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Universitat Autònoma de Barcelona,
Bellaterra, Barcelona 08193, Spain

{rafael.montalban, jose.salcedo, gonzalo.seco}@uab.cat

A. Lee Swindlehurst
Univ. of California, Irvine,

Irvine, CA 92697, USA
swindle@uci.edu

Abstract—The design of pilot and data power allocations for
multicarrier OFDM signals is a key aspect in the development
of combined positioning and high-data-rate communications sys-
tems. Previous work has investigated the capacity-maximizing
pilot and data power allocation when only taking into account
the effect of channel estimation accuracy on capacity. Results have
shown that distributions with equi-spaced and equi-powered pilot
structures are optimal. In this paper, we consider a formulation
based on the CRB of the joint time-delay and channel estimation,
which allows us to study the design of signals for combined
positioning and communications OFDM systems. We compare the
performance of capacity-maximizing pilot and data power distri-
butions with unstructured pilots, with respect to distributions that
use equi-spaced and equi-powered pilot structures. Numerical
results show that the constraint of equi-spaced and equi-powered
pilot structures has an important impact on both the achievable
capacity and the positioning capabilities of the designed signals.

I. INTRODUCTION

There exists an increasing interest in combined positioning
and communications systems, as evidenced by the efforts to
use or adapt multicarrier communications signals for posi-
tioning applications [1], [2]. However, the signals designed
for communications can achieve very high data rates (tens
to hundreds of Mbits per second), but are not adequate
in general for accurate positioning. A proof of this is that
the latest generation communications standards include signal
configurations specifically targeted for positioning, such as
LTE’s (Long Term Evolution) positioning reference signal
(PRS) [3]. Nevertheless, the design of combined positioning
and communications systems that can perform well in both
domains is a topic that deserves further study, and needs
to be formulated taking into account all the parameters that
affect both the system’s achievable data rate and positioning
accuracy.

Optimal pilot design for channel estimation has been
studied extensively in the literature for orthogonal frequency
division multiplexing (OFDM) signals [4]–[7]. Results show
that equi-spaced (in a circular sense) and equi-powered pilots
are optimal in terms of channel estimation mean square error.
Therefore, these kinds of pilot distributions appear to be the
option chosen by most communications standards. Likewise,
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the design of signals for estimation of carrier frequency offset
(CFO) and for joint channel and CFO estimation has been
considered in the literature, and optimal training signals have
been proposed [8], [9].

As wireless multicarrier systems rely on pilot symbols for
channel estimation, it seems reasonable to apply these pilot
symbols for time-delay estimation (TDE) as well, which is
the basis for positioning. Several researchers have studied the
problem of achieving high time-delay estimation accuracy in
multicarrier systems. In [10], [11], it was shown that for a
pilot-only multicarrier signal (i.e. when any subcarrier can be
used to transmit pilot symbols), minimizing the variance of
the time-delay estimate requires maximizing the root-mean-
square (or Gabor) bandwidth of the signal. In [12], the problem
of pilot design is considered for combined time-delay and
channel estimation in OFDM signals. The design requires a
trade-off between both estimation accuracies, but in general the
optimal structures consist of pilot subcarriers at the edges of
the bandwidth and approximately equi-spaced pilot subcarriers
in between. In [13], the problem of finding the capacity-
maximizing pilot and data power distributions for OFDM
systems, while taking into account the capabilities of the
designed signal for positioning, is studied. Moreover, a nearly
optimal power allocation approach is presented as a solution.

This paper studies the performance of equi-powered and
equi-spaced pilot allocation for joint time-delay and channel
estimation, and compares it with the performance of optimal
arbitrary allocations obtained in [13]. We focus on a scenario
where a certain positioning capability is desired (i.e., we fix
a desired time-delay estimation accuracy), and the system
is designed to achieve the highest possible capacity, while
guaranteeing this positioning accuracy at the same time. Our
results show that restricting the pilot distributions to be equi-
powered and equi-spaced produces a noticeable degradation on
the maximum achievable capacity and TDE accuracy.

The paper is organized a follows. Section II presents the
system model and performance metrics. Section III reviews
the problem of capacity maximization under a constraint on
the time-delay estimation accuracy and dwells on the special
case where only equi-spaced and equi-powered pilot distribu-
tions are considered. Simulations and numerical examples are
presented in Section IV, before drawing the conclusions in
Section V.



II. SYSTEM MODEL AND PRELIMINARIES

In this section we describe the signal model and the
performance metrics used for the design of the OFDM pilot
and data power distributions. We use two performance metrics:
an approximation on the channel capacity when there is un-
certainty in the channel state information, and the Cramér-Rao
bound (CRB) of the joint time-delay and channel estimates.

A. OFDM Signal Model

Consider the following frequency-selective channel model,

h (t) =

L−1∑
l=0

hlδ (t− lTs − τd) (1)

where L is an upper bound on the number of discrete multipath
components, hl is the complex channel gain for the l-th path,
Ts is the sampling period and τd is the time-delay between
source and receiver. Note that since the delay is explicitly mod-
eled inside the terms δ (t− lTs − τd), the channel coefficients
{hl} are independent of τd.

In our case, we assume that all information about the
channel is unknown, so both the channel coefficients {hl} and
the channel delay τd need to be estimated through the use
of pilot tones transmitted as part of the N subcarriers in an
OFDM symbol. For the scope of this paper, we restrict our
problem to the zero inter-carrier and inter-symbol interference
case. This means that the transmitter and receiver are frequency
synchronized, and that the duration of the cyclic prefix (CP) TG
is larger than the delay spread plus the time-delay uncertainty
(i.e. (L− 1)Ts + τd < TG).

Consider now the vector containing the discrete Fourier
transform (DFT) of N samples of the received signal collected
during an OFDM symbol,

y = Γ (τd) S (s) WLh + n, (2)

where [12]

Γ (τd) = diag
([
e−j2π

−N/2+1
Ts

τd , e−j2π
−N/2+2

Ts
τd ,

. . . , e−j2π
N/2
Ts

τd
])
, (3)

s =
[
b−N/2+1, b−N/2+2, . . . , bN/2

]T
, (4)

S (s) = diag (s) , (5)

h = [h0, h1, . . . , hL−1]
T
, (6)

WL is composed of the first L columns of the zero-frequency
centered N × N Fourier matrix, n is a vector of additive
Gaussian noise, and s contains the both the pilot and the data
symbols being transmitted.

B. The Cramér-Rao Bound

For the derivation of the CRB, we ignore the presence of
data symbols for the purpose of estimation, and assume that the
vector s contains pilot symbols only. We define the following
parameter vector,

Θ :=
[
τd, <

{
hT
}
, =
{
hT
}]
∈ R(2L+1)×1, (7)

which contains the time-delay and the real (<
{
hT
}

) and
imaginary (=

{
hT
}

) parts of the channel response.

As shown in [12], the expression for the CRB of Θ is:

CRBΘ =
σ2
n

2

[
CRB11 CRBT

21
CRB21 CRB22

]
(8)

where

CRB−1
11 = hHWH

L PD2WLh

− hHWH
L PDWL (Q)

−1
WH

L DPWLh, (9)

CRB21 =

[
−γ−1

τ ={q}
γ−1
τ <{q}

]
, (10)

CRB22 =

[
<
{
Q−1

}
+ γ−1

τ ={q}=
{
qT
}

=
{
Q−1

}
− γ−1

τ <{q}=
{
qT
}

−=
{
Q−1

}
− γ−1

τ ={q}<
{
qT
}

<
{
Q−1

}
+ γ−1

τ <{q}<
{
qT
} ]

, (11)

q = Q−1WH
L PDWLh, (12)

Q = WH
L PWL, (13)

D =
2π

Ts
diag

([
−N

2
+ 1, . . . ,

N

2

])
, (14)

P = diag (pp) = SHS, (15)

where vector pp contains the power of the pilots assigned to
each subcarrier. Note that the CRB only depends on the amount
of power assigned to each of the pilot subcarriers.

C. Capacity

In [14] and [15] a lower bound on the channel capacity for
serial transmissions over flat-fading channels was derived. We
apply this lower bound on a per-subcarrier basis, and summing
across the data subcarriers, we have the following lower bound
on the multicarrier signal channel capacity:

C ≥ Clb =
1

N

∑
iεΩ

log (1 + SNReqi) , (16)

where Ω contains the indices of the subcarriers allocated to
data transmission, and where an equivalent signal to noise ratio
for subcarrier i is defined as,

SNReqi =
|gi|2 pd,i

σ2
g,ipd,i + σ2

n

, (17)

where gi is the channel frequency response for subcarrier i,
pd,i is the power allocated to data transmission in subcarrier i,
σ2
g,i is the variance of the channel response estimate at the i-th

subcarrier and σ2
n is the Gaussian noise power. The inequality

in (16) becomes an equality only when channel estimation
uncertainty has the worst possible effect [15].

For an unbiased estimator, the value of σ2
gi is lower

bounded by the CRB of the channel frequency response
estimate for subcarrier i, which can be computed from (11)
as:

CRBg = T CRBhTH , (18)

where
T =

[
<{WL} −={WL}
= {WL} < {WL}

]
. (19)

In this paper, we consider the maximization of the lower
bound on the capacity assuming that the lowest possible



uncertainty in the channel estimates is achieved. Thus, the
approximation we will use is

C ′lb =
1

N

∑
iεΩ

log

(
1 +

|gi|2 pd,i
[CRBg]iipd,i + σ2

n

)
. (20)

III. POWER ALLOCATION OPTIMIZATION

A. Unstructured Pilot Distributions

In order to maximize the capacity in (20) while ensuring
a certain level of positioning capabilities (i.e. a certain level
of time-delay estimation accuracy), we need to adequately
distribute pilot and data power across the subcarriers.

A possible formulation of the problem is

max
pp,pd

C ′lb (pp,pd)

s.t. CRB11 (pp) ≤ β
pTp · 1 + pTd · 1 ≤ PT
pTp · pd = 0

pp ≥ 0, pd ≥ 0

(21)

where pp is a vector that contains the powers assigned to
pilot symbols in each subcarrier, pd contains the power of
subcarriers devoted to data transmission and PT is the total
available power. The first constraint in (21) ensures that the
CRB of the time-delay estimation is lower than a certain
value β. The third restriction in (21) causes the problem to
be combinatorial, i.e., the subcarriers are going to be assigned
to either pilot or data symbols.

Alternatively, the problem may be written as

max
p,b

C ′lb (p,b)

s.t. CRB11 (p,b) ≤ β
pT · 1 ≤ PT
p ≥ 0

b2i − bi = 0

(22)

where vector p contains the powers assigned to each of the
subcarriers (i.e. p = pp + pd), and b is a binary vector of
length N than contains a ’1’ in the position corresponding
to pilot subcarriers and a ’0’ in the positions corresponding
to data subcarriers. Thus, the elements of vector pp can be
expressed as pp,i = bipi and the elements of vector pd as
pp,i = pi (1− bi), where bi is the i-th element of vector b.

In [13], an almost optimal solution to this problem was
studied. The problem was solved through the use of a relaxed
version that eliminated the combinatorial constraint. That is, if
we relax the third restriction in (21) (i.e. the fourth restriction
in (22)), the subcarriers can be shared by data and pilot sym-
bols simultaneously. The solution to this relaxed problem can
be found numerically by using standard convex programming
approaches which are guaranteed to converge to an optimal
solution. Simulation results show that, in the solutions to the
relaxed problem, the number of subcarriers with pp,i > 0 is
very low, generally equal or close to L+1, which is the lowest
value required for the problem to be identifiable. In terms of
the formulation presented in (22), we can see that optimal
solutions for the relaxed problem consist of a vector b with

most of its entries set to ’0’ and just a few set to values greater
than ’0’.

After solving the relaxed problem, one could approximate
the almost-binary vector b by a completely binary vector. The
maximization problem in (22) can then be easily solved when
the subcarrier assignment (i.e., the values of bi) are considered
as fixed. As discussed in [13], the resulting power distribution
is close or equal to the optimum solution of (21).

B. Equi-spaced and Equi-powered Pilot Distributions

For comparison purposes, we consider now the case where
we restrict ourselves to use equi-powered and equi-spaced pilot
distributions only. For the sake of brevity, we also refer to
this kind of pilot distributions as ”comb” distributions in the
sequel. We consider a pilot distribution that uses K out of
the N tones in an OFDM symbol. Equi-spaced (in circular
sense) distributions can only exist if K is a divisor of N .
Thus, N must be a multiple of K such that N = KJ , for
some integer J . The set of possible pilot positions for an equi-
spaced distribution is I = {j + Jk|k ∈ [0,K − 1]} for some
j ∈ [0, J − 1].

Note that K must be at least L + 1 for the estimation
problem to be feasible. Apparently, from the point of view of
capacity we would like to use the minimum number of pilots,
i.e. K = L + 1, in order to have as many subcarriers free
for data transmission as possible. However, depending on the
values of N and L, this may be impossible. In the sequel we
will assume that N is a multiple of L + 1 and K = L + 1,
to focus our analysis on the effect of employing comb pilot
distributions instead of unstructured ones, and not be affected
by the fact that in general K has to be larger than L + 1 to
be a divisor of N .

The capacity maximization problem we consider in this
case is: 

max
Pp,pd,j

C ′lb (pp (Pp, j) ,pd)

s.t. CRB11 (pp (Pp, j)) ≤ β
Pp + pTd · 1 ≤ PT
pp (Pp, j)

T · pd = 0

pd ≥ 0

(23)

where the pilot distribution pp is indeed forced to be equi-
spaced and equi-powered (this is denoted as pp(Pp, j)), and
thus is a function of the total pilot power Pp and j. This
problem can be easily solved numerically.

It is also interesting to consider a related problem where the
amount of power for pilot transmission Pp is fixed and there
is no restriction on the CRB of the time-delay estimate. This
allows for comparisons of how the capacity and the time-delay
estimation accuracy change with respect to those achieved by
an unstructured pilot power distribution that devotes the same
amount of power to pilot and data transmission. The resulting
problem is similar to (23), without the first constraint and with
Pp now fixed to a given value.

IV. PERFORMANCE ANALYSIS

In this section we compute several pilot and data power
distributions obtained as a solution to the optimization prob-
lems discussed in Section III. For all the results presented,



we assume a channel impulse response of length L = 7,
with h = [−0.4487− i0.4070, −2.1060+ i0.6322, −0.1651−
i1.1886, 0.5449 − i0.1982, 0.2716 + i0.2939, −0.3408 +
i0.7404, 1.0934+ i0.0397]T , and an OFDM signal of N = 64
subcarriers. The total power for pilots plus data has been fixed
to PT = 5, the noise variance to σ2

n = 10−2 and the maximum
value of CRB11 has been constrained to be β = 0.001.

Figure 1 shows the data and power distributions designed
to optimize the lower bound on capacity C ′lb, obtained under
different considerations. Fig. 1a shows an example of pilot and
data power distribution obtained fixing the subcarrier positions
after the problem relaxation, as described in Section III.A (i.e.
a solution to (21)). Note that pilot power seems to be more or
less evenly distributed among the pilot subcarriers, while data
power assignment is a water-filling distribution. Fig. 1b shows
the optimal power allocation with the comb pilot structure
that achieves the same time-delay estimation accuracy as the
distribution in Fig. 1a (i.e., a solution to (23)). Note that the
amount of pilot power needed to fulfill the constraint is much
greater if we restrict ourselves to use comb distributions, which
has a negative impact on the capacity. Finally, Fig. 1c shows
the optimal power distribution obtained when restricting the
pilots to be a comb structure and the amount of pilot power to
be the same as the distribution in Fig. 1a. In this case, while the
capacity is more or less the same as in the unstructured-pilots
case, the time-delay estimation accuracy significantly worsens
(i.e., it leads to an increase in the CRB). Note that the pilots
are similarly distributed in both Fig. 1a and Fig. 1c, and the
amount of power used is the same, however the effect of the
restriction to a comb pilot distribution has a dramatic negative
impact on the CRB.

Figure 2 studies the trade-off between capacity and time-
delay estimation uncertainty. The curve with square markers
represents the capacity achieved by distributions obtained
through the maximization of C ′lb without any restriction on the
pilot distributions that may be used, i.e. solutions to (21) for
differents values of β obtained through the process of fixing the
subcarrier positions after the problem relaxation, as described
in Section III.A. The curve with circle markers corresponds to
the case of distributions designed with comb pilot structures
that fulfill the constraint on time-delay accuracy, i.e. solutions
to (23). Note that in any case where the total available
power is not enough for a comb pilot structure to fulfill the
constraint, the capacity is 0 since there is no power left for
data transmission. The curve with point markers corresponds to
distributions with comb pilot structures that use the same total
power for pilot transmission as in the unstructured-pilots case.
It is very important to note that in this case the distributions
do not achieve the desired CRB and the percentage by which
they exceed the constraint is represented in the dash-dot curve.
The capacity achieved by optimal power distributions when
subcarriers are allowed to be shared by pilot and data symbols,
i.e. solutions to the relaxed version of (21), is provided as an
upper bound of the maximum achievable capacity (solid line
with no markers).

Figure 3 shows the amount of extra power required by a
distribution with comb pilot structure to match the performance
of a distribution with unstructured pilots. The curve with
square markers represents the extra power needed to achieve
the same TDE accuracy (i.e. the same CRB), while the curve
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Fig. 1. Pilot and data power distributions designed to maximize C′
lb under

different conditions: (a) Unstructured pilots. (b) Equi-spaced and equi-powered
pilots, same time-delay estimation accuracy. (c) Equi-spaced and equi-powered
pilots, same total power for pilot transmission as in case (a).
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Fig. 3. Increase in total power required to match the performance of an
unstructured distribution with an equi-spaced and equipowered distribution,
versus the contraint on time-delay estimation accuracy.

with point markers represents the additional power needed to
achieve the same capacity and TDE accuracy. That is, the
second curve shows how much PT has to be increased in (23)
with respect to the value used in (21) so that both problems
have the same value of the C ′lb for each value of β. This
justifies the use of unstructured pilot distributions for combined
communications and positioning systems.

Results show that for a fixed amount of power devoted to
pilot transmission, a distribution with comb pilots obtains sim-
ilar results in terms of capacity as an unstructured distribution
(as reflected by the solid lines with point and square markers
in Fig. 2). This means that comb pilots are adequate only when
one is designing a communications system, which agrees with
previous results in the literature and with the use of this type
of pilot structure in the communications standards. However,
our results clearly show that comb pilot distributions are
inadequate when the positioning capabilities of the signal are a
concern. In order to match the performance of an unstructured
distribution, comb distributions require much more power.

V. CONCLUSIONS

In this paper, the performance of near-optimal pilot and
data power allocations has been compared with the tradi-
tional solution of using equi-powered and equi-spaced pilot
distributions. Results show that equi-spaced and equi-powered
pilot structures are not adequate for time-delay estimation
as they require important increases in the amount of power
devoted to pilot transmission in order to achieve the same
time-delay estimation accuracy as power distributions with
unstructured pilots, which results in lower capacity, since
less power remains available for data. Equi-spaced and equi-
powered pilot distributions are only a good choice when
designing a communications-only system, where time-delay
estimation accuracy is not an objective by itself.
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