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ABSTRACT

This paper addresses a distributed flow and channel alloca-
tion method for Point-to-MultiPoint (PMP) networks oper-
ating over multiple parallel channels, where a central node
shares its rate capacity with multiple subscribers. The prob-
lem formulation takes into account fairness and Quality of
Service (QoS) considerations by means of generalized utility
functions. Assuming that a local area network (LAN), wired
or wireless, is attached to each of the subscribers, a central-
ized allocation scheme becomes prohibitive in terms of re-
quired network signalling when the number of connections
within the LANs become high. In order to overcome this and
to keep practicality in terms of iterations needed to converge,
we apply a combination of a Mean Value Cross (MVC) de-
composition strategy with the novel coupled-decompositions
method that achieves the optimal solution with a reduced num-
ber of iterations when compared to classical approaches.

1. INTRODUCTION

The immediate future of wireless communications and net-
works is probably related to the popularization of novel ser-
vices such as video streaming, voice over IP, online gaming or
new internet applications (e.g. social networks). In order to
absorb the forthcoming capacity increase, adequate Radio Re-
source Management (RRM) procedures come into the equa-
tion. Moreover, the last decade has shown us the benefits of
jointly optimizing multiple system layers (i.e. the so called
cross-layer designs) and a recent research line is focused on
establishing the optimal interactions across system layers and
also across the elements in a network [1] by means of em-
ploying decomposition techniques [2, Sec. 6.4], [3].

This paper explores practical algorithms to perform flow
control jointly with channel allocation when a backbone wire-
less network with parallel channels is the bottleneck for the
ongoing connections. In particular, the coupled-decomposi-
tions method derived by the authors in [4] (particular case)
and [3, Sec. 3.3] (general case) has been applied.
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Fig. 1. Network reference model.

The main difference between our solution and existing
contributions [5, 6] is that our approach is more practical in
terms of required signalling and iterations needed to converge
and furthermore, it does not sacrifice optimality. Those draw-
backs detected in existing techniques have been improved at
the expenses of focusing on a more specialized design (i.e. a
point-to-multipoint scenario). Note that in wireless networks
the ever-changing channel condition requires higher adapta-
tion capacity. This is achieved with our scheme.

2. SYSTEM MODEL

Let us consider a wireless network with a Point-to-MultiPoint
(PMP) topology as depicted in Figure 1. A central node (CN)
with a fixed transport capacity C serves a number of sub-
scribers, which are in charge of managing the multiple con-
nections within the local area networks (LANs), wired or wire-
less, that are below them. Without loss of generality, a LAN
can also be substituted by a single end node driving one or
multiple services. We assume that there are no bottlenecks
inside the local networks and thus, the following approach is
also valid in case a subscriber is attached to the central node
through a transparent repeater that does not limit the transport
rate between the subscriber and the base station, as it is shown
in the right top corner of Figure 1.

Each subscriber is able to establish a transmission using
one or multiple channels and each channel can be further sub-
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divided by simple time sharing among the subscribers. We
further assume that the transmit power is fixed and that each
user experiences a different slow fading gain in each chan-
nel. Let us group the corresponding achievable rates of the
i-th subscriber in the vector ci = [ci,1, . . . , ci,Nc ]T , where Nc

is the total number of channels. Similarly, the variables in
ρi = [ρi,1, . . . , ρi,Nc ]T represent the channels allocation to
the i-th subscriber and take values 0 ≤ ρi,k ≤ 1 (i.e., time-
sharing of a given channel among users is allowed).

Given the problem constraints, the objective is to estab-
lish a criterion guiding both the flow control and the radio
resource allocation. The former decides the transmission rate
of each connection within the network whereas the latter is
devoted to the allocation of radio resources (channels in our
case) to the subscribers. An accepted design criterion is to
keep fairness among users and it can be achieved by means of
maximizing the sum of the utilities of all flows in a network,
i.e. the so-called Network Utility Maximization (NUM) ap-
proach. As discussed in [7], a series of concave utility func-
tions are defined as

Uj(rj ; pj ,α) =

{
pj log (rj), α = 1

pj
r(1−α)

j

1−α , α "= 1
, (1)

where rj is the rate of the j-th flow in the network and pj is a
parameter used to prioritize rj against the other rates. Finally,
α is common to all flows and fixes the degree of fairness in the
network [7]. Using this, our problem is represented in convex
form as

JOINT FLOW CONTROL & CHANNEL ALLOCATION:

max
{ri

j},Γ

∑N
i=1

∑Ni

j=1 U i
j(ri

j ; pi
j ,α)

s.t.
∑N

i=1

∑Ni

j=1 ri
j ≤ C∑Ni

j=1 ri
j ≤ ci(ρi), i = 1, . . . , N

mi
j ≤ ri

j ≤ di
j , ∀i,∀j

Γ1 $ 1
ρi % 0, i = 1, . . . , N

, (2)

where mi
j and di

j are the minimum required and the maxi-
mum allowed values for the rates. The minimum values are
generally associated with QoS requirements. The maximums
can represent requests in Demand Assignment Multiple Ac-
cess approaches or they can be obviated otherwise. Finally,
Γ =[ ρ1, . . . ,ρN ] is a matrix that collects the allocation vec-
tors of the N subscribers, Ni is the number of ongoing con-
nections managed by the i-th subscriber, ci(ρi) = ρT

i ci, 1
is an all-ones column vector and % |$ stand for component-
wise inequalities.

3. CONVEX DECOMPOSITION-BASED SOLUTION

Even given that it is possible to solve (2) centrally using stan-
dard convex optimization methods (e.g. interior point meth-
ods [8, Ch. 11]), we want to alleviate the signalling needs

of this approach (i.e. transmission of connection descriptors
mi

j , di
j and pi

j) by means of distributing the optimization pro-
cess thanks to decomposition strategies. Classical schemes
such as primal and dual decomposition [2, Sec. 6.4] fail in
terms of convergence speed and have been discarded. Instead,
the Mean Value Cross (MVC) decompositions method [9] has
been used to decouple the original problem into one channel
allocation problem and one flow allow allocation problem.
The former can be solved centrally at the base station since
all the information is available and the latter applies the novel
coupled-decompositions method [4, 3] in order to achieve the
optimal rate allocation in a few iterations.

3.1. Separation into Flow Control and Channel Alloca-
tion

Let us rewrite (2) as

max
{ri

j},Γ

∑N
i=1

∑Ni

j=1 U i
j(ri

j ; pi
j ,α)

s.t.
∑Ni

j=1 ri
j ≤ ρT

i ci, i = 1, . . . , N
{ri

j} ∈R
{ρi} ∈S

(3)

where R = {ri
j |mi

j ≤ ri
j ≤ di

j ,
∑

i,j ri
j ≤ C} and S =

{ρi |Γ1 $ 1,ρi % 0}. The MVC decompositions method
forms a partial Lagrangian that relaxes a subset of the con-
straints in the problem and from this Lagrangian, it obtains
one primal/dual subproblem by fixing the primal/dual vari-
ables. It is shown in [9] that adequately combining both sub-
problems, as will be described later, leads to the optimal solu-
tion. In our case, the constraints

∑Ni

j=1 ri
j ≤ ρT

i ci are relaxed
using dual variables γi. The resulting primal subproblem is

FLOW CONTROL:

max
{ri

j}

∑N
i=1

∑Ni

j=1 U i
j(ri

j ; pi
j ,α)

s.t.
∑Ni

j=1 ri
j ≤ ρT

i ci, i = 1, . . . , N
{ri

j} ∈R

(4)

for fixed {ρi} values. The dual subproblem is

max
{ri

j},{ρi}

∑
i

∑
j U i

j(ri
j ; pi

j ,α) − γi

(∑Ni

j=1 ri
j − ρT

i ci

)

s.t. {ri
j} ∈R

{ρi} ∈S
(5)

for fixed {γi} values. Note that the maximization in (5) can
be done independently in {ρi} and {ri

j} and thus, the channel
allocation variables are updated by solving the linear program

CHANNEL ALLOCATION:

max
{ρi}

∑N
i=1 γi ·

(
ρT

i ci

)

s.t. {ρi} ∈S
, (6)

which can be centrally computed. Observe that our strategy
based in MVC decomposition is different to other pure dual
decomposition-based approaches in the literature, e.g. [10].
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Fig. 2. Coupled-decompositions method.

The joint problem is then solved applying the MVC de-
compositions method as follows:

Choose a feasible {ρ0
i } and let k = 1.

Repeat

1. Let ρk
i = 1

k

∑k−1
i=0 ρk−1

i , ∀i.
2. Solve (4) using {ρk

i } and get the dual variables
{γi}.

3. Let γk
i = 1

k

∑k−1
i=0 γk−1

i , ∀i.
4. Solve (6) using {γk

i } and get updated primal vari-
ables {ρi} .

5. k = k + 1.
Until convergence.

3.2. Flow Control

The flow control problem in step 2 still needs to gather a huge
amount of control data from the other nodes if computed at
the base station. In order to avoid this situation, we apply the
novel coupled-decompositions method to (4). In the follow-
ing, a very short review of the method is provided.

Let us consider the following general formulation,

max
{xj},z

∑J
j=1 fj(xj)

s.t. xj ∈ Xj , j = 1, . . . , J
hj(xj) ≤ zj , j = 1, . . . , J∑J

j=1 zj ≤ B
z ∈ Z, Z = Z1 × . . . × ZJ

, (7)

where {fj(xj), hj(xj)} are convex functions and the subsets
{Xj ,Zj} are also convex (Zj is one-dimensional). The algo-
rithm used to numerically solve (7) is summarised in Figure
2. First of all, note that (7) suits the classic decompositions
[2, Sec 6.4] so that it is possible to define a primal (dual)
master problem that coordinates J independent primal (dual)
subproblems (and the idea differs from the MVC principle).
Given this, the key point in coupled-decompositions is to pro-
vide the mechanism to intertwine both approaches in a single

algorithm, which requires the redefinition of the master prob-
lems into the projections. The subproblems are identical.

The algorithm starts with an initial value of the Lagrange
multiplier µ associated with the constraint

∑J
i=1 zi ≤ B,

which is used by the dual subproblems to obtain the z can-
didates. If these z candidates exceed the problem constraints,
the primal projection corrects the situation. Afterwards, the
adjusted values ẑ are used by the primal subproblems to ob-
tain the λi candidates to the dual variable µ and finally, the
dual projection updates µ by choosing the adequate candidate
among {λi} that guarantees the convergence of the method.
The interested reader can find a more detailed description of
the technique as well as a formal proof in [3, Sec. 3.3.6].

In the sequel, we detail the proposed strategy to solve
our specific flow control problem. First, let us define y =
[y1, . . . , yN ]T and rewrite (4) as

max
{yi}

∑N
i=1 U i(yi)

s.t.
∑N

i=1 yi ≤ C
y ∈ Y

, (8)

where Y = {yi|yi ≤ ρT
i ci, M i $ yi $ Di}. The values

M i and Di are M i =
∑Ni

j=1 mi
j and Di =

∑Ni

j=1 di
j , respec-

tively. The definition of U i(yi) follows:

U i(yi) =






max
{ri

j}

∑Ni

j=1 U i
j(ri

j ; pi
j ,α)

s.t.
∑Ni

j=1 ri
j ≤ yi

mi
j ≤ ri

j ≤ di
j

. (9)

Note that both (8) and (9) can be cast into the formulation
of (7) if functions, variables and subsets are adequately cho-
sen. Furthermore, given that problems (8) and (9) are nested,
the following steps of a 2-layer coupled-decompositions ap-
proach (see Figure 3) achieve a distributed flow control,

Choose an initial µ0.
Repeat

1. The dual variable at time instant t, µt (associated
with

∑N
i=1 yi ≤ C), is sent to the subscribers and

reaches each connection through the LANs.
2. Each ongoing connection computes its flow allo-

cation given µt by means of solving the inner dual
subproblems. Thereafter, the subscribers as well
as the CN compute their aggregated bit rates.

3. The CN corrects the previous allocations (primal
projection) in order to attain

∑N
i=1 yi ≤ C, y ∈

Y and yi ≤ ρT
i ci, i = 1, . . . , N .

4. The adjusted allocations allow the subscribers to
obtain new γi candidates by running the method
again inside each local network.

5. Finally, the CN updates the value of the dual vari-
able to µt+1 using a subset of the new γi values
in the dual projection, namely {λ′

i} [3].
Until convergence.
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Fig. 3. Flow allocation using a 2-level coupled-decompositions approach.

Note in Figure 3 that only step 4 in the previous list per-
forms inner iterations whereas a formal application of the
method would require to iterate also in step 2. Notwithstand-
ing, we have theoretically checked that the closed-form solu-
tion shown in Figure 3 suffices to guarantee the convergence
to the optimal flow allocation. Intuitively, this multi-layer
coupled-decompositions strategy tries to find a consensus on
the price µ that has to be paid for sharing the transport capac-
ity C of the central node. All services in the network partici-
pate in obtaining such optimal value. However, the subscriber
price γi may differ from the global price µ if, for example, its
link capacity is small (hence forcing the price to locally in-
crease). In that situations, the channel allocation part must
balance radio resources properly in order to reach a global
fair solution. Next section shows some numerical results to
exemplify this.

4. NUMERICAL RESULTS

Let us consider a a network with 3 subscribers managing 70
connections in total (20 attached to S1, 30 to S2 and 20 more
to S3) and 7 available channels. All ongoing connections
have mi

j = 1kbps, p1
j = 1 and α = 1 (proportional fair-

ness). Requested rates are 10kbps for connections within S1,
40kbps for those through S2 and finally 100kbps for connec-
tions managed by S3. We further assume the following ca-
pacities per channel and subscriber (in kbps),

c1 = [55, 350, 50, 120, 40, 250, 70]T ,
c2 = [300, 420, 270, 340, 50, 25, 87]T ,
c3 = [20, 80, 71, 33, 270, 150, 420]T ,

(10)

and that the C = 1200kbps. Initially, S1 uses the first chan-
nel, S2 the second and S3 the third so that the initial transport
capacities are 55kbps, 420kbps and 71kbps, respectively.

Once the proposed flow and channel allocation scheme
has been executed, all the ongoing connections within S1

reach their requests, i.e. 10kbps, whereas all the connections
within S2 and S3 get 20kbps. Regarding channel allocation,
the following result is obtained,

ρ1 = [0, 0.33, 0, 0, 0, 0.33, 0]T ,
ρ2 = [1, 0.67, 1, 1, 0, 0, 0]T ,
ρ3 = [0, 0, 0, 0, 1, 0.67, 1]T ,

(11)

so that the final subscriber rates are 200kbps, 1191.4kbps and
790.5kbps, respectively. As done in other works in the liter-
ature [6], we have used instantaneous values of {γi} instead
of their averaged version in order to improve the convergence
properties (in practice these values are high in the first itera-
tions and slow down the convergence of the algorithm if aver-
aged). Figure 4 shows how initial channel allocation variables
converge to the values in (11). Note that since the connec-
tions that go through S1 (1-20) reach exactly their request, a
total rate of 200kbps is required. On the contrary, connections
21-70 are limited by C = 1200kbps and rates are equally dis-
tributed (20kbps each) as expected in a fair solution. In case
C → ∞, note that they would get 1191.4kbps/30connec. ≈
790.5kbps/20connec. ≈ 40kbps/connec. with the current
channel allocation.

From a practical point of view, we are interested in sys-
tems that converge fast to the optimal solution. For that pur-
pose, channel allocation can be truncated if necessary (e.g.
around 50 iterations) in order to attain the required computa-
tional time without much performance loss. Notwithstanding,
convergence properties of the flow allocation subpart of the
method are more important since it must be executed at each
allocation update. Furthermore, if we assume that subscriber
achievable rates ρT

i ci as well as aggregated flows keep more
or less constant during a period of time, it is only the flow
control part of the method that runs.
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Fig. 4. Channel allocation variables versus time.

Figure 5 provides a performance comparison between the
proposed 2-level coupled-decompostions method and a clas-
sical 2-level dual decomposition approach. Results show the
evolution of the dual variable µ at the highest level (associ-
ated with

∑N
i=1 yi ≤ C) for both techniques. Whereas the

proposed method finds the optimal value in less than 10 it-
erations, a dual decomposition strategy requires more than
500 iterations. Furthermore, the problem of choosing the ad-
equate step-size in primal/dual decomposition (both methods
follow a projected subgradient approach) is obviated. Finally,
note the signalling reduction with respect to a centralized ap-
proach. In our scheme each subscriber exchanges only a pri-
mal variable (either yi or ŷi) and a dual variable (either µ or
γi) with the base station and only for a few iterations.

5. CONCLUSIONS

This paper tackles the joint flow and channel allocation prob-
lem for point-to-multipoint networks that operate over multi-
ple parallel channels (as in OFDM) where a central node, e.g.
the base station, has to distribute a certain amount of transport
rate among multiple subscribers. We assume that the available
rate at each subscriber is locally distributed among many con-
nections with different QoS requirements that form local area
networks, either wireless or wired, and that impose no further
link constraints.

In order to alleviate the stringent signalling requirements
of a centralized approach (which grow with the number of
ongoing connections within the local area networks), we have
proposed a fair distributed decomposition technique that splits
the original problem into a channel allocation plus a flow
control mechanism. For the sake of practicality (i.e. low
number of iterations) we have used a Mean Value Cross de-
compositions approach in the former and the novel coupled-
decompoistions strategy in the latter. As a result, the number
of iterations has been kept small when compared to classical
designs, specially in the flow allocation part, which reduces
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Fig. 5. Flow allocation computation: coupled-decomposi-
tions (top) versus dual decomposition (bottom).

the iteration count in two orders of magnitude with respect to
known techniques. Furthermore, it can be stand-alone exe-
cuted when the required updating period for the channel allo-
cation is large.
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