A two-stage hierarchical prior is adopted here which favors
most rows of X being zeros

p (α, ρ) =

NθNτ∏
ng=1

Γ (α (ng)| 1, ρ). (15)

For the off-grid parameter vector βτ , a non-informative uni-
form prior is used

p (βτ ; rτ ) = U

([
−1

2
rτ ,

1

2
rτ

])
(16)

where we have

U ([c, d]) =

{
1
d−c , c ≤ x ≤ d

0, otherwise.
(17)

To estimate DOAs and delays, we can formulate the fol-
lowing problem to maximize the posterior probability with
the received signal{

X̂, α̂n, α̂, β̂τ

}
= arg max

{X,αn,α,βτ}
p (X, αn,α,βτ |Y ) .

(18)

However, the problem of posterior probability above cannot
be solved directly, so an EM method is adopted to realize SBL.
To obtain the posterior distribution of X , we first calculate the
joint distribution for all parameters

p (X,Y , αn,α,βτ )
= p (Y |X, αn,βτ ) p (X|α) p (α) p (αn) p (βτ ) .

(19)

The posterior for X can be obtained as

p (X |Y ;αn,α,βτ ) ∝ p (Y |X;αn,βτ ) p (X|α) . (20)

After a simple derivation, their product (20) is also Gaussian
with posterior mean value µx and covariance Σx

µx (n) = αnΣxΦ
H (βτ )ys (n) (21)

Σx =
(
αnΦH (βτ ) Φ (βτ ) + Υ−1

)−1 (22)

where n = 1, . . . , N .
From the formulations mentioned above, hyperparameters

αn, α, βτ are needed to be known when calculate µx and Σx.
To address the hyperparameters estimate, an expectation max-
imization algorithm is implemented that treats X as a hidden
variable and turns to maximizing E {p (X,Y , αn,α,βτ )}.
Following a similar procedure as in [14] denoting U =
[ux (1) , . . . ,ux (N)] , it is easy to obtain the following
updates of α and σ2 by maximizing E {ln p (X |α ) p (α)}
and E {ln p (Y |X, αn,α,βτ ) p (αn)},

α (ng) =

√
N2 + 4ρE

{
‖X (ng, :)‖22

}
− 1

2ρ
(23)

αn =
MθMτ ·N + a− 1

E
{
‖Y −Φ (βτ )X‖2F

}
·N + b

(24)
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where E
{
‖X (ng, :)‖22

}
= ‖U (ng, :)‖22 + Σ (ng, ng) and

E
{
‖Y −ΦX‖2F

}
= ‖Y −ΦU‖2F +α (ng)

NθNτ∑
n=1

ς (ng) with

ς (ng) = 1−α−1 (ng) Σ (ng, ng), ng = 1, . . . , NθNτ .
Referring to the off-grid parameter vector βτ ,

E
{

log p
(
Y
∣∣X, σ2,βτ

)
p (βτ )

}
is the part related to

(18) that its estimate maximizes and thus minimizes

E

{
1
N

N∑
n=1
‖ys (n)−Φ (βτ )xs (n)‖22

}
= 1
N

N∑
n=1
‖ys(n)−Φ(βτ )µx(n)‖22+Tr

{
Φ(βτ ) ΣxΦ

H(βτ )
}

= βTτ Pτβτ − 2vTτ βτ + C1

(25)
where C1 is a constant term independent of βτ . Pτ is a
positive semi-definite matrix

Pτ = <
{

1
N

N∑
n=1

Ξ(n)
H

Ξ (n)

}
+<

{
JT1

(
Σx � (A⊗Bτ )

H
(A⊗Bτ )

)
J1

} (26)

vτ = <
{

1
N

N∑
n=1

{
(ys (n)−(A⊗C)µx (n))

H
Ξ (n)

}}T
−<
{{

diag
((
AHA⊗BH

τ C
)
Σx

)}T
J1

}T
(27)

with Ξ [n] =
((
AmatµTx (n)

)
⊗IMτ

)
(INτ⊗Bτ )J2. In the

above equations, both of J1 and J2 are selection matrix. J1 ∈
CNθNτ×Nτ is arranged by column of Nθ unit diagonal matrix
INτ . J2 ∈ CN2

τ×Nτ is a known matrix with the element of
Nτ (mτ − 1)+mτ th row and mτ th column being one, mτ =
1, . . . , Nτ , and other elements are zero. matµx (n) ∈ CNτ×Nθ
is a reshaped matrix of colomn vector µx (n). Besides, the
derivation above of details is shown in Appendix.

As a result, we have

β̂τ = arg min
βτ∈[− 1

2 rτ ,
1
2 rτ ]

{
βTτ Pβτ − 2vTβτ

}
(28)

for the purpose of estimating the off-grid parameter vector.
The JAODE-MSBL algorithm is concluded as follows.

JAODE-MSBL algorithm

1: Initialization: αn = 100/var {Y }, βτ = 0 and
α =

(
ΦHY

)/
(MθMτ (MθMτ − 1)). The hyperparam-

eters a = b = 1× 10−4 and ρ = 0.01.
2: Repeat
3: Calculate Σx, µx and Φ (βτ ) using the current values

of the hyperparameters according to (22), (21) and (5),
respectively;

4: Update α and σ2 according to (23) and (24);
5: Find the K largest peaks in α and calculate the corre-

sponding DOA and delay on-grid number, respectively;
6: Update βτ according to (26) - (28);
7: Calculate the error ε =

∥∥αnew −αold∥∥
2

/∥∥αold∥∥
2
.

8: Until(convergence ε ≤ 10−3 or iterations ≤ 500).

V. NUMERICAL RESULTS

In this paper, we compare the proposed algorithm JAODE-
MSBL with the existing methods, such as the SAGE and s-
patial smoothing JADE-MUSIC (SS-JADE-MUSIC) reviewed
in the former sections for various GNSS multipath scenarios.

For the JAODE-MSBL algorithm, the specific settings are
listed below. The scanning DOA grid is uniformly distributed
in the range from −90◦ to 90◦ with the DOA interval rθ = 2◦

between adjacent grid points. With the uniform scanning delay
grid range from −2Tc to 2Tc , the delay interval between
adjacent grid points is rτ = 0.1Tc.

Unless noted otherwise, SAGE is implemented by two
different initializations: the ideal one (SAGEi) and the prac-
tical one (SAGEp). The former one is that both DOA
and delay are initialized randomly within (−1.5◦, 1.5◦) and
(−0.075Tc,+0.075Tc) biases for two paths, respectively. The
latter is set more reasonable that the initial DOAs are unknown
when searching and the time delay of main path is known
acquired by acquisition.

For SS-JADE-MUSIC, the sliding elements of arrays is J =
6.

For simplicity, we assume a uniform linear array (ULA)
with Md = 8 sensors and half-wavelength interelement spac-
ing. There are 10ms C/A codes in total. The sampling rate is
P = 4. Here we consider two paths in total (K = 2): a LOSS
and a single reflective multipath. The direct to multipath ratio
is 0.8.

With the Nl = 1000 trials, the root mean square error

RMSE (τ1) =

√
1
Nl

Nl∑
nl=1

(τ̂1 − τ1)
2 is measured the LOSS

estimation performance.

A. Scenario A: low spatially correlated rays

In this scenario, we consider the LOSS and the multipath
are separable in spatial domain. These two correlated rays are
separated by DOA θ1, θ2 at −0.7◦ and 30.2◦, with correspond-
ing delay τ1, τ2 being 0.03Tc and 0.38Tc, respectively.

As shown in Fig. 1 and 2, both 2D-SAGE and SS-JADE-
MUSIC achieve the best performances in high C/N0 in case
of low spatially correlated rays. However, with low C/N0 the
DOAs and delays cannot be estimated correctly by 2D-SAGEp
and SS-JADE-MUSIC. On the contrary, JAODE-MUSIC be-
comes a little bit flat in high C/N0 both in DOA and delay
estimation yet with different reasons: on-grid estimation and
first-order Taylor series expansion, respectively. When in lower
C/N0, JAODE-MSBL is more appropriate to GNSS receiver
than others due to the fact that most of the typical GNSS
signals are located in the region from 35 dB-Hz to 55 dB-Hz.

B. Scenario B: highly spatially correlated rays

In order to get a deep insight about the performances of
proposed method in highly spatially correlated case, the DOAs
θ1, θ2 of the LOSS and the multipath signal are set to 0.3◦

and 6.8◦, respectively, while the delays τ1, τ2 remain 0.03Tc
and 0.38Tc.
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Fig. 1. RMSE of the DOA for scenario A

Fig. 2. RMSE of the time delay for scenario A

Fig. 3. RMSE of the DOA for scenario B

Fig. 4. RMSE of the time delay for scenario B

In comparison to scenario A, highly spatially correlated rays
lead to the fact that neither 2D-SAGEp or SS-JADE-MUSIC
works well. Even 2D-SAGEi cannot resolve the two paths
thoroughly in high C/N0. However, JAODE-MSBL algorithm
has a strong robustness against multipath as shown in Fig.3
and 4. It particularly performs as good as 2D-SAGEi in delay
estimation, even reaching the level of 10−2Tc, the decimeter
level, at only 40 dB-Hz.

C. Scenario C: highly temporally correlated rays

We will be continuing to explore the performance of pro-
posed method in a highly temporally correlated case, the
DOAs θ1, θ2 of the LOSS and the multipath signal are set
to be 0.3◦, 10.8◦, while the delays τ1, τ2 are narrowed to
0.03Tc and 0.13Tc, respectively.

In both highly spatially and temporally correlated rays sce-
narios, the performance of 2D-SAGEp continues to deteriorate,
especially in low C/N0. Meanwhile, SS-JADE-MUSIC per-
forms better than it in Scenario B due to the spatial smoothing.
Even though 2D-SAGEi is good to see under 48 dB-Hz, it
becomes flat in high C/N0 which confirms that SAGE cannot
discriminate two highly temporally correlated rays anymore in
high C/N0. Conversely, JAODE-MSBL performs well after 42
dB-Hz showing that it can provide the accurate values.

VI. CONCLUSION

The joint DOA and delay estimation problem for multipath
mitigation in GNSS has been investigated in this paper. The
novel JAODE-MSBL algorithm has been proposed to estimate
on-grid DOA and off-grid delay which reduces the complexity
and enhances the resolution. Simulation results confirm that
the proposed JAODE-MSBL provides more accuracy delay
estimation and outperforms in multipath discrimination espe-
cially in low C/N0 and spatially correlated rays. However,
different GNSS scenarios acquire different MSBL based esti-
mators. Future work will focus on the extended derivation of
the proposed algorithm in adaption to various GNSS scenarios.
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Fig. 5. RMSE of the DOA for scenario C

Fig. 6. RMSE of the time delay for scenario C

APPENDIX

Define (20) into two parts and we calculate them separately
where the sampling point t here is omitted for short

FA = ‖ys − [A⊗ (C +Bτdiag (βτ ))]µx‖22
=
∥∥ys−(A⊗C)µx−vec

(
(Bdiag (βτ ))matµxA

T
)∥∥2

2

= ‖ys − (A⊗C)µx −Ξβτ‖22
=−2<

{
(ys−(A⊗C)µx)

H
Ξ
}
βτ+βTτ ΞHΞβτ+C2

(29)

FB = Tr
{

Φ (βτ ) ΣxΦ(βτ )
H
}

= 2<
{
Tr
{

(A⊗C) Σx(A⊗ (Bτdiag (βτ )))
H
}}

+ Tr
{

(A⊗(Bτdiag (βτ ))) Σx(A⊗(Bτdiag (βτ )))
H
}

+ C3

(30)

where C2, C3 are the parts irrelevant to βτ . Then split FB
into two parts for simplicity,

FC = <
{
Tr
{

(A⊗C) Σx(A⊗ (Bτdiag (βτ )))
H
}}

= <
{
Tr
{(
AHA⊗BHC

)
Σxdiag (J1βτ )

}}
= <

{
diag

((
AHA⊗BHC

)
Σx

)}T
(J1βτ )

(31)
FD = Tr

{
(A⊗(Bdiag (βτ ))) Σx(A⊗(Bdiag (βτ )))

H
}

=βTτ J
T
1

(
Σx�(A⊗B)

H
(A⊗B)

)
J1βτ .

(32)
Follow the above equations, Pτ and vτ are acquired. Note that
βTτ Qβτ belongs to real domain under the circumstance of a
positive semi-definite matrix Q thus leads a result βTτ Qβτ =
<
{
βTτ Qβτ

}
= βTτ <{Q}βτ due to the real-valued βτ . Then

we have the positive semi-definite matrix Pτ .
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