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Abstract- The problem of Dynamic Bandwidth Allocation
(DBA) is inherent to systems that employ Bandwidth on Demand
(BoD). An important issue in such systems is to be able to react
efficiently to the always-changing traffic requests of users. More-
over, it is realistic to assume large populations sharing system
resources and thus efficient methods to distribute bandwidth are
mandatory.

Further desirable system features include guarantees on fair-
ness and on Quality of Service (QoS). Actual trends propose to
reach convergence among networks at IP-level. This encourages
the design of algorithms that sustain IP-defined QoS (e.g. in
DiffServ) and forces to exchange information between layers.
We talk then about cross-layer designs.

In this paper, we propose a novel method to compute the
allocation accomplishing the previous requirements of fairness,
QoS and time efficiency. Our work departs from known results
on decomposition techniques (primal and dual) and combines
these in a novel, interleaved and coupled fashion. In the dual
decomposition technique, the subgradient method is typically
used to adpatively compute the price the resource is charging
to the users. In our approach, the price is selected taking into
account the value that users are willing to pay, which comes
from the primal decomposition. The method is compared to the
well-known bisection one and results effectively demonstrate
superior performance in terms of convergence speed and
computational complexity.

Keywords- DBA, efficient optimization algorithms, cross-layer,
QoS, fairness.

I. INTRODUCTION

As established by the OSI protocol stack, multiple access
of users in any system has to be considered as a link layer
funtionality. More precisely, we define such procedures inside
the Multiple Access Control or MAC sublayer. Traditional
approaches force an a priori subdivision of system resources
and on that basis, users are allocated into the system when
available resources are left. Classical approaches such as
Time Division Multiple Access (TDMA), Frequency Division
Multiple Access (FDMA) or Code Division Multiple Access
(CDMA) are thus grouped under the concept of static band-
width allocation. Another possibility is to dynamically assign
resources as they are needed and we talk about Dynamic Band-
width Allocation (DBA). Associated to DBA is the process of
requesting system resources and thus the idea of Bandwidth
on Demand (BoD) systems.

°This work was supported in part by the IST-507052 SatNEx Network of
Excellence, MEC projects ESP2005-03403 and ESP2006-26372-E, and by
ESTEC Contract 19237/05/NL/AD.

The motivation is to provide better and more efficient
usage of the scarce radio spectrum with good Radio Resource
Management (RRM) schemes [1]. Concerning DBA, the prob-
lem is mathematically more interesting when the sum of the
demands exceeds the available capacity, which forces to share
the capacity. In some cases, however, the opposite case is
also significative. A conceptually different but mathematically
similar problem is that of distributing remaining resources or
capacity to users in order to increase their satisfaction. This
situation is realistic, for example, in the case of Digital Video
Broadcasting - Return Channel Satellite (DVB-RCS) [2]. In
this paper, we consider DVB-RCS as an application example.
However, the approach is general and it is still valid for other
systems. The goal is to allocate users fairly considering cross-
layer information in order to sustain QoS defined at upper
layers, such as TCP/IP with DiffServ in our application.
Among the works about DBA, with emphasis on satellite

applications, consider [3], [4], [5] and [6]. In [3], a primal
decomposition approach that uses approximated solutions for
the subproblems is proposed to solve a DBA optimization
problem. The goal is to provide a time-efficient algorithm
at the same time that fairness among users is guaranteed. A
similar and extended work appears in [5]. Fairness issues are
analyzed from the perspective of game theory [7] and a dual
decomposition approach is proposed to cope with a network
DBA problem [8]. The authors in [4] contribute with traffic
modelling in geostationary satellite networks operating in Ka
band. As a consequence of the work, discrete optimization
problems arise at two different time bases: static and dynamic.
Finally, the contribution in [6] is devoted to providing QoS
in networks with voice and data traffic using TCP-IP with
DiffServ. The resulting scheme is also cross-layer.
The novelty of the paper is the proposal of a new method

developed under the framework of convex optimization [9]
and primal-dual decomposition techniques [8], [10], [11] to
fulfill the previous requirements. Different to other approaches,
where primal or dual decompositions are 'serially' concate-
nated, our method intertwines both decompositions. A detailed
analysis of the technique will be presented and a stopping
criterion that accelerates the convergence of the algorithm will
be derived. In this way, a computationally efficient algorithm
is derived. Efficiency is of great importance because such
algorithms operate in real-time. The faster the solution is
found, the higher the number of users potentially the system
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can manage.
The rest of the paper is organized as follows. Section II

models the resource allocation problem as a convex optimiza-
tion problem and discusses fairness and QoS issues. Section
III presents the proposed algorithm, and Section IV contains
convergence analysis. Finally, Section V gives some results
and Section VI concludes the paper.

II. PROBLEM FORMULATION AND KNOWN SOLUTIONS
Consider the following generic resource allocation problem,

where a certain quantity of resources P is to be allocated
among N terminals or users (xi is the amount of resources
assigned to terminal i),

max N p. log (Xi)
{3Ul}

(1)s.t. Ei Xi < P

di < Xi < Di

where {di} and {Di} define the minimum guaranteed alloca-
tion and the requests, respectively. The weights {pi} are used
to prioritize users as a function of their QoS requirements.

Note that we can interpret (1) as the sum of weighted log-
arithmic utility functions. Utility models the user satisfaction
as a function of the resources it gets. For logarithmic utility
functions, new allocated resources highly increase satisfaction
when the user has few resources, whereas it does not provide
much benefit in the opposite case. The optimal solution of
(1) forces to 'fairly' divide resources. A formal definition
of fairness, termed proportionally fairness, and related to
logarithmic utility functions can be found [12].
The solution to the proposed fair DBA optimization problem

can be found semi-analytically. After imposing the Karush-
Kuhn-Tucker (KKT) conditions [9], the solution is

D5 | D6 D7 D8 -,a, S 5| 1l

1 2 3 4 5 6 7 8 9 10

terminals

Fig. 1. Graphical interpretation of the solution.

are always serially concatenated, even in the so-called cross-
decomposition [15], where primal and dual versions of the
same problem are iteratively interleaved.
We now propose a novel method, where primal and dual

versions of the same problem are coupled in a different way
as it is done in cross-decomposition. We propose to interleave
primal and dual decompositions (as defined in [8]) in the
scheme.

Detailed convergence analysis will be then addressed and
as a result, a criterion that prematurely stops the algorithm
iterations without sacrificing the exact solution is obtained.
This criterion highly improves computational efficiency.

Consider now the problem

min
{xi ,yi I

N

s.t. 3i yi < P

Xi <Yi
di < Xi < Di

(3)

p
Py, di < P', < Di
di: pi < di{ 'i, pi > DiDi, P~><Di

ft-

(2)

where ,u is such that Ei xi = P. A classical way to find ,u is
using the bisection method as in [13]. Another possibility, the
hypothesis testing method, can be found in [14]. The reader
can find in Figure 1 a graphical interpretation of the solution.
A set of communicated boxes (one box per terminal) of unit
width and depth equal to pi is filled with a quantity P of
water. The resulting water level can be interpreted as 1 and
the amount of water in each box corresponds to the amount
of resources the terminal gets.

III. PROPOSED ALGORITHM

It is a well-known issue in convex optimization theory
[9] that problems can be solved both from their primal or
dual representation. Moreover, it is also well-studied that,
under certain conditions, a large problem can be divided into
smaller subproblems thanks to decomposition techniques [11].
Traditionally, decompositions have been established from the
dual or primal perspective. Some works discuss sequential
mixtures of them, e.g. in [8]. At our best knowledge, these

which is equivalent to (1). Note that Ei yi < P is the only
coupling constraint.

Clearly, given the values of {yi}, the problem can be
divided into N independent and simple problems, named the
subproblems, with solution

Di Piz yi < Di
Xi = Yi- di ' Ai = lX i > Di = 1. ... N (4)

where the values {Ai} are the Lagrange multipliers associated
to the constraints xi < yi (i = 1 ... N).

In a classical primal decomposition approach, the values of
yi are successively updated by the master problem in order
to achieve global optimality while verifying Ei yi < P.
Traditionally, gradient-type approaches are used. Among their
disadvantages, one can mention that a user-defined adaptation
step is required and convergence is generally 'slow'.

Dual decomposition is derived from the dual function of
(3) when the only coupling constraints are taken into account.
The master dual problem maximizes this dual function, which
depends on the dual variable ,u,

max g(,u) = EN1 gi( )lipfti (5)
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Fig. 2. Picture of the proposed algorithm.

where

gi (u) min -Pi 1ogXi + , Yi (6)

Xi Yi
di < Xi < Di

Note that with dual formulation, the problem can be de-
coupled into the functions {gi (,u) }. Incorporating now the
individual (non-coupling) user constraints (recall that the dual
function considers only the coupling constraint) to gi(ii), we
obtain the dual subproblems in (6). Fixing now a value for ,u,
the primal variables are readily found by

Xi
g D Yi = xi, i = I . .. N (7)

As in the primal counterpart, traditional dual decomposition
approaches reach solutions based on gradient-type updates for
the master dual problem. Therefore, the same disadvantages
exist.

Our proposal combines both strategies in a unified algo-
rithm. Starting from an initial guess of ,u, say p', we compute
primal variables {xi, yi } using dual subproblems (7). Now, and
instead of updating ,u (as in a traditional approach), we correct
the potentially unfeasible yi values to fulfill the coupling con-
straint Ei yi = P. We refer to this step as Primal Projection,
as it is obtained with the Euclidean projection [9]. We get
in this way the values {y'} and we assume that the coupling
constraint is active (otherwise the problem is decoupled and
the solution is readily found). Next, y$ values are used by
the primal subproblems in (4) to obtain the dual variables
{Ai}. The final step, which we call Dual Projection, updates
,u assuring 'feasibility' on the dual variables (we comment on
this in the sequel). Dual Projection is computed as either the
minimum or the maximum of a subset of the previous {Ai}
values (and remains unchanged for all iterations),

min ({Ai act})
t+1 = a} (8)

max (Ai lact }

where {A\i act} defines the subset of the {Ai} values that are
active. A Ai is active if, for the associated primal y' value,
y C (di, Di) holds.

Let us now briefly comment on 'dual feasibility'. Consider
the Lagrangian function [9] of (3),

N N

IPi -lg(i)+ (ii
i=l i=l

L({xi, yi, Ail, /1)

N

+I: Ai -(xi -Y
i=l

N

li) + >ji * (xi
i=l

N

Di) >j(i(xi
i=l

P) + (9)

- di)

and take the partial derivative with respect to yi,

9 - Ai, (10)

As KKT optimality conditions impose zero value to these
derivatives, the optimal solution must verify ,u = A1, , AN-
We say that a solution {Ai} is 'dual feasible' if and only
if A1 = A2, ..., AN and therefore, the Dual Projection must
take a value within the candidates {Ai}. For active users, Ai is
univocally determined by the dual subproblems in (3), whereas
for non-active users, more values are valid since one of the two
Lagrange multipliers associated to the constraints di < xi <
Di has non-zero value. Therefore, it makes sense to discard
non-active users.

To end this section, Figure 2 contains a picture of the pro-
posed algorithm, referred as Coupled Primal-Dual Decompo-
sitions algorithm. The difference with [15] is that optimization
with respect to {xi} and {yi} is split in the algorithm, allowing
us to update them without taking into account past decisions.

IV. CONVERGENCE ANALYSIS
Consider the following expression

11 t+l 11*
(1 1)

which serves us to study the evolution of the absolute value
of the difference between the optimal water-level, ,u*, and
the successive algorithm updates. The objective is twofold:
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i) proof that the algorithm effectively converges and ii) learn
about the speed of convergence of the method.

Let us assume ,& < u* and Lt+1 = min ({Ai ,act }). Next,
we can write the optimal values of variables {yi} as

Pi

Yi = di,
IDi

CS*
i CM
i Cj*

(12)

where S* is the subset of terminals with optimal solution yi C
(di, Di), M* defines the users with solution yi = di and
D* includes terminals with solution yi = Di. After imposing
E xi = P, we get the optimal water-level value

1 P- ie?D DiC-iM* di
ti* Eics* Pi

(13)

In the sequel, the derivation of 1j from 1, is reviewed.
First, the dual subproblems use lit to propose their candidates
for the primal variables

Pi Mt
Yi = d i C Dt

Di, i' C Dt
(14)

where St, Mt and Dt are the counterpart of S*, M* and D*
at iteration t, respectively. The yi values are corrected by the
Primal Projection, resulting into

YEiyt- P
N yi - k (15)

Grouping results, we can state that

1 1 1
K< Kt1<H (19)

which proves convergence.
Reconsider now (11) and include the expression for ,Ut+1,

1 1 1 1 k

lt+l li* lt Pmax

Using (14) and (15) with E y' = P, k is

k

Z p+ E di + E Di
ieSt iCMt iEDt

N

(20)

p
(21)

and as k > 0, the solutions computed by the dual subproblems
in (14) exceed the optimal ones if they do not saturate. If
lt < p*, the following statements hold at the tth iteration

XDt =XD* u Dextra
S = St u -extra (22)
M* = Mt U Mextra

Introducing (22) in (21) and identifying (13) in the resulting
expression, we obtain

E Pi
k = cs

N
I[I9

-lt / jN+ NLE Di
i(EEextra

(23)

with k > 0 (the water-level in t is over the optimum).
Primal subproblems propose now their candidates for the dual
variables Ai,

1 = Y$]dj {|Ad; {lCeM"t
AI PidiPiidCDpAiPi D~~i:

Pi
i(E,extra

* E: diH
ic)M extra

As the algorithm converges, it exists an iteration t> where
sextra = Mextra Dextra = {0}, so that

(16)
k = AT[t 7]. (24)

Note that St' must not necessarily coincide with St. The same
is true for Mt' and Dt'. Finally, the updated ,u results from
the Dual Projection

1 1 1 k
lit+1 min{Ai act} lit Pmax

with Pmax max{pi}. This result reveals us that 1 <

Moreover, it also holds that ft 1 > 1 . This is pr
as follows. The {y } variables exactly fit the total resc
constraint, so that

P= E Di+ E di+ E (P
iEDt' itCA4' iESt/

k)

As EN 1 Y= zN 1 y*, otherwise the y$ are the optimal
there will be some values where y/ > y* and some o
where y/ < y*. Accordingly, the same reasoning (in the inn
form) is valid for the associated Ai values, which are obtE
from (16). Finally, choosing ft 1 to be the maximum
among {Aill t } assures t > 1*.LAiIacft+

(17)

Combination of (24) and (20) shows the speed of convergence
of the algorithm when the optimal zone (t > t>) is reached,

t±l li*

1- 1
~ t.

*oved
:urce

lI Il i ImaN I
lit /l,* Pmax * N )t *

1 (
- I

I
(25)

In the case that lit > l*, a similar reasoning conducts to the
same convergence results by choosing t+±1 = max ({Ailact})-

(18) The situation with lt > ,* and t+±1 = min ({Ailact}) is also
guaranteed to converge as it is easy to verify that lt+1 < ,*.

Ones, Similar reasoning is valid for the opposite situation, i.e. lit <
,thers li and it+±1 = max ({ Aitact}).
verse Let us assume for instance the particular case with Pi 1
ained for all terminals. In that situation, (25) can be rewritten as

value 1 1 _ N 1 11 (26)
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where n, is the number of terminals that have a saturated
solution, i.e. xi = Di or xi = di. Note that when no

terminals saturate, the optimum is found in one iteration. This
is true because the Primal Projection exactly computes that
optimum. On the contrary, when nearly all users saturate, the
convergence of the algorithm is much slower.

In order to improve this feature, consider the following
quantity, which is obtained from three consecutive ,u updates,

1 1

Bt_= -t+l -mt1 1
mt - mt-1

(27)

We propose to calculate BL at each iteration until BL = B+±l.
This happens when BL and BL+l take the following B, value

E Pi
Bc = I1_ ic.^ . (28)BPrnax N

When the condition holds we are in the optimal zone (t > t>)
and we find the exact solution in one step as

RIcsEPi
Pi

where P' = P - icD* Di- icM* di.
In the next section, numerical results are presented together

with an application example.

V. NUMERICAL RESULTS

Imagine an scenario with P resources to be fairly distributed
among N terminals, e.g. DVB-RCS. The simulated values
of minimum guaranteed resources and users' demands is
performed as follows. Guaranteed resources are randomly
calculated as di - U[0, 10], where U[a, b] is the representation

of a uniformly distributed random variable with values in the
interval [a, b]. Demands are obtained as Di - di + U[0, 100].
P depends on these values as P = a E di + (1 -) Di,
where a C [0,1].

The first simulation result appears in Figure 3 and shows
the time required to compute the solution using three dif-
ferent methods: the bisection method (with precision set to
0.5 10-12 with respect to the quantity Ei xi -P), the
hypothesis testing method [14] and the proposed method.
All methods run in a Pentiumg-Mobile processor running
at 1.73GHz. N is evaluated from 1000 to 20000 terminals
(in steps of 500 terminals), a is set to 0.25 and 40 Monte-
Carlo runs are averaged. We notice that the proposed method
is in general more efficient than the other two and that
the hypothesis testing method is a good election when the
number of users is low. Both the hypothesis testing and the
proposed methods have the advantage of having much less
time variance, with a more predictable computational time.

The second group of simulations includes Figure 4 and
Figure 5. Figure 4 shows the speed of convergence of the
previous three algorithms when N = 10000 terminals and a

equals 0.25 and 0.75, respectively. Our algorithm has almost
linear convergence in both cases and reaches the exact solution

Fig. 3. Computational time of the algorithms (P =0.25 di+0.75 Di).

at a certain iteration. This explains the abrupt convergence at
the end. Both the proposed method and the hypothesis testing
one require less iterations than the bisection method and
depending on the scenario (driven by a), one of them obtains
first the solution. With respect to the proposed method, note
the different convergence slopes. In the first case (a = 0.25),
more users reach their requests or saturate (as P is higher)
and convergence is slower, as is verified from (25) and the
interpretation in (26).

Next simulation studies the behavior of the algorithm when
Dual Projection uses the min or the max function. In Figure
5, the reader can find the evolution of the successive updates

1of the water-level, i.e. lt, using both functions and a certain
initial value for the water-level. Note that when the minimum
is used and the initial water-level is over the optimal one, the
successive iterates remain always over the optimum value. On
the contrary, if we use the maximum in the Dual Projection
with 1 > 81*, we verify that the first update leads to 11 < 1*
and that the successive updates remain under the optimum
water-level, as seen in the previous section.
The last simulation in Figure 6 examines a possible cross-

layer application example, DBA in DVB-RCS. For the sake
of brevity, we present here a simplified vision of the system.
The interested reader can find a complete description of the
operational framework we have considered in [16]. Assume
that at MAC layer, 20 users request transmitting 100 ATM
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Fig. 4. Convergence speed of the algorithms.
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Fig. 5. Choice of Dual Projection.

cells. We assume three different types of IP traffic, namely
QoS 1, QoS 2 and QoS 3. In order to effectively take
into account their different characteristics, we facilitate cross-
layer information from the TCP to the MAC layers and this
information is used in configuring the {pi} values. Assume 5
users of QoS 1 (pi = 2), 5 more users of QoS 2 (pi = 1.5)
and 10 users of QoS 3 (pi = 1). At each allocation cycle,
the system has 1000 ATM cells to be assigned and each
user requests the number of ATM cells that are in queue. In
Figure 6 (top) we plot the aggregated number of ATM cells
transmitted by all users in each QoS group at each allocation
cycle, whereas in Figure 6 (down) we plot the number of
ATM cells transmitted by a single user of each QoS. Note
that by this mechanism, QoS can be effectively sustained at
IP level. Observe that users with higher priority finish first
their transmission as they get more resources, whereas lowest
priority users will have higher latencies and will access the
whole system capacity only when high priority users have
nothing to send . Finally, realize that a proper design of {pi}
values determines any desired balance among the potential
variety of services.

VI. CONCLUSIONS

This paper has contributed with a novel and time-efficient
algorithm for solving the problem of DBA in systems that
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H 400
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w 60 3

H40 K

20-
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QoS2QoS 2
0 QoS 3
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Fig. 6. Allocation example.

operate in a BoD basis. The solution maximizes fairness as
defined according to the proportionally fairness sense and
allows us to include cross-layer information in the parameters.
It is derived under the framework of convex optimization
and uses the ideas of primal/dual decomposition and cross-
decomposition to derive an algorithm that requires neither a
user-defined adaptation step, as in primal/dual decomposition,
nor the solutions of past iterations, as in cross-decomposition.
We have shown through analysis and simulations the per-

formance of our algorithm when compared to others, such
as the bisection method and the hypothesis testing method.
Note that the bisection method is widely used in the literature
(e.g. in water-filling) and is considered to be rather efficient.
Time efficiency is of great importance as it limits the size of
the allocation problem (number of users, different connections
per user, etc.) that can be solved in the available time in
systems operating in real-time. Finally, we have analyzed a
possible application example, extracted from the DVB-RCS
scenario. It has been shown that cross-layer can be effectively
introduced in the algorithm and QoS policies defined at upper
layers sustained.
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