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Abstract—The most recent generation of Global Navigation
Satellite Systems (GNSS) are implementing Binary Offset Carrier
(BOC) modulation. These signals are expected to provide not
only better precision in the estimation of the signal’s delay
and phase but also more robustness to multipath effects. The
advantage of BOC signals is that the main lobe of the correlation
is very narrow, but on the other hand they present side lobes.
For high-order signals, the amplitude of the side lobes can be
similar to the amplitude of the main one or even exceed it
under specific scenarios. Some techniques to mitigate the code
ambiguity exploit the fact that BOC signals can be understood
as the sum of two BPSK signals. Even though these techniques
achieve their objective, they lose the robustness against multipath
and increase the tracking noise. This paper presents a new
combination between the time delay estimated by these kind of
techniques and the time delay estimated using the full BOC. The
idea of the combination is the same as the carrier smoothing but
instead of using the carrier measurement, two code measurements
are combined. Since the delay introduced by the ionosphere is
the same, or very close, using the Full-BOC and the two-BPSK
techniques, as it will be shown in this paper, the smoothing
time can be large values, compared with the common carrier
smoothing time. Several simulations of the new code smoothing
strategy for different scenarios are presented in this paper.

Index Terms—Ambiguity, BOC, BOCcos, side lobes.

I. INTRODUCTION

The BOC (Binary Offset Carrier) signals have been chosen
for the new generation of GNSS (Global Navigation Satellite
System) as Galileo, the upgrade of the GPS system and the
future Chinese (COMPASS/BEIDOU) and Indian (GAGAN)
systems. These signals were expected to provide not only
better precision in the estimation of the signals delay and
phase but also more robustness to multipath effects (i.e. the
effect whereby the transmitted signal reaches the receiver
through different paths that experience different delays and
attenuations). These contributions are combined with the direct
signal causing an error in the estimation of the position.

The ambiguity issue with the BOC signals is a well-known
problem in the GNSS community: confusing a side lobe with
the main lobe (synchronization error) and hence producing an
error in the computation of the position. This issue becomes
more challenging as the order of the BOC increases. For
instance, the autocorrelation of BOC(15,2.5) signal has the
side lobes only at 9.7 meters of the main one and their value
is around 0.89 (normalised assuming that the maximum is
equal to one). Several methods with the aim of mitigating
the ambiguity have been presented in the literature. One kind

of them are called BPSK-like. They are based on seeing the
BOC signals as the sum of two BPSK signals [1] [2]. They
can be filtered by one filter that has enough bandwidth for
both BPSK, or each BPSK can be filtered using different
filters centered at the carrier frequency +/- the sub-carrier
frequency. In [3] the authors analyze the behavior of using
only one BPSK signal instead of the combination of two.
Another unambiguous technique that achieves the BPSK, or
close, shape is based on taking out the sub-carrier component
as it is usually done with the carrier [4]. Although these
methods are able to mitigate the ambiguity issue, they lose all
the multipath mitigation properties of the BOC signals. The
Double Estimator (DE) [5] is based on the use of three loops:
Phase Lock Loop (PLL) for the phase delay, Delay Lock Loop
(DLL) for the code delay and a new one for the sub-carrier
delay, the Sub-carrier Lock Loop (SLL). It means that, the
code and sub-carrier delays could be different. Therefore, a 2D
correlation are obtained. It combines both dimensions, i.e. the
DLL and SLL, in order to achieve a unambiguous correlation.
Although the BPSK-Like and the DE are completely different,
one dimension of the correlation obtained with the DE has the
same shape than the BPSK-like. The idea of the DE technique
is to correct the SLL using the DLL. If the different between
them is bigger than half sub-carrier cycle, the measurement
jumps to the right peak. In [6] the author presents different
ways to combine the two measures obtained with the DE
technique.

In this paper a new idea in order to mitigate the ambiguity
problem is presented. It is based on the use of two code delays:
one that is ambiguous and another one that is unambiguous.
The goal is to apply code smoothing: the same idea as in
carrier smoothing but using two code measurements instead of
one phase and one code measurements. Using the BPSK-like
techniques an unambiguous but noisy delay is achieved. The
delay estimated using the full BOC signal is ambiguous but
less noisy. There is a big similitude between these two delays
and the two delays that are used in carrier smoothing strategy:
the code measurements are unambiguous but noised, whereas
that the carrier measurements are less noisy but ambiguous.
One of the carrier smoothing problems is that the carrier and
the code are delayed differently by the ionosphere. Hence,
a bias between both measurement is introduced and it is
time variant. This effect limits the smoothing time. Since the
BPSK and BOC delays are close to the same frequency, the
ionosphere effect is practically the same for both code delays.
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This is shown in the following sections.
The remaining of this document is organized as follows.

In Section II the fact that the BOC signals can be expressed
as the sum of BPSK is presented. The Section III exposes
the mathematical expressions of the smoothing strategy and
its common version carrier smoothing. The new unambiguous
technique based on the smoothing strategy is presented in
Section IV. The ionosphere effects and its impact on the
BPSK-like and BOC code delay are presented in Section V.
The combination of the two BPSK measurements is shown in
Section VI. The results and the conclusions are presented in
Section VII and Section VIII.

II. DUAL SIDEBAND

The fact that the BOC signals can be tracked as the sum
of two BPSK is a well-known ambiguity mitigation method.
Actually, it can be shown that the BOCcos pulses can be
written as sum of infinite sinusoids using the Fourier series
as

psc(t) =
∞∑

n=1

4(−1)
(n+1)

π (2n− 1)
cos (w0(2n− 1)t) p(t), (1)

where wo = 2π/To, To is the inverse of the sub-carrier fre-
quency, and p(t) is a square pulse of duration equal to inverse
the chip rate. The amplitude is decreasing as n increases.
Since the signal is filtered, the expression can be reduced to
the first term, i.e. n = 1, neglecting the higher terms. The
Fig. 1 shows the spectrum of two BPSK centered at +/- the
sub-carrier frequency, the theoretical BOCcos and the Fourier
series for n = 1. The Bandwidth of the satellite has been set at
+/-19MHz as a brick wall filter. It should be noted that, inside
the bandwidth, the three spectra are very similar to each other.
Hence, the filtered BOCcos signal can be expressed, in terms
of the spectrum as the sum of two BPSK.
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Fig. 1. BOCcos(15,2.5) Spectrum

Fig. 2. Smoothing block diagram

III. SMOOTHING STRATEGY

A. Hatch Filter

The most common smoothing technique is based on the
Hatch filter [7], [8]. The idea is to smooth an unbiased but
noisy measurement using a biased but non-noisy measurement.
For instance, the code is smoothed using the carrier mea-
surements. Fig. 2 shows the block diagram of the smoothing
technique. The Hatch filter can be expressed as

X̄[k] =
1

α
X[k] +

(
1− 1

α

)
X̄[k − 1], (2)

where α is the smoothing time constant in terms of number
of samples, X̄[k] is the filtered version of X = Ψ−Φ i.e. the
different between the two estimated measurements, which can
be defined as

Ψ = r + IΨ + wΨ,
Φ = r + IΦ + wΦ + λ,

(3)

where r is the distance between the satellite and the receiver
and is the same for both delays, IΨ and IΦ are the ionosphere
delays for both measurements and could be different, wΨ and
wΦ are the thermal noise and multipath effect and λ is the
ambiguity term. The smoothed measurement can be written
as

Ψ̄[k] = X̄[k] + Φ[k]. (4)

Substituting (3) and (2) in (4), the smoothed measurement can
be written as

Ψ̄[k] = (r[k] + IΦ[k] + wΦ[k] + λ)+
+ 1

α (r[k] + IΨ[k] + wΨ[k])
+ 1

α (−r[k]− IΦ[k]− wΦ[k]− λ)+
+
(
1− 1

α

) (
r̄[t− 1] + ĪΨ[t− 1] + w̄Ψ[t− 1]

)
+

+
(
1− 1

α

) (−r̄[t− 1]− ĪΦ[t− 1]− w̄Φ[t− 1]− λ
)
,

(5)

where we have used the following definitions

ĪΨ[k] =
1
αIΨ

[k] +
(
1− 1

α

)
ĪΨ[t− 1],

ĪΦ[k] =
1
αIΦ

[k] +
(
1− 1

α

)
ĪΦ[t− 1],

w̄
Ψ
[k] = 1

αwΨ
[k] +

(
1− 1

α

)
w̄

Ψ
[t− 1],

w̄Φ [k] =
1
αwΦ [k] +

(
1− 1

α

)
w̄Φ [t− 1].

(6)

The expression in (5) can be written as

Ψ̄[k] = r[k]+
+I

Φ
[k] + w

Φ
[k] + ĪΨ[k]− ĪΦ[k] + w̄

Ψ
[k]− w̄

Φ
[k].

(7)



The last two terms are the filtered noise of both measurements.
Compare to the sampled noise, these two terms can be
neglected. ĪΨ[k] and ĪΦ[k] are the filtered or smoothed delays
due to the ionosphere.

B. Carrier Smoothing

The carrier smoothing method is well known in the GNSS
community: the carrier measurements are used jointly with
the code measurements in order to reduce the code noise. In
this case, the generalized variables presented in the previous
section can be formulated as Ψ = ρ (code measurements )and
Φ = φ (phase measurements). The delay introduced by the
ionosphere is well documented [9] IΨ = −IΦ = I . Then, (7)
can be written as

ρ̄[k] = r[k] + I[k] + w
φ
[k] + 2Ī[k] + w̄

ρ
[k]− w̄

φ
[k]. (8)

The last equation shows the dependence on the previous
evolution ionosphere effect. As it is time depending a large
integration time can cause an unacceptable bias.

IV. CODE SMOOTHING STRATEGY

In this section a different smoothing strategy is presented,
its schematic is shown in Fig. 3. There are three independent
loops: The full BOC and the two BPSK tracking loops.
Nevertheless, the phase measurements (θcarrier) from the full
BOC can be supplied to the BPSK loops. The code measure-
ments from the two BPSK loops (τU and τL) are combined
to each other getting the τBPSK measurement. Finally, It is
smoothed with the full BOC measurement (τBOC) obtaining
the unambiguous and smoothed τ̄ measurement.

Fig. 3. Code Smoothing schematic

The generalized variables can be reformulated for code
smoothing as Ψ = τBPSK and Φ = τBOC. Assuming that
both delays are affected in the same way by the ionosphere,
i.e. IΨ = IΦ = I , (7) is written as

τ̄ [k] =
= r[k] + I[k] + wτBOC

[k] + w̄τBPSK
[k]− w̄τBOC

[k].
(9)

The result achieved is very interesting. The measurement does
not depend on the past evolution of the ionosphere effect.
Therefore a large smoothing time can be done. It has to be
taken into account that a change in the ambiguity produces
the same effect as a cycle slip. Moreover, if a large smoothing

time is set the filtered terms in the equation can be neglected.
Then, the measurement can be approximated as

τ̄ [k] ≈ r[k] + I[k] + wτBOC
[k]. (10)

In order to reduce the the time of convergence, when
code smoothing starts, α increases linearly until it reaches its
defined value.

V. IONOSPHERE EFFECT ON BOC SIGNALS

In the above section it has been assumed that the effect
of the ionosphere for both code measurements is the same.
The main purpose of this section is to present the ionospheric
model and demonstrate that the effect of the ionosphere can
be considered equivalent when BPSK-Like and Full BOC
techniques are implemented. Besides, a simplified expression
of the ionosphere effect for narrowband signals is presented.
There are many documents in the literature that describe the
ionosphere effect such as [9]. The refraction index for the
phase propagation in the ionosphere can be approximated as

np = 1 +
c2
f2

+
c3
f3

+
c4
f4

+ ..., (11)

where all the cx coefficients only depend on the number
of electrons, but not on the frequency. c2 is estimated as
c2 = −40.3ne Hz2, where ne is the electron density. All the
other terms, bigger than c2 (c3, c4), can be neglected for our
purposes. The group refractive index can be determined by

ngr = np + f
dnp

df
. (12)

Substituting c2 in (11) and (12) and neglecting all the terms
bigger than c2, both index can be written as

np = 1− 40.3ne

f2 , ngr = 1 + 40.3ne

f2 . (13)

The phase refractive index is less than the unity, hence the
phase velocity is greater than the speed of light in vacuum,
i.e. the phase suffers an advance. Nevertheless, the group
refractive index is bigger than the unit, therefore the group
velocity is less than the light speed in vacuum. Integrating np

and ngr along the signal path, the phase and code measure-
ments are obtained. In [9] the author shows that, after the path
integration, the phase and the group delay introduced by the
ionosphere can be expressed as

τp = − 40.3TEC
f2 , τgr = 40.3TEC

f2 , (14)

where TEC represents the total electron in units of TECU =
1016e/m2 and f is the frequency of the signal. Both equations
have units of meters. For instance, if TEC = 1TECU the
delay introduced by the ionosphere is 0.1624 meters. Taking
into account the effect on the phase and group delay, the
ionosphere can be modeled as a filter with response

H(f) = e
j2π40.3TEC

cf , (15)

where c is the light speed. Assuming that the two main lobes
of the BOC signals are narrow enough, each one of them can
be approximated to only one frequency. Then, the ionosphere



filter can be expressed by the first order of Taylor’s series
expansion

∠H(f) ≈ ∠H(f0) +
[

d
df∠H(f)

]
f=f0

(f − f0)

≈ 2π40.3TEC
cf0

+
[
− 2π40.3TEC

cf2

]
f=f0

(f − f0)

≈ 2
(

2π40.3TEC
cf0

)
− 2πf40.3TEC

cf2
0

.

(16)

VI. BPSK-CODE COMBINATION

The main goal of this section is to analyse whether the
delay introduced by the ionosphere when the matched filter
is applied is the same as the one achieved by the BPSK-Like
technique.

Neglecting the multipath, noise and any other effect, the
total distance estimated is the distance between the satellite
and the receiver r plus the delay, in meters, introduced by the
ionosphere i.e. 40.3TEC/f2 meters. Then, assuming that the
bandwidth of the signal is narrow enough, it could be written
as

τtotal =
40.3TEC

f2
+ r. (17)

The two measurements obtained with the BPSK-Like tech-
nique are affected by the same concentration of electrons and
the distance between the satellite and the receiver is the same.
Hence, the only variable for all the equations is the centered
frequency. The following system of equation holds

τBOC =
40.3TEC

f2
RF

+ r, (18a)

τU =
40.3TEC

f2
U

+ r, (18b)

τL =
40.3TEC

f2
L

+ r. (18c)

One can realize that adding the two BPSK measurements,
the full BOC one is not achieved. In order to get it the
following combination must be applied

τBPSK =

=
f2
U

f2
U−f2

L

(
1− f2

L

f2
RF

)
τU − f2

L

f2
U−f2

L

(
1− f2

U

f2
RF

)
τL,

(19)

where:

• fRF is the carrier frequency
• fU is the carrier frequency plus the sub-carrier frequency
• fL is the carrier frequency minus the sub-carrier fre-

quency
• τU is the measurement estimated with the upper BPSK
• τL is the measurement estimated with the lower BPSK

In order to corroborate the above combination several sim-
ulations have been carried out. Non coherent discriminator
has been applied with the same Early-Late spacing. Fig. 4
shows the error of the ionospheric delay estimation obtained
using the two BPSK and the full BOC for different values of
TEC at E1 band. The green color is the difference between
both errors. It should be noted that, the distance introduced
by the ionosphere, for instance, for TEC = 150 is around
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Fig. 4. Ionosphere Delay Estimation Error for BOC and BPSK-Like

24.3559 meters and the error in the estimation is around 0.01
centimeter. The simulation has been done using the ionosphere
mode shown in (15). Since the multipath and even the thermal
noise cause larger error in the time-delay measurements, this
difference can be neglected.

VII. RESULTS

In this section the code smoothing results are presented. The
common receiver parameters are:

• BOCcos(15, 2.5)
• CodePeriod = 0.01 seconds
• fs = 123 Msps
• BWPLL = 10 Hz
• BWDLLBPSK = 1 Hz
• BWDLLBOC = 1 Hz
• EarlyLateSpacingBPSK = 0.08 chips
• EarlyLateSpacingBOC = 0.041 chips

Before showing the properties against noise or filtering, the
ambiguity mitigation is demonstrated. Fig. 5 shows the code
smoothing and the full BOC measurements when the initial
error is 12 meters, i.e. the tracking full BOC loop starts at a
side lobe and it remains there. The code smoothing goes to
the main lobe. The smoothing time has been set to 2 second.

Since the smoothing time constant is increasing during the
transition, the time to reach the final value does not depend,
or almost not, on the time constant. Fig. 6 shows the transition
epoch for different α values. For all the simulations, the units
of α are in epochs, i.e. 0.01 seconds. As it can be seen, the
convergence time is almost the same. However, as the time
constant increases, the fluctuations decrease. It should be noted
that the transition is achieved without any jump. The transition
time depends, among other factors, on the DLL parameters, the
early late spacing and the discriminator, such as the bandwidth
of the filter.

In the Section III the capability to achieve the same per-
formance as the full BOC tracking, in terms of standard
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deviation, has been demonstrated for high values of time
smoothing constant. Fig. 7 shows the estimation of the code
smoothing strategy versus full BOC for C/No = 33 dBHz
and C/No = 40 dBHz. It should be noted that for time
smoothing constant of 1000 epochs, i.e. 10 seconds, the
behavior is almost the same as the Full BOC tracking. Table
I presents the standard deviation for different time constants.
The bigger the time is, the smaller the variance is.

When the signal passes through a filter with non-linear
phase response, i.e. non-constant group delay, a shift in the

TABLE I
STANDARD DEVIATION OF CODE SMOOTHING VS FULL BOC.

σ [meters]

α [epoch] C/N0 = 40dBHz C/N0 = 33dBHz

50 0.65 0.28
100 0.51 0.23
1000 0.25 0.14
5000 0.20 0.12

BOC 0.20 0.12
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correlation function relative to its envelope is produced. This
shift may bring the sub-carrier tracking point close to a side
lobe. In a nutshell, the maximum of the sub-carrier correlation
function is separated from the maximum of the envelope. The
advantage of code smoothing technique is that it follows the
mean value of the envelope and the variance of the full BOC,
or close. Since the error is the same for all the satellites it
has no affect when the PVT is performed. Fig. 8 shows the
full BOC correlation and the one achieved with the BPSK
envelope when the signal has been filtered with a Butterworth
filter (non-linear phase response) of order 6 and 42MHz of
bandwidth.

Other techniques, as the DE, need to know the bias between
the maximum of the full BOC and the BPSK envelope and
correct it before the codes combination. Fig. 9 shows the
impact of a Butterworth filter on the smoothing strategy. The
smoothing time is 1000 epochs. The bias between the BPSK
and the full BOC delays is 2.8 meters. The smoothed delay
follows the mean value of BPSK and uses the full BOC
measurements for the punctual updates, hence, it does not
suffer jumps. However, the DE follows the full BOC and
compares these measurements with the DLL measurements. It
jumps if the difference between them is bigger than half sub-
carrier cycle (4.887 meters). Since there is a constant bias, the
range decreases, and then, some undesired jumps happen.
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Since the smoothing strategy is a filter itself, it is not
straightforward to evaluate its behavior against multipath. Due
the memory of the technique the evolution of the multipath
must be taken into account. Nevertheless, Fig. 10 shows the
smoothing measurements versus the BOC and BPSK ones.
The scenario simulated is really interesting because it causes
a false lock in the BOC loop. A strong multipath, only 2 dB
below the line-of-sight (LOS), appears at 20 seconds, after 10
seconds its power increases above the LOS. At instant 40 the
multipath disappears, only the LOS remains. The smoothing
strategy is able to get back to the main one. The BOC loop
is locked in a side lobe and it is not able to get back to the
main one.

VIII. CONCLUSIONS

In this paper a new unambiguous tracking method based
on the smoothing strategy has been presented. Besides, a

judicious combination of the two delays yielded from the
dual side tracking is performed. This combination is then
smoothed with the match filter. It is noteworthy that the
smoothing strategy can be applied with only one side tracking
measurement, any other unambiguous technique, or even the
two delays used in the DE.

If there is a constant bias between the unambiguous and the
ambiguous measurements, the smoothed strategy follows the
mean value of the unambiguous one. For instance, when the
signal has passed through a filter with non-continuous group
delay. Since the bias is the same for all the satellites it does
not affect the PVT solution.

The method presented in this paper shows that using a
large smoothing time, the tracking variance is very similar
to the one achieved with the ambiguous measurements. The
main advantage, over other combination methods, is that this
technique never jumps. Moreover, since the integration time
can be very large, the effect on the smoothed measurement,
due to the multipath and the noise, is the same, or close, as
the one obtained with full BOC.

After the results presented in this paper, the future lines of
research are the behavior with a real channel, i.e. ionospheric
effect, multipath effect and fading. It should be noted that the
technique is a filter itself, the multipath envelope is not enough
for characterizing the technique, since the error depends on
the multipath delay but also on its duration. Moreover, the
smoothed measurement has memory due to the filtering.
Therefore, the evolution of the channel must be also taken
into account.
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