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Abstract— This work proposes an algorithm to perform the re-
source allocation in the uplink of an IEEE802.16 standard-based
system. The approach is valid for Point to Multi-Point (PMP)
and also for tree-deployed mesh networks, already defined for
the Worldwide Interoperability for Microwave Access (WiMA X).
Our solution is based on a proportionally fair distribution of
resources and it is formulated using the Network Utility Max-
imization (NUM) framework. Thanks to convex decomposition
techniques, we derive a novel way of solving the NUM problem
in a distributed manner. The goal is to attain the global optimal
scheduling at the Subscriber Stations (SS) without the needof
gathering information at a central node in the network. The
results show significant gains in the time required to reach the
optimal resource allocation for a given set of demands.

I. I NTRODUCTION

The wireless community has recently directed much atten-
tion on a variety of topics related to Worldwide Interoperability
for Microwave Access (WiMAX) technologies as a broadband
solution. Two different standards are under this commercial
nomenclature: the IEEE 802.16 [1], with its extension to
mobile scenarios IEEE 802.16e [2], and the ETSI HiperMAN
[3]. Operating in the range of 2GHz to 11GHz, WiMAX
enables a fast deployment of the network even in remote
locations with low coverage of wired technologies, such as the
DSL (Digital Subscriber Loop) family. WiMAX extends the
widely-used WLAN (Wireless Local Area Network) coverage
to tens of kilometers, and thus the interest to use such platform
to bring internet access to rural and isolated places.

Focusing on WiMAX network aspects, we distinguish be-
tween two possible architectures: point-to-multipoint (PMP)
and mesh. In PMP mode, one Base Station (BS) serves a cer-
tain amount of Subscriber Stations (SSs) using direct linkslike
in traditional cellular networks, whereas in mesh mode, SSs
can be linked directly to the BS or routed through other SSs
in the network. Terminals use OFDM/OFDMA (Orthogonal
Frequency Division Multiplexing/Multiple Access) in mobile
and also in fixed WiMAX, although fixed terminals employ
mainly TDM/TDMA (Time Division Multiplexing/Multiple
Access) as the access technique. As defined in the standard
[1], transmission scheduling in mesh mode can be centralized
in the mesh BS or distributed among the network. However,
the SSs are always in charge of allocating granted resources
among their services. The allocation is the result of a three-
way handshake process whereby transmission rights are re-
quested and granted, so it constitutes a Dynamic Assignment
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Fig. 1. WiMAX mesh network.

Multiple Access (DAMA) policy.

Previous works related to resource allocation in WiMAX
networks address a variety of scenarios, from PMP to mesh,
from TDMA to OFDMA access types, and distinguish single-
channel from multi-channel networks, most of them from
a physical (PHY) layer perspective. At the best of our
knowledge, two main scheduling approaches are found in the
literature, namely: i) formulate the problem in a mathematical
optimization framework and ii) develop heuristic algorithms.
In the sequel, we review some of the works. In [4], the
authors propose an heuristic solution for the case of a single
cell OFDMA WiMAX network that maximizes the network
sum-rate under some fairness considerations. The authors in
[5] analyze how concurrent transmissions boost performance
in mesh-type networks by proposing an interference-aware
routing and scheduling mechanism. In [6], one can find a
discussion about the advantages of a multi-channel network.
Finally, [7] contributes with a mathematical optimization
solution that falls into the Network Utility Maximization
(NUM) framework, where a distributed optimal solution to
the established NUM problem is obtained using a convex
decomposition approach [8]. It combines PHY and Medium
Access Control (MAC) scheduling aspects.

In this paper we concentrate on the scheduling design of the



uplink of a WiMAX network from a MAC layer perspective,
i.e. we assume that the actual PHY layer adjustments of
the terminals provide fixed averaged capacities in the mid-
term. We consider either a PMP or a tree-deployed mesh
network; the later being useful for instance when WiMAX
is employed as the backhaul network [9]. Our solution can
be sorted into the class of proportionally fair schedulers [10]
and it is formulated as a NUM problem. The objective is
to fairly allocate transmission rates to all the connections or
services in the system depending on the mid-term terminal
rate defined by the PHY layer set-up. The proposed solution
is distributed in the sense that it allows to jointly optimize
the entire network without the need of a central node (and
subsequent signalling requirements), and provides fastercon-
vergence times than other known distributed techniques. A
possible network configuration is depicted in Figure 1 with a
Mesh Base Station (BS), two Mesh Susbscriber Stations (SSs)
and five SSs. We can further assume that each SS has several
services that communicate with the BS.

II. BANDWIDTH REQUEST ANDALLOCATION IN THE

WIMAX U PLINK

In WiMAX each SS may support many connections, each
one described by a Connection Identifier (CID). There is a
primary CID (which is in charge of MAC messaging) and
several secondary CIDs, all devoted to different services.
All CIDs use a three-way handshake in which they request
uplink bandwidth, wait for the BS to compute the allocation
and receive their grants in the Uplink (UL) MAP messages.
Requests are made in terms of bytes of information and can
be incremental (if they add to the previous ones) or aggregate
(if they replace them). The way the SSs ask for resources
is either using a specific bandwidth-request MAC Packet
Data Unit (PDU) or piggybacking on a generic MAC PDU.
The UL MAP defines the dedicated or shared UL resources
that the SSs can use to emit their bandwidth requests (both
types). This mechanism is known as polling in the WiMAX
context. If there are enough available resources to poll each
SS separately, then we have unicast polling. On the contrary, a
subset of terminals or even all terminals enter in a contention
process and we have multicast/broadcast polling. Resources
are requested and granted in WiMAX per SS and it is the
SS that distributes resources among attached CIDs. Therefore,
distributed solutions are crucial to perform a joint network
optimization.

In order to provide Quality of Service (QoS), WiMAX
defines five different scheduling services, namely: i) the unso-
licited grant service (UGS), to support real-time service flows,
offers fixed-size grants periodically without requiring explicit
requests; ii) the real-time polling services (rtPS), to be used in
real-time services that generate variable-size packets, provides
unicast polling opportunities to the SS; iii) the non-real-time
polling services (nrtPS), which is similar to rtPS except that
the BS can also use contention-based polling and that unicast
polling is made less frequently; iv) the best-effort service (BE),
for traffic with non-strict QoS, uses only contention-based

polling; and v) the extended real-time polling service (ertPS) is
like UGS except that the BS allocates periodical resources that
can be used to transmit data or to request additional resources.
It is half way between UGS and rtPS to accomodate services
whose requirements change in time but not so frequently as
with a rtPS. Further details on WiMAX aspects can be found
in [11] and references therein.

Let us formulate the scheduling as a NUM problem,

max
{ri}

∑N
i=1 Ui(ri)

s.t. ri ∈ Ri i = 1 . . .N (1)
∑N

i=1 hi(ri) ≤ c

whereUi(ri) is the utility function perceived at entityi (mesh
SS, SS or CID) and depends on the granted ratesri. Note
thatUi(ri) may have an analytical expression or it can be the
result of an optimization problem with the same structure of
(1). The functionshi(ri) are convex on the rates andc is the
total amount of available resources. The convex subsetsRi

are cartesian products that define the maximum and minimum
rates that each element inri can take.

An illustrative example can be derived from the network
configuration in Figure 1. Assume that we want to perform a
joint and distributed allocation for all the CIDs in the network.
First, let us consider the scheduling at the highest level, i.e.
within the links Mesh SS1-Mesh BS and Mesh SS2-Mesh
BS, and define accordinglyU1(r1) and U2(r2). Note that
r1 contains the rates of the links from SSs 1, 2 and 3 to
Mesh SS1, i.e.r1 = [r1T

1 , r2T

1 , r3T

1 ]T . Furthermore, eachrj
1

contains at its turn the rates from the CIDs attached to the SSj

that take the route SSj-Mesh SS1-MeshBS, so thatU1(r1) is a
convex optimization problem that models the scheduling in the
second level, i.e. from Mesh SS1 to SSs 1 to 3. The parameter
c models the total rate amount that the Mesh BS can send to
the global network.

In this way, the joint problem is described as the con-
catenation of several PMP scheduling problems, as Figure 2
shows. Moreover, as we will see, it is only necessary that each
node exchanges information with the node above it with the
subsequent reduction in signalling with respect to a centralized
optimization approach (although it is centralized scheduling).
In the results section we propose an example that shows a
possible connection between the proposed formulation and the
scheduling services in WiMAX using a specific definition of
utility functions and feasible allocation subsets.

In the next section, we develop a novel, efficient and
distributed optimization algorithm to solve (1) based on convex
decomposition techniques.

III. C OUPLED PRIMAL -DUAL DECOMPOSITIONSMETHOD

Let us consider again the problem in (1). It has optimization
variables{ri} and objective functionF =

∑N
i=1 Ui(ri). Each

group of variablesri is restricted to lie on the convex set
defined inRi. If there were no additional constraints, the
problem could be solved separately for each group of variables
ri as it is fully decoupled. However, there exists a coupling
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constraint that sums all the functionshi(ri). In the sequel,
we will talk indistinctly about the minimization of a convex
objective function or the maximization of a concave one as
they are equivalent problems [12]. However, we remark that
in the NUM context, the maximization of the utility functionis
usually employed since it is intuitively related to the operation
of the network. There are mainly two formalized procedures to
take advantage of the semi-decoupled nature of the problem,
namely primal and dual decompositions. We first review these
two procedures before presenting our proposal.

A. Primal Decomposition

To understand the basics of primal decomposition, let us
rewrite the problem in (1) for a fixed link capacity as

max
{ri,yi}

∑N
i=1 Ui(ri)

s.t. ri ∈ Ri i = 1 . . .N (2)

hi(ri) ≤ yi
∑N

i=1 yi ≤ c

Clearly, fixing the values of the variablesyi fully decouples
the main problem. In other words, knowing the optimal values
of yi reduces the resolution of the main problem to the
resolution ofN smaller problems in the variablesri. The
problem can be interpreted in the following manner,

max
{yi}

∑N
i=1 UP

i (yi) (3)

s.t.
∑N

i=1 yi ≤ c,

where the functionsUP
i (yi) are defined as

UP
i (yi) = max

{ri}
ri ∈ Ri

hi(ri) ≤ yi

Ui(ri) (4)

Problem (3) is usually referred as the primal master prob-
lem, while (4) are known as the primal subproblems. One
possible way to numerically solve the primal master problem
is using the projected subgradient method. The idea of the
method is quite intuitive. It basically updates the values of
{yi} towards the opposite direction to the subgradient of (3)
and projects these values to the half-space defined by the
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Fig. 3. System view of primal decomposition.

second line of (3) in the case the previously updated values
are unfeasible. Details about projections into subsets canbe
found in [12]. The resulting update equation is

yt+1
i =

[

yt
i + α(t) · si(y

t
i)

]P

, (5)

whereα(t) is the adaptation step-size,si(y
t
i) stands for the

subgradient ofUP
i at the pointyi = yt

i and [·]P refers to the
projection on the feasible set. The superscriptt indicates the
iteration number.

The subgradient of a function can be conceptually inter-
preted as the gradient. The question is how to find a gradient of
the subproblemsUP

i , which are defined as convex optimization
problems. In this case, we resort to [13, Sec. 5.4.4] and use the
subgradient as a generalization of the gradient of a function.
The strenght of the technique is that a subgradient is directly
given by the Lagrange multipliers associated to the coupling
constrainthi(ri) ≤ yi in (4), [14]. Later on, this Lagrange
multiplier is referred to asλi, and its optimal value is referred
to asλ∗

i (yi) for a givenyi. For further details on the projected
gradient method, the step size and the subgradients, please
refer to [8], [13] and [14].

The logical procedure of a primal decomposition algorithm
is as follows: the master subproblem sends theyi values to the
subproblems. These compute the associated subgradients and
return these values to the master problem. Now, the master
updates theyi’s. A system view of a primal decomposition
can be found in Figure 3.

B. Dual Decomposition

Consider now dual decomposition, which decomposes the
dual function of the original problem (1). Construct the
Lagrangian of (1) relaxing only the coupling constraint as

L({ri yi}, µ) = −

N
∑

i=1

Ui(ri) + µT (

N
∑

i=1

hi(ri) − c) (6)

The minimization of the Lagrangian with respect to the primal
variables results in the dual function, which is a concave
function of the dual variables. As the constraintsri ∈ Ri

have not been relaxed, the dual function is

g(µ) =

( N
∑

i=1

min
{ri}

ri ∈ Ri

(−Ui(ri) + µT hi(ri))

)

− µT c (7)
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Fig. 4. System view of dual decomposition.

The optimal value for the dual variableµ is the one that
maximizes the dual function [12]. Note that the problem in
(7) can be expressed as

g(µ) =

N
∑

i=1

UD
i (µ) − µT c, (8)

where now

UD
i (µ) = min

{ri}
ri ∈ Ri

−Ui(ri) + µT hi(ri) (9)

are the dual subproblems. The subgradient concept applies also
in this case. We have as subgradientsi = hi(r

∗
i ), beingr∗

i (µ)
the optimal value of the primal variables in subproblem (9)
for a given value ofµ [13, Sec. 6.1].

Finally, to solve the dual problem, (8) must be maximized
with the constraint thatµ ≥ 0. This is often called the dual
master problem:

max
µ

g(µ) (10)

s.t. µ ≥ 0

The dual master problem can also be solved using the pro-
jected subgradient method. Note that the projection into the
feasible set is easier than in the primal decomposition as we
only have to setµ to 0 when a negative value is computed.
The µ updates are

µt+1 =

[

µt + α(t) · (
N

∑

i=1

hi(r
∗
i (µ

t)) − c)

]+

(11)

where [·]+ stands for the aforementioned projection into the
non-negative orthant.

The dual decomposition is the decomposition technique
most used in the literature. From a system-level point of view,
it resembles to the primal decomposition one (see Figure 4).

The major advantage of using a decomposition technique is
that distributed solutions may be naturally obtained, which
sometimes is required by some problems. For example, in
the NUM context, dual decomposition techniques obtain fully
distributed solutions. On the contrary and generally speaking,
the main disadvantage is the slow speed of convergence of the
resulting algorithms, mainly due to the projected subgradient
approach. Moreover, speed of convergence depends on the
step-size parameterα(t), which must be tuned by the user.
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Fig. 5. System view of the Primal-Dual Decompositions method.

C. Coupled Primal-Dual Decompositions

In the light of the previous results, we observe that both
approaches manage complementary information. We formulate
then the following question: is it possible to find out an hybrid
technique with advantages over the single approaches?

The answers is yes. The observation that the dual of the
primal subproblem (4) is the dual subproblem (9) is the key to
do that. The basic idea behind the proposed method is hence to
couple the primal and dual decompositions, so they are iterated
in the following way: Dual Master→ Dual Subproblems→
Primal Master→ Primal Subproblems, and so on (see Figure
5). Note, however, that the procedure is not as immediate as
combining both decompositions since modifications, specially
in the Dual Master, are needed. This is the reason why we will
introduce the concept of Dual Projection. In the Primal Master
problem, the updating towards the subgradient is no longer
used and only the projection on the feasible set remains. This
approach will result in faster convergence and will allow usto
avoid both the gradient method and the choice of an adaptation
step-size. It is possible to find out in the literature other uses of
combined primal and dual approaches based on the algorithm
so-called cross-decomposition [15]. Our solution goes in a
different direction as the proposed interactions between primal
and dual versions of the problem are constructed in a different
way. As a result, we find that in [15] both primal and dual
variables have to be updated by averaging new candidates
with old ones, whereas our method uses only instant updates
without averaging. In the simulation section, we show how
this affects both strategies in a practical example.

The algorithm can be divided into two conceptually different
parts, namelyproposal of candidates and correction. The
proposal of candidates is the task done by both the primal
and dual subproblems. There are two correction steps; they
replace the master problems in the primal and dual standard
decompositions. The correction steps are in charge of adjusting
the proposed candidate solutions according to the primal or
dual feasible sets. These steps are interpreted as projections
into the corresponding feasible sets in a wide sense.



Let us describe at high level a complete iteration of the
proposed method for the problem under consideration. Let us
start with an initial value ofµ, calledµt, which is passed to
the dual subproblems. Using that value, the subproblems make
their particular guess for the primal coupling variables{yi}
as hi(r

∗
i (µ

t)). The proposed values may exceed the convex
subset defined by

∑N
i=1 yi ≤ c and hence be unfeasible.

Primal Projection corrects this situation by projecting{yi}
into the feasible subset. Thus we obtain the corrected values
{y′

i}, which are given to the primal subproblems. In turn each
primal subproblem computes its own candidate (λi) for the
dual variable (µ). Similarly to what happens with the primal
part of the problem, the solution may be unfeasible from the
dual point of view (defined later) and requires correction. The
Dual Projection computes this correction as a function of the
previous values (either the min or max can be chosen, but
once it is chosen the algorithm is pegged to it) and updates
the dual coupling constraint, i.e.µt+1 = f({λi}).

IV. M ETHOD ANALYSIS

In this section we detail the Coupled Primal-Dual Decompo-
sitions method shown in Figure 5 and analyze its convergence.

A. Detailed Description of the Method

Let us consider again the problem in (1), where variables
ri are end-user rates, and primal variablesyi constraint these
by means of any convex functionhi(ri). We refer to{ri} as
non-coupling variables and to{yi} as coupling variables. The
dual variables associated tohi(ri) ≤ yi, i.e.λi, are called non-
coupling dual variables, whileµ is the dual coupling variable
associated to the coupling constraint

∑N
i=1 yi ≤ c. The

motivation for this nomenclature is that without
∑N

i=1 yi ≤ c,
the problem is only constrained by the local subsetsRi, so it
becomes a set of non-coupled problems.

The basics of the method have been already introduced in
the previous section with Figure 5. Let us now detail each
of the building blocks of the algorithm in the order they are
executed.

First, the dual subproblems compute their group bandwidth
allocation candidatesyi depending on the value ofµt as

r∗
i (µ

t) = arg
ri

min
ri

ri ∈ Ri

yi = hi(ri)

−Ui(ri) + µt · yi (12)

Note that in the optimal solutionyi = hi(ri).
We assume that the coupling constraint is active, otherwise

the problem is not coupled and readily solved. Next, the Primal
Projection updates theyi values toy′

i and ensures feasibility,
i.e.

∑N
i=1 y′

i ≤ c. The projection into
∑N

i=1 y′
i = c can be an-

alytically computed as the point in the surface that minimizes
the Euclidean distance to the pointy = [y1, . . . , yN ]T :

y′
i = yi −

∑N
i=1 yi − c

N
(13)

The updated primal variablesy′
i are feed to the primal

subproblems to obtain the dual variablesλi as

λi(y
′
i) = argλi

max
λi≥0

min
ri

ri ∈ Ri

−Ui(ri) + λi[hi(ri) − y′
i]

(14)
Note that solving the minimization problem inside (14) implies
obtaining the primal variablesri and also the dual variableλi,
associated to the constrainthi(ri) ≤ y′

i.
Finally, in the Dual Projection we getµt+1 as a function of

the candidate valuesλi. We can choose between the minimum
or the maximum to compute the iterations (once the algorithm
starts, it must not be changed) and therefore

µt+1 = f({λi|act}) =

{ min ({λi|act})

max ({λi|act})
(15)

where{λi|act} defines the subset of the{λi} values that are
active. A multiplierλi is defined as active when eliminating
the related constrainthi(xi) ≤ y′

i in (14) changes the solution
of the aforementioned problem. In the following, we prove the
convergence of the algorithm.

B. Convergence analysis

It is assumed in the rest of the section that the optimal
solution to the problem in (1) is unique, which holds for most
of the convex problems that are of interest in engineering.

Until this point we have seen the motivation of the proposed
method and also the role of most of the building blocks,
namely dual and primal subproblems and Primal Projection.
We want to show now the role of the Dual Projection. For that
purpose we use the KKT conditions [12]. First, let us construct
the Lagrangian of (2)

L({ri, yi, λi}, µ) =

N
∑

i=1

−Ui(ri) (16)

+

N
∑

i=1

λi(hi(ri) − yi)

+

N
∑

i=1

∑

j

γ
j
i g

j
i (ri) + µ(

N
∑

i=1

yi − c)

where we have relaxed all explicit and implicit constraints
and the arbitrary number of convex functions{gj

i } defines the
convex setRi. Among the KKT conditions for optimality of
the solution, we are interested in the conditions that require

∂L

∂yi

= 0 = µ − λi (17)

which force the solution to fulfill

µ = λ1 = . . . = λN (18)

Therefore,µ must be chosen from the candidatesλi, as in the
optimal solution allλi andµ must be equal. This is the role
of the Dual Projection in (15).
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The following Lemma is needed as an intermediate step to
prove the convergence.

Lemma 1: Assuming thathi(ri) ≤ yi is active in the
interval yi ∈ (y1

i , y2
i ), the dual variableλi is a decreasing

function of the primal variableyi in the subproblem

UP ′

i (yi) = min
ri

ri ∈ Ri

hi(ri) ≤ yi

−Ui(ri) (19)

Proof: Consider the following modification of the min-
imization problem in (19). Assume thatUi(ri) is evaluated
only in the curve described byr∗

i (ti) with ti ∈ [y1
i , y2

i ], where
r∗

i (ti) is defined as the optimal value ofri in (19) when
yi = ti. The result is the one-dimensional functionUP

i (ti).
To fix concepts, see Figure 6. In dashed lines, we plot the
contour plot of the objective function, i.e.−Ui(ri) = k (k
is an arbitrary constant) and in solid lines the contour plots
of both the coupling constraint and a given local constraint
in ri ∈ Ri (whose expression isgl

i(ri) ≤ 0, assuming that
there is a singlegl

i(ri) for simplicity). The darkest curve
corresponds tor∗

i (ti).
Under this modification, the problem in (19) turns into

min
ti

−Ui(r
∗
i (ti)) (20)

s.t. hi(r
∗
i (ti)) ≤ yi

Note that constraints inri ∈ Ri are no longer necessary
as they are included inr∗

i (ti). Furthermore,−Ui(r
∗
i (ti)) is

guaranteed to be convex as it is the minimization of a function
of variables(ri, yi) overri in a convex set [12, Section 3.2.5].
And finally, as we assumehi(ri) ≤ yi to be active, we have
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that hi(r
∗
i (ti)) = ti.

KKT conditions applied to (20) state that

∂L(ti, λi)

∂ti
=

∂ − Ui(x
∗
i (ti))

∂ti
+ λi ·

∂hi(r
∗
i (ti))

∂ti
= 0 (21)

and therefore, it holds that

−
∂Ui(r

∗
i (ti))

∂ti
= −λi (22)

Finally, concavity ofUi(r
∗
i (ti)) assures that−∂Ui(r

∗

i (ti))
∂ti

is
an increasing function ofti, and thereforeλi is a decreasing
function of ti. We conclude this proof by noting that by
definition the optimal solution of (20) is attained atti =
yi. Figure 7 plots the graphical representation of the one-
dimensional problem discussed in this proof.

Corollary 1: Using similar arguments, it can be proved
that in the dual subproblemyi = hi(r

∗
i (µ)) is a decreasing

function of µ.
Once we have studied the subproblems and the relations

that exist between dual and primal coupling variables, we are
ready to outline the proof of the convergence of the algorithm,
which studies the convergence ofµt to its optimal value, i.e.
µt t→∞

−→ µ∗. Since the problem is convex, finding the optimal
values of the dual variables implies finding the optimal values
for the primal ones.

Let us study two cases, namely:

1) µt > µ∗

2) µt < µ∗

Assume now thatµt > µ∗. Then, after the application of
the dual subproblems and corollary 1, it holds that

yi ≤ y∗
i , i = 1, . . . , N (23)

This result assumes thathi(ri) = yi for all subproblems,
which is imposed by the following KKT optimality condition

λi · (hi(ri) − yi) = 0, i = 1 . . .N (24)

together with the result in (18).
In the Primal Projection, a certain quantityk is added to

the obtainedyi values, so that

y′
i = yi + k, s.t.

N
∑

i=1

y′
i = c (25)

and therefore, somey′
i ≤ y∗

i and somey′
i > y∗

i ; otherwisey′
i

would be the optimal solution.
Applying {y′

i} to the primal subproblems, we obtain the
dual variablesλi, which may be interpreted as candidates for
µ∗. Resorting now to Lemma 1, it holds that there exist some
λi ≤ µ∗ and someλi > µ∗.

Finally, the key point is the Dual Projection,

µt+1 = f({λi|act}) (26)

Let us discuss a detail here. Theλi values associated with
yi values that do not really constraint the solution must not be
taken into account because the solution is actually constrained
by the local constraints, i.e.ri ∈ Ri. Note that, in terms



BS

SS 1

SS 2

SS 3

CID 1

CID 2

CID 3

CID 1

CID 2

to backbone 

network

6

25

19

5

[0.7,14]

p=8

[0.9,15]

p=9

[0.3,10]

p=2.5

[0.2,11]

p=2.5

[0.9,2]

p=0.5

[0.2,9]

p=1

CID 1

Fig. 8. Network example under test.

of KKT conditions, the value ofλi is not significant because
whatever this value is, an adequate Lagrange multiplier forthe
local constraints can be chosen to maintain all of the optimality
conditions and hence, the optimal solution.

Continuing with the convergence proof, ifµt+1 =
max(λact

i ), it holds that µt+1 ≥ µ∗. Furthermore, since
y′

i ≥ yi, it is also true thatµt+1 ≤ µt. Therefore, we can
summarize that

µ∗ ≤ µt+1 ≤ µt (27)

whereµt can not tend to any valueµ′ 6= µ∗ as the optimal
solution is unique. In the case whereµt < µ∗, the same results
hold if we chooseµt+1 = min(λi|act) and the proof is similar.
In the general case, any of the two functions is valid. Ifµ0 >

µ∗ and we chooseµt+1 = min(λi|act), thenµ1 < µ∗ and we
take up again one of the previous cases.

In the next section, we present some results comparing the
performance of the proposed algorithm to other solutions in
the literature.

V. RESULTS

Consider the PMP network example in Figure 8, with three
SSs and six CIDs that manage different services. The links
are labelled with their maximum rate, which is determined by
the PHY-layer mode used in each one. Two scheduling levels
can be identified, namely: i) from the SSs to the BS and ii)
from the CIDs to the corresponding SS. At the highest level,
we compute (1) with

Ui(ci) =







max
{r

j

i
}

∑

j U
j
i (rj

i )

s.t.
∑

j r
j
i ≤ ci







, hi(ri) =
∑

j

r
j
i , (28)

wherer
j
i is the transmission rate of CIDj at SSi andci is the

rate capacity from SSi to the BS. At the lowest level, problem
(1) is solved for theith SS using

U
j
i = p

j
i log r

j
i , h

j
i (r

j
i ) = r

j
i . (29)

In both cases, the subsetsRi andRj
i contain the maximum

and minimum rate values of the CIDs within them. However,
note that at the highest level and from a practical point of view,
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Fig. 9. Evolution of rates and dual variableµ with the proposed method.

we need to know only the sum of maximums and minimums
since these two values suffice to obtain the primal variables
{yi} and the dual variableµ of the proposed algorithm. The
specific quantities per CID, i.e.Rj

i , are only required at the
lowest level to obtain the scheduling of CIDs.

Intuitively, the proposed method tries to find a consensus
on the value of the dual variableµ across the entire network,
often interpreted as the price to be paid for the resources (rates
in our case). However, some subsets of terminals (in certain
PMP sub-pieces) may remove from the negotiation if their
local constraints make the current globalµ value not feasible
therein. In this case, those zones in the network negotiate their
particular consensus price, which is different fromµ.

The election of logarithmic functions of the rates responds
to a proportional fair criterion as it is discussed in [10], but
other utility functions can be used. We further use the priority
valuesp

j
i to balance the scheduling towards some services

depending on the specific QoS policy and thus the solution is
asymmetric proportionally fair. These values are depictedin
blue in Figure 8 at each CID. The max and min values inRj

i

(in brackets in the figure) define the requested and minimum
granted rates of each service, respectively. For example, with
UGS one can map the request to the minimum guaranteed rate
in our model (which is always assigned) whereas the ertPS can
be configured granting part of the requested rate as in UGS
and competing for the remaining part (prioritized withp

j
i ). The

original requests in bytes of information can be transformed
to rates taking into account the time basis of such requests.

We assess now the convergence speed terms of three dif-
ferent solutions, namely: i) a two-level dual decomposition
approach [8], ii) a mean value cross-decomposition approach
[15] and iii) the proposed technique.

The results of the proposed method are depicted in Figure 9.
The first subplot contains the evolution of the dual variableat
the highest allocation level and the second subplot shows the
evolution of the allocated rates at the CIDs (rates are ordered
from left to right according to the CIDs in Figure 8). The
same results with a two-level dual decomposition approach are
plotted in Figure 10. Dual or primal decompositions require
a user-defined adaptation step and in this case we choose a



diminishing step size of the formα(t) = α0√
t

with α0 = 0.5.
Note that the proposed method does not require the choice
of any parameter. In both cases, at each iteration at the
highest level, it is required to attain the solution at each
CID at the lowest level, which enforces different updating
rates. Therefore, a fast convergence of the lower level is more
necessary as the tree size grows. In the light of results, it is
clear that our algorithm converges with a number of iterations
orders of magnitude lower.

For the sake of completeness, we compare our method with
the Mean Value Cross (MVC) decomposition method, which
is described in [15]. It is not distributed but uses also the idea
of combining primal and dual decompositions of the problem
in a single approach. The evolution of the rates at the CIDs
is plotted in Figure 11 and once more, the proposed method
converges to the optimal solution much faster.

VI. CONCLUSIONS

In this paper we have derived a novel decomposition
method, the coupled primal-dual decompositions, with direct
application to the problem of bandwidth allocation or flow
control in the uplink of WiMAX PMP or tree-deployed mesh
networks, the later being suitable for instance for backhaul.
As a result, the global solution is computed exchanging infor-
mation only locally (inside each PMP subpart) with promising
results in terms of iterations required to converge.

The problem is formulated as a NUM problem with a
proportional fairness criterion and thanks to the proposedde-
composition, the optimal solution is computed in a distributed
manner, as enforced by the standard (each BS schedules
its CIDs with the granted resources). The whole network
optimization is broken into several PMP scheduling levels
in a top-bottom design, where each terminal interchanges
the resource allocation and the Lagrange multiplier (often
interpreted as the price to be paid for the resource) with the
node above. The process is repeated until a consensus is found.

The convergence of the method has been proved and simula-
tion results show that it converges faster than other approaches
in the literature. The issue is specially relevant as the number
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Fig. 10. Evolution of rates and dual variableµ using a two-level dual
decomposition approach.
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Fig. 11. Evolution of rates using a mean value decompositionapproach.

of scheduling levels grow. Additional advantages are provided
by the NUM framework, since an adequate selection of the
utility functions used allows us to reach fair solutions or to
sustain QoS definitions.
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