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Antoni Morell, Jośe López Vicario and Gonzalo Seco-Granados
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ABSTRACT

It is foreseen that new cognitive wireless communications de-
vices will incorporate multiple reconfigurable radios in the
near future. In this paper, we concentrate on the problem
of allocating the device power to the radios and we discuss
the advantages of distributed approaches in front of central-
ized designs. Motivated by the scalability in the design and
by the potential reduction of signalling information between
the transceivers and the power controller, we develop a new
power allocation algorithm that is based on a novel decompo-
sition algorithm, called coupled-decompositions method. As
a result, we reduce the signalling requirements by a factor 10
with respect to centralized approaches and by a factor 3 with
respect to a classical primal decomposition approach. Fur-
thermore, the resulting technique is expected to adapt faster
and more robustly to changes in the scenario conditions.

1. INTRODUCTION

Cognitive radio has emerged as a very promising technol-
ogy to overcome the scarcity of electromagnetic spectrum by
means of efficiently employing it [1]. It has been identified
that only some parts of the spectrum have a high utilization
factor due to the operation of current communication systems,
which are referred to as the primary systems in the cognitive
literature. The remaining time-frequency regions are known
as the spectrum holes and the idea in cognitive radio is to al-
low a secondary system to exploit the available resources as
far as an acceptable interference level, measured in terms of
the interference temperature [1], is introduced into the pri-
mary system.

From a more practical point of view, cognitive radio is
closely related to software radios. Given that a software im-
plementation of typically hardware devices such as mixers or
oscillators is possible, radio transceivers can be reconfigured
so that they are no longer restricted to permanently operate
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Fig. 1. Architecture of the cognitive device.

according to the same communications standard. Moreover,
it is expected that next generation wireless terminals will in-
clude multiple radio transceivers in order to establish several
data links, either using various channels in the same access
network (e.g. IEEE 802.11n), distinct wireless systems (e.g.
WIFI, WiMAX and 3G) or a combination of both [2, 3].

In this paper we consider the multiple radio scenario and
we focus on the design of the communications device. Specif-
ically, we concentrate on the allocation of the available power
among the transceivers. The rest of the paper is organized as
follows. Section II contains the problem formulation. Sec-
tion III reviews the classical centralized solution to the posed
problem and Section IV discusses alternative distributed so-
lutions. Finally, Section V includes simulation results and
Section VI concludes the paper.

2. PROBLEM FORMULATION

Let us assume that the total device power isPT and thatM
radio transceivers are active, i.e. with the possibility to trans-
mit. Our goal is to allocatePT among theM radios in order to
achieve the maximum possible transmission rate. Motivated
by the widespread usage of Orthogonal Frequency Division
Multiplexing (OFDM) and without loss of generality, we as-
sume that the transceivers use multi-carrier modulations (or
single-carrier as a particular case). Furthermore, we assume
that the device has determined the maximum allowed power
per subsystem and subcarrier in order to keep below the de-
sired interference temperature. See in Figure 1 our proposed
system architecture, withM radios and a central controller
that decides the power allocation. In the following, the terms



radios, subsystems and transceivers are used interchangeably.
We formulate the power allocation problem as the follow-

ing optimization program that maximizes the total transmis-
sion rate,

max
{pi,j}

∑M

i=1

∑Ni
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j=1
BWi log
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pi,j Hi,j

N0 BWi

)

s.t.
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0 ≤ pi,j ≤ p̄i,j

, (1)

wherepi,j is the power allocated to the j-th subcarrier at the
i-th transceiver and̄pi,j is the maximum allowed power at the
subcarrier. Note that the values̄pi,j also fix the total power

at the i-th radio to
∑Ni

s

j=1
p̄i,j , whereN i

s is the number of
available subcarriers. Furthermore,BWi stands for subcarrier
bandwidth,N0 is the noise power spectral density andHi,j is
the channel gain at the j-th subcarrier on the i-th transceiver.
Finally, we want to remark that a subcarrier is always man-
aged by the same radio, being the assignment previously de-
termined by the device.

3. CENTRALIZED SOLUTION

The problem in (1) can be solved by applying the Karush
Kuhn Tucker (KKT) optimality conditions for convex prob-
lems [4] and the following water-filling solution is found,
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andµ is such that
∑M

i=1

∑Ni
s

j=1
pi,j = PT .

Note that the implementation of (2) in practice requires
to gather all the valuesHi,j , p̄i,j andBWi at the controller,
compute there the optimal allocation{p∗i,j} and send it back
to the radios. Therefore, this option requires a large amount of
signalling between the radios and the controller and to solve
an optimization problem that hasNs =

∑M

i=1
N i

s variables.
Furthermore, (2) must be recomputed whenever the parame-
tersHi,j , p̄i,j andBWi change or when a radio is reconfig-
ured. In order to overcome these impracticalities, we explore
alternative solutions in the next section.

4. DISTRIBUTED SOLUTION

A different approach to the problem is to use the controller to
decide only the amount of transmission power that is given to
each transceiver and let the radios to internally allocate it, re-
sulting in a scalable solution. Our motivation is to reduce the
amount of signalling and to spread the processing load inside
the receiver by means of parallel computing. Note that trans-
mitting only the power per subsystem instead of the power per

subcarrier simplifies the system interfaces, makes the commu-
nication between the radios and the controller easier and may
help in future standards.

Assuming that each radio is able to compute its optimal
power allocation, we can reformulate the problem in (1) as

max
{Pi}

∑M

i=1
ri(Pi)

s.t.
∑M

i=1
Pi ≤ PT

, (4)

whereri(Pi) represents the internal power allocation prob-
lem, expressed as

ri(Pi) =
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. (5)

Using this alternative formulation, we want to establish a
dialogue between the radios and the transceivers in order to
find the optimal power allocation. This dialogue should con-
tain only aggregated values such as thePi’s and avoid to sig-
nal specific subcarrier powers and parameters, which remain
as internal variables of the radios.

4.1. Primal Decomposition Approach

A classical primal decomposition approach [5, Sec. 6.4.2]
can be applied to solve (4). In this way, the vectorP =
[P1, . . . , PM ]T that collects the transmission powers of the
transceivers is updated using the following rule,

P
k+1 =

[

P
k + αk

s
k
]†

, (6)

wherek indexes iterations,αk is the step-size of the method
and[P ]† is the projection ofP on the subspace determined
by

∑M

i=1
Pi ≤ PT , Pi ≥ 0 andPi ≤ ∑

j p̄i,j , ∀i. Finally,

s
k is the subgradient of

∑M

i=1
ri(Pi) at P k. Once the prob-

lems in (5) are solved (internally at the radios),s
k is readily

expressed as

s
k = −[λ∗

1(P
k
1 ), . . . , λ∗

M (P k
M )]T , (7)

whereλ∗
i (P

k
i ) is the optimum value of the Lagrange mul-

tiplier associated to the constraint
∑Ni

s

j=1
pi,j ≤ P k

i in (5).
Therefore, the radios exchange only the transmission powers
in P

k and the subgradients insk using this approach.
However, the method experiences a low speed of conver-

gence and furthermore, as far as the step-size has to be man-
ually adjusted (see [6]), there is a very low probability of se-
lecting the optimal step at each time instant. For the sake of
brevity, we do not include here another wide-used decompo-
sition approach, that is, dual decomposition [5, Sec. 6.4.1],
but we evaluate it in our results. In the following, we derive
the solution of (4) using a new method developed by the au-
thors [7, 8]. It outperforms primal and dual decompositions
in terms of convergence speed and furthermore, it requires no
parameter adjustment.
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Fig. 2. Block diagram of the coupled-decompositions method.

4.2. Coupled-Decompositions Approach

The coupled-decompositions combines the ideas from primal
and dual decompositions in a single technique. It is important
to remark that this solution is different to other approaches in
the literature that use primal and dual solution domains simul-
taneously. For example, [6] shows how toserially concate-
nate an arbitrary number of primal and dual decompositions;
and the Mean Value Cross (MVC) decomposition method [9]
or the primal-dual interior point methods [4, Sec. 11.7] use
both solution domains but do not exploit the problem separa-
bility, as opposite to classical decomposition techniques.

The coupled-decompositions method (CDM) can be sum-
marized in four steps, namely: i) dual subproblems, ii) primal
projection, iii) primal subproblems and iv) dual projection.
This is also the execution order (see Figure 2) that iteratively
finds the optimal water-levelµ. The definition of the sub-
problems in the CDM coincides with the primal and dual sub-
problems that appear in classical decompositions whereas the
projections are completely redefined [7, 8].

In the following, we detail the steps of the method for the
proposed problem. Givenµk at iterationk, we compute the
following dual subproblems:

max
{pi,j},P k

i

∑Ni
s

j=1
BWi log
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1 +
pi,j Hi,j

N0 BWi

)

− µk P k
i

s.t.
∑Ni

s

j=1
pi,j ≤ P k

i

0 ≤ pi,j ≤ p̄i,j

. (8)

Applying the KKT optimality conditions, the closed-form so-
lution of (8) is

pi,j =
[

BWi

(

1

µk − N0

Hi,j

)]p̄i,j

0

P k
i =

∑Ni
s

j=1
pi,j

. (9)

After the dual subproblems, the values inP
k may not at-

tain the total power constraint. The primal projection obtains

then the corrected values in̂P
k

by computing the projection
on the hyperplane defined by

∑M

i=1
Pi = PT and the feasible

range of eachPi, that is,

min
{P̂ k

i
}

||P̂ k − P
k||2

s.t.
∑M

i=1
P̂ k

i = PT

0 ≤ P̂ k
i ≤ ∑

j p̄i,j , ∀i

. (10)

The corrected valueŝP k
i are then used in the primal sub-

problems, already defined in (5). These problems are inter-
nally solved at each radio transceiver using standard water-
filling techniques such as the bisection method. As a result of
the primal subproblems, the Lagrange multipliers associated

to the constraints
∑Ni

s

j=1
pi,j ≤ P̂ k

i at iterationk, i.e. λk
i , are

obtained. Note that if̂P k
i < 0, the corresponding primal sub-

problem has no feasible solution and therefore, it returns no
value ofλk

i .
Finally, the dual projection updatesµk to µk+1 using the

list {λk
i }. It is straightforward to update the water-levelµ in

our problem by computing

µk+1 = min{λk
i }. (11)

The interested reader can find more details about the dual
projection and the CDM as well as its proof in [7, 8]. In the
following, we provide a brief interpretation of the technique
from a resource-price perspective, which is a common way
to interpret primal variables (resources) and dual variables
(prices to be paid) in convex problems.

Resource-price interpretation

The method starts with an initial priceµ0. First, the radios
buy a certain amount of transmission power taking into ac-
count the current price (dual subproblems). Thereafter, the
controller modifies the previous purchases in order to limit
the total amount of power toPT (primal projection). How-
ever, since the correction has not taken into account the un-
avoidable price modification, the radios check for the price
they would pay for the new allocation (primal subproblems).
If the new prices do not correspond to the allocated resources,
the controller sorts out a new priceµk+1 (dual projection).
The process is repeated until a consensus price is found.



Table 1. Description of the subsystems

Subsystem Number of Subcarrier Subsystem
number subcarriers bandwidth (BWi) bandwidth

1 256 6kHz 1.536MHz
2 256 12kHz 3.072MHz
3 128 10kHz 1.28MHz

Note that using the CDM, we exchange the transmission
powers{P k

i } and{P̂ k
i }, the validation prices{λk

i } and the
consensus priceµk+1.

Summary in algorithmic form

PROPOSED POWER ALLOCATION ALGORITHM

Take starting pointµ0 = 0 and letk = 0.

Repeat

1. Compute the primal variablesP k
i usingµk in the

dual subproblems (9).

2. Apply the primal projection to get the valueŝP k
i

from P k
i as in (10).

3. Use the primal subproblems in (5) and getλk
i from

P̂ k
i .

4. Updateµk using the dual projection in (11), i.e.
µk+1 = min{λk+1

i }.

Until convergence.

Finally, note that when a distributed solution is employed,
the radio transceivers become transparent to the controller,
that is, the algorithm is not affected by changes on the con-
figuration of the radios or, in other words, it is able to more
easily adapt to channel fluctuations or reconfigurations on the
radios. If we use a centralized approach instead, any change
requires to reset the algorithm.

5. SIMULATION RESULTS

Let us assume a communication device that has three radio
transceivers. The radios use mutli-carrier modulations and
their configuration parameters are summarized in Table 1. We
specify the number of available subcarriers, the subcarrier
bandwidthBWi and the total spanned bandwidth at each sub-
system. Overall, the device manages 5.888MHz andNs =
640 subcarriers. We assume that the channels in the three
subsystems are frequency selective and that each channel has
a length of 20 taps as well as an exponential power delay pro-
file with 1ms of delay spread. Mean channel gain is 0dB in
transceiver 1, -10dB in transceiver 2 and -5dB in transceiver
3. We fix the noise power at the first radio toσ2

n and the total
available power toPT (dB) = σ2

n(dB) + 10 log10(640) + 5.
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Fig. 3. Distributed water-filling example. Top: channel gains.
Bottom: power allocation. Inf1-f3 we have the initial band
frequencies of subsystems 1-3.

Moreover, we assume that the noise power spectral density
(PSD) is flat over frequency and therefore,N0 = σ2

n/BW1.
Finally, we consider in our example that no further restriction
is imposed to the power, which implies̄pi,j = ∞, ∀i, j

In Figure 3, we plot a channel realization for each sub-
system (top) and the resulting power allocation (bottom). We
confirm that most of the power is allocated to transceivers 1
and 3, which are the ones that have the best channel condi-
tion. On the contrary, subsystem 2 only allocates power to a
few subcarriers with the highest channel gains. Notwithstand-
ing, in absolute terms, transceiver 2 receives a relatively large
allocation in order to exploit the higher subcarrier bandwidth.

In Figure 4 we show the evolution of the Normalized Mean
Squared Error (NMSE) in the power allocation with respect to
the number of messages exchanged between the radios. We
define the NMSE as

NMSE =

∑

i,j

(

pi,j − p∗i,j
)2

∑

i,j

(

p∗i,j
)2

, (12)

wherep∗i,j is the optimal value ofpi,j . Note that this metric
has more interest than others, such as the computational time
or the speed of convergenceof the methods, in the problem we
are dealing with. Since signalling is in general more restric-
tive than processing in terms of latency, this measure allows
us to establish a fair comparison between methods. In partic-
ular, we evaluate here the coupled-decompositions method, a
primal decomposition strategy, a dual decomposition solution
and the bisection method (as an example of a centralized ap-
proach). Note that the proposed technique exchanges4 · M
messages at each iteration, whereas a primal or a dual decom-
position strategy needs2 · M messages per iteration.

Results show that in case of employing the proposed CDM,
around 150 messages suffice in order to achieve the optimal
solution (with a NMSE= 10−10). Significant extra messag-
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ing (by a factor 3) is required in primal decomposition when
a step sizeα(k) = 1/

√
k is used in the projected subgradient

approach and it increases when we use a dual decomposition
keeping the same step-size. In both cases, we have manually
adjusted it in order to achieve good performance in terms of
convergence speed, so in practice the CDM would have even
a greater advantage with respect to classical decompositions.

Finally, a centralized approach requires to exchange 1280
messages, i.e.2 ·Ns. In this case, we first signal all the chan-
nel gains to the controller and therefore, we need to transmit
640 messages in this first phase. Note that we do not consider
here the signalling of the values in̄pi,j , and therefore, the re-
sults of the centralized approach are optimistic. In a second
phase, the optimal channel allocation is sent back to the ra-
dios and we update the NMSE every time a new subcarrier
allocation is received. Note in the figure that this solution ob-
tains a good performance only at the last message exchanges
because the error that a reduced number of not properly al-
located subcarriers introduces is relatively high. Note also
that in practice we would need to receive the complete allo-
cation to ensure that the power constraint is accomplished.
This problem is circumvented in our solution because the to-
tal power constraint is enforced at each iteration.

6. CONCLUSIONS

In this paper, we have discussed and analyzed the alternative
power allocation solutions that can be implemented in future
multiple-radio cognitive devices. We have shown that a dis-
tributed approach to the problem is advantageous in front of a
classical centralized strategy because: i) signalling is reduced,
ii) the design is scalable and iii) the resulting algorithm adapts
faster to changes in the scenario or in the transceivers. More-
over, three distributed optimization mechanisms have been
evaluated: the classical primal and dual decomposition ap-
proaches and the author’s coupled-decompositions method.

The number of exchanged messages between the radios

and the controller has been used as a performance metric. As-
suming that signalling is more restrictive than processing in
terms of latency, this quantity is more useful than, for ex-
ample, the convergence speed of the methods. Results have
shown that, in order to guarantee a small allocation error, cen-
tralized techniques need to signal all the parameters to the
controller and retrieve essentially the complete allocation af-
terwards. On the contrary, distributed strategies achieve a
good performance with a much lower number of messages.
Comparing distributed methods, we realize that the proposed
coupled-decompositions method outperforms a classical pri-
mal decomposition by a factor of 3 in our simulations. More-
over, it is expected that the proposed solution is more robust
against changes in the scenario because it requires no adjust-
ment, but this remains as future work.
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