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Abstract—The proliferation of GNSS-based (Global Navigation
Satellite Systems) services and applications providing ubiquitous,
seamless and secure/reliable positioning is driving the use of
high-performance devices. This implies the requirement of a
higher computational capability in miniaturized size and low
power consumption devices such as smartphones or Smart-
City sensors. In this context, a possible alternative is to carry
out the computational tasks outside the device, making use of
the scalable, secure and nearly unlimited resources of Cloud
infrastructure. This work presents the implementation of a
Cloud-based GNSS receiver by taking advantage of one of the
available Cloud infrastructures, such as Amazon Web Services
(AWS). We will provide a review of the most relevant features
of AWS for GNSS signal processing, as a case of study for
stimulating the use of Cloud infrastructures within the GNSS
community, while paving the way for the development of next-
generation GNSS receivers. Furthermore, parallel computing will
be studied to improve the Cloud GNSS receiver performance.

I. INTRODUCTION

The deployment of new GNSS-based applications and ser-
vices providing seamless, ubiquitous and above all secure
positioning, will force next-generation GNSS receivers to
implement much more complex processing tasks than those
currently implemented in existing receivers. However, the
future trend in these computing devices will tend to be
miniaturized and with low power consumption as in the case of
Internet of Things (IoT), Smart City and Machine-to-Machine
(M2M) applications. The negative aspect of this trend is that
receivers will suffer from limited computational capabilities
and stringent power consumption limitations. Hence, devices
will experience serious troubles for fully implementing the
required signal processing tasks that next-generation GNSS
services will demand. On the other hand, in the coming years
new GNSS will become fully operational apart from GPS, such
as Galileo, Glonass and Beidou. Thus, users may have more
than 40 visible GNSS at a time, that will help to solve many
of the current matters such as urban environmental problems
(e.g. NLOS, multipath) [1]. The consequences of having so
many visible satellites at the same time is that the receiver
will have to process an overwhelming amount of data.

To solve the arising GNSS receiver problems, this paper
elaborates on the Cloud GNSS paradigm, see Fig 1 [2]. This
concept facilitates the implementation of sophisticated GNSS
signal processing techniques using miniaturized and low power
consumption devices migrating the processing tasks to Cloud
servers, thanks to the scalability, reduced cost and computing
high-performance they offer. Doing so, GNSS receivers will
only need to collect the RF samples, generate a GNSS raw
samples file and send it to the Cloud infrastructure, where
the Cloud GNSS receiver will carry out the computing tasks.
Furthermore, any upgrades on the GNSS receiver would be
easily and equivalently applied to all the user terminals at the
same time since they only need to be applied at the Cloud side
and not in the terminal itself. Lastly, the Cloud GNSS receiver
opens up the door for potential and innovative applications that
cannot be carried out by current GNSS receivers and make
them suitable for the implementation using a cloud-based
infrastructure (e.g. authenticated services, crowdsourcing or
massive data analysis) [3].
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Fig. 1. Application of the Cloud GNSS receiver to GNSS sensors networks.

Nonetheless, the uplink communication between the RF
front-end and the Cloud GNSS receiver can turn into a
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significant constraint due the quantity and size of packets, i.e.
GNSS raw samples files, to be transferred. In this context,
new 3GPP standards have specifically been developed for IoT
technologies [4] with the mission of supplying the required
downlink/uplink bandwidth to miniaturized wireless networks
with low power consumption.

The aim of the present work is to illustrate how paral-
lel computing can improve the performance of a software
GNSS receiver such as the one implemented here within the
Cloud GNSS receiver platform. An introduction to the Cloud
computing concept and the use of AWS as Cloud computing
platform will be made in Section II. It will focus on Elastic
Compute Cloud (EC2) instances, which are suited for Cloud
GNSS signal processing. Then, the memory requirements of
the Cloud GNSS receiver will be explained in Section III.
Next, a study of using parallel computing in GNSS signal
processing, and in particular, in the Cloud GNSS receiver is
performed in Section IV, with the mission of improving the
performance, i.e. execution time, of the software receiver. It
will also be studied how using parallel computing reduces the
cost of using the EC2 service. Finally, conclusions will be
drawn in Section VI.

II. CLOUD COMPUTING PLATFORM

The Cloud Computing concept refers to the on-demand
delivery of IT resources and applications via the Internet
with pay-as-you-go pricing. This means that users can use
the services provided by the Cloud without worrying about
the resources they are using because resources are virtually
unlimited. Cloud computing is characterized by the large
scalability, security, liability, monitoring and cost. From a
high-level perspective, the Cloud infrastructure can be divided
into two parts: front-end and back-end. The front-end is the
side that is visible to the user and includes the user terminal
(e.g. computer, smartphone), whereby the user can interact
with the Cloud platform. On the other hand, the back-end is
the side that is not visible to the user and it comprises all the
resources required to run and deliver the service to the user.
The back-end is commonly known as the Cloud part of the
Cloud computing architecture.

Due to the increasing number of emerging applications and
services requiring heavy processing tasks, several commercial
Cloud platforms have appeared in the past years such as AWS,
Google Cloud Platform, Microsoft Azure, Rackspace, Oracle
Cloud, or RedHat Openshift, providing services to software-
developers and standard users as well. Because of the multiple
services specifications offered by each of these platform, it can
turn into an overwhelming amount of information for those
facing for the first time the Cloud ecosystem.

In this context, the goal of this paper is to shed some light on
the operation of a specific Cloud platform, to review the main
services and functionalities being offered, and to discuss some
of the configuration options that are available. In particular,
by having in mind the specific application to GNSS sensor
networks, as depicted in Fig. 1. The decision of selecting one
Cloud platform in front of another is out of the scope of this

work, since it may depend on some other non-technical issues
not being addressed herein (e.g. the existence of some previous
in-house experience with some of the already existing Cloud
providers).

A. AWS services for Cloud-based GNSS applications

Amazon Web Services offers a wide range of services for
the implementation of Cloud infrastructures. Some of the
services of interest [5] for Cloud-based positioning applica-
tions and in particular for implementing a Cloud-based GNSS
receiver are reviewed as follows:
• Amazon Elastic Compute Cloud (EC2): virtual computing

environment which allows the user to launch instances
providing re-sizable and scalable computing capacity. In-
stances can be launched with different operating systems
and loading them with custom application environment
(e.g. snapshots of ohter instances volumes). The concept
of instance is defined as a Virtual Machine (VM) which
acts as a physical computing machine. In II-B a review
of some of the EC2 instances type is provided.

• Amazon Simple Storage Service (S3): secure, durable,
and high-scalable Cloud storage. Data can be stored
as resources called buckets with a maximum size of 5
terabytes, which can be stored, written, read and deleted.

• Amazon Simple Queue Service (SQS): reliable, simple,
scalable, secure, fast and inexpensive message queuing
service. SQS makes simple and cost-effective to decouple
the components of a Cloud application.

• Amazon Elastic Block Storage (EBS): provides persistent
block level storage volumes for use with Amazon EC2
instances in the AWS Cloud. That is to say, storage
volumes can be created (e.g. snapshot) and then attached
to instances. Snapshots can be used to instantiate multiple
new volumes, expand the size of a volume, or move
volumes across Availability Zones.

A deeper review of using of these services in GNSS signal
processing can be found in [2]. Furthermore, Amazon services
are hosted in multiple locations world-wide composed of
regions and Availability Zones (AZ). Regions, which has
multiple isolated location, i.e. Availability Zones, are designed
to be completely isolated from others, achieving better fault
tolerance and stability. AWS provides the ability to place
resources in multiple locations. Thus, in case of a service
failure in a specific Availability Zone, another AZ can handle
the corresponding request.

B. AWS EC2 instances for Cloud-based GNSS applications

Amazon Elastic Compute Cloud (EC2) provides a large
selection of instance types comprising different combinations
of CPU, memory, storage and network capacity. This feature
is quite convenient for GNSS signal processing purposes due
the possibility of launching a specific instance type depending
on the type of signal processing is going to be carried out (e.g.
intensive computation, heavy memory storage).

Amazon EC2 instances are divided in two main types,
i.e. Fixed Performance Instances (e.g. C3, M3, R3) and
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TABLE I
INSTANCE TYPE SPECIFICATIONS

Model vCPU Memory
(GB)

Storage
(GB)

Physical
processors

Clock speed
(GHz)

Price
($/hour)

t2.nano 1 0.5 EBS Only Intel Xeon family up to 3.3 0.0075
t2.micro 1 1 EBS Only Intel Xeon family up to 3.3 0.015
t2.small 1 2 EBS Only Intel Xeon family up to 3.3 0.03

t2.medim 2 4 EBS Only Intel Xeon family up to 3.3 0.06
t2.large 2 8 EBS Only Intel Xeon family up to 3.3 0.12
m4.large 2 8 EBS Only Intel Xeon E5-2676 v3 2.4 0.143

m4.xlarge 4 16 EBS Only Intel Xeon E5-2676 v3 2.4 0.285
m4.2xlarge 8 32 EBS Only Intel Xeon E5-2676 v3 2.4 0.57
m4.4xlarge 16 64 EBS Only Intel Xeon E5-2676 v3 2.4 1.14

m4.10xlarge 40 160 EBS Only Intel Xeon E5-2676 v3 2.4 2.85
m3.medium 1 3.75 1x4 SSD Intel Xeon E5-2670 v2 2.5 0.079

m3.large 2 7.5 1x32 SSD Intel Xeon E5-2670 v2 2.5 0.158
m3.xlarge 4 15 2x40 SSD Intel Xeon E5-2670 v2 2.5 0.315
m3.2xlarge 8 30 2x80 SSD Intel Xeon E5-2670 v2 2.5 0.632

c4.large 2 3.75 EBS Only Intel Xeon E5-2666 v3 2.9 0.134
c4.xlarge 4 7.8 EBS Only Intel Xeon E5-2666 v3 2.9 0.267
c4.2xlarge 8 15 EBS Only Intel Xeon E5-2666 v3 2.9 0.534
c4.4xlarge 16 30 EBS Only Intel Xeon E5-2666 v3 2.9 1.069
c4.8xlarge 36 60 EBS Only Intel Xeon E5-2666 v3 2.9 2.138

c3.large 2 3.75 2x16 SSD Intel Xeon E5-2680 v2 2.8 0.129
c3.xlarge 4 7.5 2x40 SSD Intel Xeon E5-2680 v2 2.8 0.258
c3.2xlarge 8 15 2x80 SSD Intel Xeon E5-2680 v2 2.8 0.516
c3.4xlarge 16 30 2x160 SSD Intel Xeon E5-2680 v2 2.8 1.032
c3.8xlarge 32 60 2x320 SSD Intel Xeon E5-2680 v2 2.8 2.064

r3.large 2 16 1x32 SSD Intel Xeon E5-2670 v2 2.5 0.2
r3.xlarge 4 30.5 1x80 SSD Intel Xeon E5-2670 v2 2.5 0.4

r3.2xlarge 8 61 1x160 SSD Intel Xeon E5-2670 v2 2.5 0.8
r3.4xlarge 16 122 1x320 SSD Intel Xeon E5-2670 v2 2.5 1.6
r3.8xlarge 32 224 2x320 SSD Intel Xeon E5-2670 v2 2.5 3.201

Burstable Performance Instances (e.g. T2). The former are
suited for applications that need a consistent and intensive
CPU performance (e.g. GNSS applications or services). On
the other hand, burstable insances provide a baseline level of
CPU performance with the ability to burst above the baseline.
T2 instances are for workloads that do not use the full CPU
often or consistently, but occasionally need to burst. Thus, T2
are best suited for applications such as web servers (e.g. front-
end), databases, etc.

A table with the specifications of instance types previously
stated is presented in Table I. It is important to mention that
a vCPU is an instruction stream within a CPU core, and
several of these streams (also referred to as threads) can be
executed at the same time in the same core. In that sense, a
vCPU can be understood as a logical core. Current CPUs, as
some of EC2 instance processors (e.g. c4, c3) can implement
hyperthreading [6], meaning that each CPU core can work on
up to two threads. Therefore, when using an instance with 8
vCPU, we are working with 8 threads or logical cores instead
of 8 truly hardware cores. If we want to launch an instance
with 8 hardware cores, we should better select an instance
having 16 vCPU.

III. MEMORY REQUIREMENTS FOR HIGH-SENSITIVITY
GNSS SIGNAL PROCESSING

A parameter of paramount importance in a snapshot-based
software GNSS receiver is the required memory, i.e. RAM, to

implement an execution. This is further aggravated when high-
sensivity techniques are implemented, as it is the case consid-
ered herein, where long integration times must be implemented
at the acquisition stage. Since the fine Doppler search depends
on the inverse of the integration time, long integration times
lead to a very fine frequency grid for each tentative primary
code and secondary code alignment. The results of this search
must all be stored in memory (i.e. in the so-called acquisition
hypercube), before signal detection takes place. This certainly
requires a very significant amount of memory, and must be
accounted for in order to dimension the resources that will be
needed by each execution of our GNSS software receiver.

In the case under study, the double-FFT (Fast Fourier
Transform) algorithm [7] is used to compute the correlation
hypercube. This algorithm optimally finds the frequency and
code phase shift of the correlation peak to be acquired [8], in-
cluding the alignment with the secondary code, at the expense
of consuming most of the memory used by the GNSS software
receiver. The hypercube is the time-frequency representation
of the cross-correlation between the input signal and the local
replica, whose dimensions are NdFFT×Nscode×Nr×Nfbins

where: NdFFT = 2 · Nr is the number of points in the 2nd
FFT of the double-FFT algorithm in which the 2 factor is used
to obtain a finer frequency resolution through zero padding;
Nscode = Tcode · fs is the number of samples per code; Nr

is the coherent integration time, and Nfbins is the coarse
frequency bins to be searched.
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The number of frequency bins to be searched is

Nfbins = round

(
Fmax

∆f

)
· 2 + 1 (1)

with Fmax as the maximum frequency error and ∆f as the
frequency resolution

∆f =
fs

NFFTx
(2)

where NFFTx is the FFT size for two code periods

NFFTx = 2dlog(2·Nscode)/ log(2)e (3)

and N is a power of 2, thus allowing a very fast O(N logN)
and efficient implementation of the FFT with ”butterfly”
computations [9].

Example: Let us determine the size of an hypercube for a
coherent integration time of 20 ms and a frequency search
range from -4000 Hz to 4000 Hz with a sampling frequency
of 5 MHz. For the case of GPS-L1 C/A signals we have
Nr = 20 and Tcode = 1 ms. Therefore, the frequency
resolution is ∆f = 305.18 Hz and the number of frequency
bins to be searched is Nfbins = 27. Then, the hypercube
needs 40 × 5000 × 20 × 27 = 108e+6 positions of memory.
In the Cloud GNSS receiver under consideration using 64
bits CPU, data is stored as double (8 bytes), meaning that
the obtained hypercube would require 824 MB. The size
of the hypercube can be diminished using assistance GNSS
information, in which case Nfbin = 1, resulting on an
hypercube of 30.52 MB. If, in addition, we only search 1
combination of the secondary code instead of 20 because we
are reusing information from previous fixes, the hypercube size
would be reduced to 78.13 KB. �

The above equations define the size of the hypercube and
thus the memory required by the GNSS software receiver. In
order to simplify the understanding of those equations, the
size of the hypercube can also be expressed in a canonical
way as some function f(·) that depends on the parameters of
the GNSS signal under analysis, the coherent integration time
(i.e. Nr multiples of the code period) and the oversampling
factor (i.e. Nsc). By doing so we have that,

Memory = f (Tcode, Rc, NrSec, Nr, Nsc) . (4)

Using the equations above, this function results in the follow-
ing expression:

Memory(GB) =
8

10243
(2Nr)(TcodeNscRc)NrSec

· round

(
Fmax

NscRc
2dlog(2TcodeNscRc)/ log(2)e

)
2 + 1 (5)

where NrSec is the length of the seconday code (e.g. in the
previous example NrSec = Nr = 20), Tcode is the primary
code period, Rc is the chip rate, Fmax is the maximum
frequency error and Nsc the number of samples per chip, also
known as the oversampling factor. Therefore, the sampling
frequency can be obtained as Fs = NscRc.
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Fig. 2. GNSS software receiver memory requirements with didferent combi-
nations of coherent integration times.

For the sake of clarity, in Fig. 2 are depicted the memory
requirements of the GNSS software receiver under different
conditions, i.e. coherent integration time and maximum fre-
quency error, with Nsc = 5, Rc = 1.023 MHz, Tcode = 1 ms
and NrSec = 20. We can observe that for a Tcoh = 20 ms
and Fmax = 0 Hz or Fmax = 4000 Hz we obtain the same
hypercube size as in the previous example. Hence, with Fig.
2 we have an accurate picture of how the hypercube size can
be reduced decreasing the number of frequency bins to be
searched, the sampling frequency, the coherent integration time
or the number of primary codes to be used. The reader should
notice that an hypercube is generated for each of the satellites
to be searched. Thus, if multiple satellites are searched using
parallel computing, multiple hypercubes would be generated
at the same time increasing the required RAM considerably.

IV. PARALLEL COMPUTING FOR GNSS SIGNAL
PROCESSING

Users always want to experience low time-consumption
when using any kind of software service. In this context,
the aim of this section is to reflect the time-consuming
improvement of the Cloud GNSS receiver [3] implementing
parallel computing. As the name indicates, with parallel com-
puting multiple processes can be carried out simultaneously
thanks to the parallelization of the software. There are three
types of parallelism: pipeline, data, and task parallelism [10].
As shown in [11], task parallelism (often implicit in for
loops) is the better choice for maximizing the time-consuming
improvement with software-defined GNSS receiver. In this
manner, tests have been performed over two different cases:
either satellite or snapshot parallelization. In the former case,
the search of the satellites is done in parallel, allowing
the acquisition of different satellites at the same time using
different CPU threads. In the latter case, multiple snapshots
are simultaneously processed using different CPU threads. The
following tests have been performed solely in the acquisition
stage without calculating the PVT.
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Fig. 3. Speedup factor under different number of threads in the hardware of
Table II.

A. Speedup factor in parallel computing

In this section we will study how the time-saving changes as
the number of threads increases. To do so, we use the hardware
and raw GNSS samples file specifications of Table II. The
execution is carried out searching 8 satellites in 8 snapshots.
In order to compare the execution time between the sequential
and parallel computing, we will use speedup factor as figure
of merit, that can be calculated as

Speedup =
Sequential execution time

Parallel execution time
(6)

In Fig. 3 the obtained results are depicted. We see as the
number of working threads increases, also does the speedup
factor. In particular, the parallelization of the snapshot exe-
cution offers a bigger speedup factor than the satellite paral-
lelization. So, performing parallel computing and specifically,
task parallelism, improves the performance of the Cloud GNSS
receiver. Nonetheless, the speedup does not boost as expected:
it is not proportional to the number of working threads. This
is due the increase of communication time between threads as
the number of working threads grows. Therefore, the execution
time increases while the speedup factor decreases. Another
significant behavior presented in Fig. 3 is that the speedup
factor increases roughly linearly within the number of user
threads until working with 4 threads, which is the number of
CPU cores of the machine.

B. Improving performance with parallel computing

Next, we want to study how parallel computing improves the
performance of the Cloud GNSS receiver. The specifications
of the hardware and raw GNSS samples file used in this test
are shown in Table II. As the parallelization is performed
in for loops, i.e. task parallelism, the tested CPU allows
the implementation of 8 for loops simultaneously (one for
each thread). In addition, tests have been carried out with
and without attaching assistance GNSS information. In the
latter, the frequency search is performed from -4000 Hz to
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Fig. 4. Relative execution time with parallel and sequential execution of
snapshots under different number of snapshots.

4000 Hz (see Section III for a deeper explanation of the
frequency search performed by the Cloud GNSS receiver). The
theoretical tendency of the execution time is also depicted for
each of the study cases, and can be expressed as

Execution time ≈ T1snap−1thread
#Snapshots

Speedup factor
(7)

where the execution time of 1 snapshots using 1 thread is
divided by the speedup factor, which depends on the number
of working threads (see Fig. 3), and multiplied by the number
of snapshots to be processed. Therefore, (7) is used when
implementing snapshot parallelism. It can be seen that as the
speedup factor increases, the execution time increases more
slowly than the number of snapshots to be executed, i.e. it is
not proportional as in the sequential execution case. On the
other hand, when performing satellite parallelism, the tendency
is obtained as

Execution time ≈ T1sat−1thread
#Satellites

Speedup factor
(8)

where the execution time of 1 satellite using 1 thread is
divided by the speedup factor and multiplied by the number
of satellites to be searched. With satellite parallelization, the
execution time increases more slowly than the number of
satellites to be executed as the speedup factor increases.

In the first study case, the parallelization is carried out in
the satellite execution, i.e. satellites are searched in parallel.
Time measurements of parallel and sequential executions of
8 satellites under different number of snapshots have been
made, see Fig. 5, whose results have been normalized at 4.14
seconds. There is a time-saving of roughly x6 to x24 as the
number of snapshots increase if assistance GNSS information
is used. On the other hand, the obtained time-saving when
using task parallelism is about x3, depending on the use of
assistance GNSS data.
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TABLE II
TESTED HARDWARE AND RAW GNSS SAMPLES FILE SPECIFICATIONS

Hardware specifications
Processor Intel Core i7-4702MQ
Number of cores 4
Number of threads 8
Base frequency 2.2 GHz
Cache 6 MB

Raw GNSS samples file specifications
GNSS signal GPS L1 C/A - Synthetic
Signal length 2 s
Sampling frequency 5 MHz
Quantization 16 bits
Visible satellites 8
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Fig. 5. Relative execution time of parallel and sequential execution of
satellites under different number of snapshots.

Next, the parallelism is implemented in the snapshot execu-
tion (Fig. 4), i.e. snapshots are executed in parallel. The plot
is normalized at 4.14 seconds. Similar results as the obtained
in the first study case are achieved: roughly x6 to x24 if
assistance GNSS information is used and approximately a x3
time-saving between sequential and parallel execution.

Then, a comparison of both study cases is shown in Fig.
6 (normalized at 5.84 seconds). It can be seen that as the
number of snapshots to be executed increases, the snapshot
parallelism offers a better time-saving. On the other hand, for
low snapshot executions, satellite parallelism is faster.

In the third and forth case, the task parallelism is im-
plemented for satellite and snapshot, Fig. 7 and Fig. 8 re-
spectively, for the execution of 8 snapshots under different
number of satellites. In both cases, there is a time-saving of
approximately x5 to x23 if assistance GNSS data is attached,
and a time-saving of x1.5 to x3 when using parallelization as
the number of satellites to be executed increases.

Finally, in Fig. 9 is depicted the comparison between the
satellite and snapshot parallelization under different number of
satellites. The reader can notice that as the number of satellites
to be searched remains low, the snapshot parallelism offers a
higher time-saving. Nevertheless, as the number of satellites to
be searched increases, also does the satellite parallelism speed.
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Fig. 6. Relative execution time with parallel execution of snapshots and
satellites under different number of snapshots.
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Fig. 7. Relative execution time with parallel and sequential execution of
satellites under different number of satellites.

During this section we have studied how using parallel
computing decreases the execution time when acquiring GNSS
signals under different cases. The parallelization has been im-
plemented both in satellite and snapshot execution, obtaining
faster results in the latter case. Thus, the resource manager
should be able to implement satellite or snapshot parallelism
depending on the execution specifications. We also have seen
how the obtained results of the above figures agrees with
the theoretical tendency calculated with (7) and (8). Main
differences are found when executing low number of snapshots
or satellites, because in those cases not all threads are used
(e.g. with 4 satellites, only 4 threads are used), and the speedup
factor used to calculate the theoretical tendency is calculated
when working with 8 threads.

C. Speedup factor in EC2 instances

In previous sections we have studied how the use of parallel
computing improves the time-consuming factor of executions.
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TABLE III
EC2 INSTANCE COST IMPROVEMENT - CONTINUOUSLY PROCESSING SNAPSHOTS OF GPS L1 C/A WITH Tcoh = 20 ms, 16 BITS OF QUANTIZATION AND

SAMPLING FREQUENCY OF 5MHz OR SPORADICALLY PROCESSING SNAPSHOTS UNDER A 1 GB/MONTH PLAN (LAST COLUMN)

Model vCPU Memory
(GB)

Price per hour
(EU-Frankfurt)

Number of
threads

Number of
snapshots Parallelization Max. number of

snapshots per hour
Cost per
snapshot

Monthly cost
per sensor

(1GB/month)
c4.2xlarge 8 15 $0.534 8 8 Execution per thread 5,339.27 $0.00010 $0.22
c4.2xlarge 8 15 $0.534 8 1 Satellite 4,311.38 $0.00012 $0.27
c4.2xlarge 8 15 $0.534 8 1 Snapshot 4,682.93 $0.00011 $0.25

c4.large 2 3,75 $0.135 1 1 No 1,071.43 $0.00013 $0.28
c3.2xlarge 8 15 $0.516 8 8 Execution per thread 3,559.95 $0.00014 $0.31
c3.2xlarge 8 15 $0.516 8 1 Satellite 3,945.21 $0.00013 $0.28
c3.2xlarge 8 15 $0.516 8 1 Snapshot 4,222.87 $0.00012 $0.26

c3.large 2 3,75 $0.129 1 1 No 831.41 $0.00016 $0.35
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Fig. 8. Relative execution time with parallel and sequential execution of
snapshots under different number of satellites.
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Fig. 9. Relative execution time with parallel execution of snapshots and
satellites under different number of satellites.

In this section, it is presented the cost reduction of performing
parallel computing in EC2 instances, that forms the backend
bulk of the Cloud GNSS receiver. In particular, the speedup
factor of the c4.2xlarge and c3.2xlarge instances (see Table I
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Fig. 10. Speedup factor under different number of threads in a c4.2xlarge
instance.
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Fig. 11. Speedup factor under different number of threads in a c3.2xlarge
instance.

for specifications) is obtained and depicted in Fig. 10 and Fig.
11 respectively.

A higher speedup factor is achieved with c3.2xlarge in-
stances due the use of SSD storage instead of EBS Only even
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with a physical processor with lower clock speed. Therefore,
the speedup factor depends on all the EC2 instance resources,
i.e. RAM, storage, processor. Nevertheless, the execution time
is lower when using c4.2xlarge instances because of the higher
CPU clock speed with regarding to c3.2xlarge.

V. APPLICATION TO A GNSS SENSORS NETWORK

The presented EC2 service cost reduction has been per-
formed in the context of a GNSS sensors network, as depicted
in Fig. 1. In this framework, it is assumed that each sensor
has an internet flat rate of 1GB/month, a usual rate in many
cellular plans, and sends 3 packets of roughly 488 Kbyte
per hour. Such packets include the raw GNSS samples file
that will be executed and processed in the Cloud GNSS
receiver and the Cloud GNSS receiver will make a search of
8 satellites in 1 snapshot for each incoming packet. Therefore,
in this study case, each packet is a snapshot that will be
processed and the PVT can be computed for each independent
snapshot execution. So, taking advantage of parallel computing
in EC2 instances produces a monthly cost-effective solution,
as seen in Table III. A cost reduction up to 10.5% is achieved
when using parallelization, i.e. working with 8 threads, instead
of working with sequential processing, i.e. working with 1
thread, combined with a lower execution time with c4.2xlarge
instances. In addition, a cost reduction of 27% with c3.2xlarge
instances is obtained when using parallel computing. Thus, a
cost and execution time reduction is reached with the use of the
multiple vCPUs thanks to the Cloud GNSS software receiver
parallelization.

Nevertheless, if the execution time is not a parameter of
paramount importance, the user may prefer to exploit the EC2
instance resources implementing multiple executions at the
same time, e.g. 8 different executions (which in this case an
execution is equivalent to processing one snapshot) in parallel,
one for each thread. In such case, a cost reduction of the 26%
and 7% for c4.2xlarge and c3.2xlarge instances respectively
is accomplished. In any case, the price per month of the
EC2 service without performing parallelization is remarkably
low: $0.28 and $0.35 for c4.2xlarge and c3.2xlarge instances
respectively per sensor. Thus, the user must choose between
a faster execution time or slower execution time but cheaper
price per execution (or in this case, snapshot), as in the case of
c4.2xlarge instances. The obtained differences of cost reduc-
tion between both instances is due the speedup factor they offer
when implementing parallel computing. The obtained results
are highly scalable varying the number of packets (or snap-
shots in this study case) per hour: Monthly cost per sensor =
Cost per snapshot·Npackets ·24·30. For a deeper understand-
ing of how are packets generated and calculate their size, see
[2].

VI. CONCLUSION

This paper has presented the use of AWS for the implement-
ing a Cloud GNSS receiver. First of all, a study of the memory
requirements of a high-sensitivity GNSS software receiver has
been presented. With the obtained results, the use of assistance

GNSS data becomes mandatory if long correlations need to
be implemented. Next, we have observed that with the use of
parallel computing, we can achieve a remarkable improvement
in the execution time of high-sensitivity GNSS signal pro-
cessing, thus compensating the increase in computational time
due to the implementation of long correlations. Following this
approach we have implemented two different task parallelisms:
snapshot and satellite parallel execution. A larger reduction of
the execution time has been achieved with snapshot rather than
with satellite parallelization. In addition, we also have seen
that the use of assistance GNSS information reduces both the
required memory of the hypercube and the execution time.
Finally, an example has been provided for the monthly cost of
the EC2 services that are required by a Cloud GNSS receiver
periodically processing snapshots of GPS L1 C/A signals using
20 ms integration time. The application was circumscribed to
the context of GNSS sensors networks, and the resulting cost
was found to be below $1 using a fixed data plan with 1 GB
per month. Therefore, the results clearly confirm the feasibility
of implementing Cloud GNSS signal processing in real-life
applications.
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