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ABSTRACT  
 
Nowadays, Global Navigation Satellite Systems (GNSS) 
receivers are used in applications in which size, power or 
computational constraints are gradually becoming of 
paramount importance. Furthermore, new GNSS will be 
fully operational in the coming years, which will 
considerably increase the amount of data to be processed 

by the user receiver. Because of the constraints of current 
user GNSS receivers, the employment of Cloud 
computing has become an alternative for migrating the 
GNSS signal processing tasks into a distributed, scalable 
and high-performance computing platform. Therefore,  
the Cloud paradigm facilitates the possibility of 
developing innovative applications where their 
particularities (e.g. massive processing of data, 
cooperation among users, security-related applications, 
etc.) make them suitable for implementation using a 
cloud-based infrastructure. 
 
In this context, the purpose of this work is to introduce the 
concept of Cloud GNSS signal processing, based on the 
Cloud GNSS receiver proof-of-concept developed by the 
authors in collaboration with ESA. The focus will be 
placed on the Cloud GNSS receiver architecture, as well 
as on the performance evaluation of Elastic Compute 
Cloud (EC2) instances offered by Amazon Web Services 
(AWS). To do so, different tests on GNSS signal 
processing will be carried out along with the 
corresponding the cost of the EC2 service. 

INTRODUCTION 
 
In recent years the GNSS world is involved in an epoch of 
big changes with the future operability of new GNSS 
systems such as Galileo and BeiDou, in addition to 
already operable GNSS systems such as GPS or Glonass. 
These multiple GNSS will provide more than 40 visible 
satellites at a time (multi-constellation), which may solve 
different problems like harsh urban environments 
positioning or Geometric Dilution of Precision (GDOP). 
Nonetheless, the possibility of working with large number 
of satellites at the same time has the drawback of 
requiring the processing of a huge and overwhelming 
amount of data. To do so, an improvement of the 
computational requirements of GNSS receivers must be 
achieved. In addition, higher computational resources are 
translated in a higher power consumption receiver. 
 
On the other hand, all previously mentioned changes are 
in opposite direction with current user applications. This 
is the case of Internet of Things (IoT), Smart City and 
Machine-To-Machine (M2M) applications, which 
demand low cost, low power consumption and 
miniaturized devices. With these paramount 
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characteristics, devices are tending to have limited 
computational resources, which are not sufficient to 
perform GNSS signal processing tasks oriented to multi-
constellation. Furthermore, some user applications require 
advanced analyses that can exceed the receiver 
capabilities: authentication using regulated signals, 
liability-critical applications, crowdsourcing GNSS signal 
processing [1].  
 
Due to the unfeasibility of implementing low cost, low 
power consumption and miniaturized devices with high 
computing resources, this paper presents the Cloud GNSS 
receiver paradigm (Figure 1). In this concept, all the 
GNSS signal processing workload is migrated to high-
scalable and high-performance Cloud servers, which can 
provide nearly unlimited computing resources. In this 
manner, user terminals do not have to carry out any kind 
of GNSS signal processing tasks in the device itself. 
Instead, user terminals only need to gather the GNSS RF 
samples and send them to the Cloud. The Cloud GNSS 
receiver paradigm therefore allows the implementation of 
massive amount of data and sophisticated GNSS signal 
processing techniques without significantly increase the 
computational workload and energy consumption of the 
user terminal. Since the software receiver is allocated in 
Cloud servers, all user terminals can be easily upgraded at 
the same time applying all the required changes in the 
Cloud side.  
 

 
Figure 1 - Cloud-based GNSS receiver paradigm. 

 
The objective of the present work is to set forth the Cloud 
GNSS paradigm based on the Cloud GNSS receiver 
proof-of-concept developed by the authors in 
collaboration with ESA. In the Cloud computing section, 
an introduction to Cloud computing and the services used 
under the scope of this work offered by Amazon Web 
Services is made. Such services will set the basis to 
develop all necessary modules for the implementation of 
the Cloud GNSS receiver. Then, the three parts in which 
the Cloud GNSS concept is based, i.e. user terminal, 
front-end, and back-end, are described in the Cloud-based 
GNSS receiver architecture, emphasizing on the uplink 
and channel bandwidth matters. Next, the performance of 

manifold instance families will be tested under different 
workloads, helping the reader to be aware of which EC2 
instance is better for GNSS signal processing tasks and 
the price of using the service. Finally, in the last section 
conclusions are exposed. 
 
CLOUD COMPUTING 
 
Cloud computing is an internet-based computing platform 
which delivers on-demand IT resources and applications 
allowing users to pay per use: pay only for the resources 
and workload they are using. In the present years, Cloud 
computing technologies are becoming a reliable, secure, 
scalable and cheap way of using the newest IT 
technologies and migrating high-demanding tasks into 
high-performance computing platforms. Such Cloud 
platforms offer virtually unlimited computational power 
at low cost, making it an ideal solution for applications 
with massive amount users (or sensors). In that sense, 
Cloud technologies fit perfectly to be used as the back-
end part of a Cloud-based GNSS receiver as the one 
presented in this work, where all the GNSS signal 
processing tasks are carried out in the Cloud.  
 
There are three models of Cloud computing services: 
Software as a Service (SaaS), Platform as a Service 
(PaaS) and Infrastructure as a Service (IaaS) [2]. In the 
SaaS, software is hosted in the Cloud and accessible by 
internet and users do not have to worry about which 
resources or infrastructure is necessary to run the service 
they are using. That is the case presented in this work: the 
Cloud-based GNSS receiver. PaaS provides a 
development environment in the cloud. Thus, users do not 
need to install or configure any development software or 
environment to work with. Finally, the IaaS provides 
Virtual Machines (a machine that acts as a physical   
computing machine) to the users. With IaaS, users can 
create large computing clusters demanding all the IT 
resources as needed. 
 
On the other hand, the Cloud computing infrastructure of 
a SaaS can be divided in two sections: front-end and 
back-end. The front-end section is the side which is 
visible to the user, i.e. user interface, and can be accessed 
through a user terminal (computer or smartphone usually). 
Throughout this interface, the user can interact with the 
Cloud platform, service or application and attach all the 
required inputs, e.g. configuration, files, user credentials, 
etc. The back-end section is the side which is not visible 
to the user. In this section of the cloud infrastructure is 
where all the IT resources are allocated and the 
computational tasks are carried out. 
 
Cloud infrastructures can also be divided in four models 
depending on how the service model is implemented: 
private, public, community and hybrid Cloud. The private 
Cloud is a Cloud service dedicated for one single 
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organization. Public Cloud is completely open for general 
public and it is shared between all the public users. Then, 
community Cloud is an infrastructure shared between 
multiple organizations. Finally, hybrid Cloud is composed 
by multiple Cloud models, and can be public or private. 
 
These days, there is a wide variety of enterprises offering 
Cloud platform services such as Amazon Web Services, 
Google Cloud Platform, Stratosphere,  Microsoft Azure, 
Oracle, and so on. Such enterprises are offering Cloud 
services for organizations and individual users as well. In 
the context of this work, the goal of this paper is to open 
the door of Cloud computing to the reader, reviewing the 
main services and configurations offered, and in 
particular, for the development of a Cloud-based GNSS 
receiver. Nonetheless, the selection of one commercial 
Cloud platform in front of another is not further discussed 
in this paper. For the scope of this work, some of the 
services offered by AWS will be discussed and analyzed. 
 
Amazon Web Services 
 
Amazon Web Services (AWS) offers more than 70 cloud-
computing services (e.g. compute, storage, database, 
networking) that operates from multiple geographical 
locations, composed of regions and Availability Zones 

(AZ). These AZ are designed to be isolated from others, 
thus achieving better fault tolerance and stability. 
Resources can be allocated in multiple locations, which 
mean that in case of failure in an AZ, another one can 
handle the corresponding request without interrupting the 
Cloud service. Services can be controlled and configured 
through the Management Console or using a Software 
Development Kit (SDK) developed by AWS (e.g. Python, 
Ruby, JavaScript). It should be noticed that to automatize 
the system, it is preferable to program the infrastructure 
using the SDK tools.  
 
Some of these services can be of high interest for Cloud-
based positioning applications and in particular for 
implementing a Cloud-based GNSS receiver as the case 
study. 
 
Amazon Web Services: Elastic Compute Cloud 
 
The Elastic Compute Cloud (EC2) service forms the main 
part of AWS. It is a virtual computing environment that 
allows users to launch instances (Virtual Machine) 
providing scalable and re-sizable computing capacity. 
These instances or Virtual Machines are launched using a 
wide range of operating systems and loading custom 
application environments if necessary. EC2 provides a 

 
Table 1 - EC2 instance characteristics 

Model vCPU Memory 
(GB) 

Storage 
(GB) 

Physical 
Processors 

Clock Speed 
(GHz) 

Price 
($/hour) 

t2.nano 1 0.5 EBS Only Intel Xeon family up to 3.3 0.0075 
t2.micro 1 1 EBS Only Intel Xeon family up to 3.3 0.015 
t2.small 1 2 EBS Only Intel Xeon family up to 3.3 0.03 

t2.medim 2 4 EBS Only Intel Xeon family up to 3.3 0.06 
t2.large 2 8 EBS Only Intel Xeon family up to 3.3 0.12 

m4.large 2 8 EBS Only Intel Xeon E5-2676 v3 2.4 0.143 
m4.xlarge 4 16 EBS Only Intel Xeon E5-2676 v3 2.4 0.285 

m4.2xlarge 8 32 EBS Only Intel Xeon E5-2676 v3 2.4 0.57 
m4.4xlarge 16 64 EBS Only Intel Xeon E5-2676 v3 2.4 1.14 
m4.10xlarge 40 160 EBS Only Intel Xeon E5-2676 v3 2.4 2.85 
m3.medium 1 3.75 1x4 SSD Intel Xeon E5-2670 v2 2.5 0.079 

m3.large 2 7.5 1x32 SSD Intel Xeon E5-2670 v2 2.5 0.158 
m3.xlarge 4 15 2x40 SSD Intel Xeon E5-2670 v2 2.5 0.315 

m3.2xlarge 8 30 2x80 SSD Intel Xeon E5-2670 v2 2.5 0.632 
c4.large 2 3.75 EBS Only Intel Xeon E5-2666 v3 2.9 0.134 
c4.xlarge 4 7.8 EBS Only Intel Xeon E5-2666 v3 2.9 0.267 

c4.2xlarge 8 15 EBS Only Intel Xeon E5-2666 v3 2.9 0.534 
c4.4xlarge 16 30 EBS Only Intel Xeon E5-2666 v3 2.9 1.069 
c4.8xlarge 36 60 EBS Only Intel Xeon E5-2666 v3 2.9 2.138 

c3.large 2 3.75 2x16 SSD Intel Xeon E5-2680 v2 2.8 0.129 
c3.xlarge 4 7.5 2x40 SSD Intel Xeon E5-2680 v2 2.8 0.258 

c3.2xlarge 8 15 2x80 SSD Intel Xeon E5-2680 v2 2.8 0.516 
c3.4xlarge 16 30 2x160 SSD Intel Xeon E5-2680 v2 2.8 1.032 
c3.8xlarge 32 60 2x320 SSD Intel Xeon E5-2680 v2 2.8 2.064 

r3.large 2 16 1x32 SSD Intel Xeon E5-2670 v2 2.5 0.2 
r3.xlarge 4 30.5 1x80 SSD Intel Xeon E5-2670 v2 2.5 0.4 
r3.2xlarge 8 61 1x160 SSD Intel Xeon E5-2670 v2 2.5 0.8 
r3.4xlarge 16 122 1x320 SSD Intel Xeon E5-2670 v2 2.5 1.6 
r3.8xlarge 32 224 2x320 SSD Intel Xeon E5-2670 v2 2.5 3.201 
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wide catalog of instances types and models comprising 
multiple combinations of CPU, RAM, storage and 
network capacity.  
 
At high level, the AWS instances can be divided into two 
main types: burstable and fixed performance instances. 
The former provide a baseline level of CPU performance 
with the ability to burst above the baseline. That baseline   
performance and ability to burst are governed by CPU 
Credits [3], which are received continuously depending 
on the instance size. Burstable instances (e.g. T2) 
accumulate CPU credits while they are idle, and use CPU 
credits when they are active. Thus, burstable instances are 
suitable for applications or workloads which do not 
require the full CPU consistently (e.g. web servers, 
databases). In contrast, fixed performance instances (e.g. 
M3, C3, R3, C4) do offer consistent CPU performance. 
Therefore, fixed performance instances are better suited 
for workloads that require intensive and consistence CPU 
performances, protecting the user from the variable 
performance of the instance. 
 
A summary of instances types that are offered by AWS 
[3] and are on the scope of this work is provided in Table 
1. It should be noticed that the price per hour of the 
instances is not fixed and can vary from the ones showed 
in this work (e.g. the price vary depending on the 
Availabilty Zone where launching the instance). 
Furthermore, the price of the different EC2 instances 
depends on the region it is launched. In Table 1, the 
displayed prices are referred to the EU (Frankfurt) region. 
As it can be seen, a large range of CPU, memory and 
storage combinations is available for the user. Thus, the 
selection of the right instance depends on the computing 
requirements of the application or workload. For example, 
T2 instances are suited for applications which do not 
require a consistent CPU performance such as web 
servers or small databases; C4 instances are of high 
interest for multiple Cloud-based GNSS applications 
thank to their CPU cores, e.g. fast executions with low 
integration times; R3 instances are suited for Cloud 
applications that require an extensive amount of data to be 
processed, e.g. executions which require long integration 
times in high-sensitivity techniques. 
 
For launching a new instance the user must introduce 
some configuration parameters such as the selection of the 
Amazon Machine Image (AMI), the type of instance, the 
desired storage, security group and the key pair. An AMI 
is a packed-up environment that includes all the necessary 
OS and software to set up and boot the instance. There are 
multiple AMI templates (e.g. private, public, self-created, 
in the AWS marketplace) that are provided by AWS. Self-
created AMIs are of high interest when creating clusters 
of cloned instances. They can be simply created by 
making and image or snapshot (that will be stored in the 
Elastic Block Storage service) of an instance from the 

Manager Console. Thus, when launching a new instance 
as users makes requests and more computational power is 
required, the instance will be a copy of the cloned 
instance, which means that they will be ready to process 
the incoming workloads just after booting the SO. 
Therefore, when launching an instance, the id of the 
desired AMI must be attached. Then, the type of the 
instance must be chosen (Table 1) together with the size 
of any additional storage if necessary. Afterward, the 
configuration of the Security Group is made. A security 
group is a set of firewall rules that control the traffic of 
your instance. Hence, rules can be added to allow any 
specific traffic to reach the instance (e.g. SSH, HTTP/S). 
These security groups can also be easily created through 
the Manager Console. Finally, a selection of an existing 
key pair or creation of a new one must be done. A key 
pair consists of a public key that AWS stores and a 
private key file the user stores. Together, both keys allow 
the user to connect to the instance securely (e.g. SSH). 
This process can also be carried out in the Manager 
Console. 
 
Amazon Web Services: Elastic Bloc Storage 
 
The Elastic Block Storage (EBS) provides persistent 
block level storage volumes for use with EC2 instances. 
That means that created storage volumes (e.g. snapshots 
of instances) can be attached to instances. Such snapshots, 
as explained before, can be used to initiate new instances, 
expand the volume size of a working instance, or move 
the volume across different AZ. On the other hand, some 
instances storage is based on EBS (e.g. T2, M4) instead of 
HDD or SDD. For the first snapshot of a volume, Amazon 
EBS saves a full copy of your data to Amazon Simple 
Storage Service. For this case, the price of the service in 
the EU (Frankfurt) region is of $0.054 per GB-month of 
data stored. Hence, the creation of AMIs and storage of 
the corresponding EBS volume allows the user to clone 
instances in a time and cost-effective way.  
 
Amazon Web Services: Simple Storage Service 
 
Amazon Simple Storage Service (S3) provides a secure, 
durable and high-scalable Cloud storage. With this 
service, data with a maximum size of 5 TB can be stored, 
written, read and deleted as resources, i.e. buckets. In the 
Cloud GNSS receiver, S3 is used to store the user’s input 
data (e.g. raw GNSS samples file, JSON, RINEX). This 
process is carried out uploading the files from the EC2 
instance that works as the front-end (web server) to the S3 
repository. To do so, the user must be connected to the 
corresponding S3 repository and create a key including 
the name of the file. Afterwards, the selected file can be 
uploaded pointing to the generated key. The same process 
is carried out to download objects from S3 to EC2. The 
data transfer speed between EC2 instances and S3 (in 
both directions) is one of the most outstanding 
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characteristic this service offers: roughly 14 MB/s, 
together with a low rate of $0.032 per GB approximately. 
 
Amazon Web Services: Simple Queue Service 
 
The Simple Queue Service (SQS) is a fast, reliable, 
scalable, fully managed message queuing service, making 
easy to decouple the components of a Cloud applications, 
e.g. front-end and back-end. With this service, an 
unlimited number of queues with an unlimited number of 
messages can be created at low rate: first 1 million SQS 
requests per month are free, after which requests have a 
rate of $0.0000005. Request can include from 1 to a 
maximum of 10 messages and a maximum total payload 
of 256 KB. Each chunk of 64 KB of payload is billed as 1 
request. That is to say, the maximum payload of 256 KB 
is formed by four requests. Furthermore, messages can 
also have attributes of different kind, i.e. string, number 
or binary, which is useful to provide structured metadata 
items about the message itself.  
 
For the sake of clarity a brief summary of when and how 
use SQS is provided as follows. In the scope of this work, 
this service has been used to connect the front-end 
interface (web server) with the back-end (core of the 
Cloud GNSS receiver). Thereby, when a user sends an 
execution to the Cloud, a JSON message is generated with 
all the required input data and sent to a SQS queue. Then, 
a resource manager is in charge of read those and sent 
them to the corresponding back-end instance. Finally, the 
back-end instance read the message and performs the 
execution requested by the user. In order to read and send 
messages, the user must be connected to the SQS service 
through the SQS management console or an instance. 
Then, the queue to get connection with must be selected. 
Finally, the message is sent by adding the body, attributes 

if needed and the previous selected queue. 
 
CLOUD-BASED GNSS RECEIVER 
ARCHITECTURE 
 
In previous sections the basic blocks, i.e. EC2, SQS, S3, 
and EBS services, to develop a Cloud GNSS receiver 
have been explained. In this section we will describe the 
architecture of an experimental Cloud-based GNSS 
receiver developed in collaboration with ESA. This proof-
of-concept receiver has been successfully tested with real 
GNSS data gathered with an USRP N200 and applying 
different types of workloads. In Figure 2 is displayed the 
block diagram of the developed Cloud GNSS receiver [1]. 
From a high-level perspective, it is composed of three 
main blocks: the Cloud user terminal, the Cloud front-
end, i.e. user interface, and the cloud back-end. 
 

 
Figure 2 - Cloud-based GNSS receiver architecture 

[1]. 
 

 
Table 2 - SDRs comparison 

SDR Model Frequency range ADC resolution Bandwidth Rx/Tx Price 
USRP N200  DC – 6 GHz 14 bits 100 MHz Rx & Tx $1795.10 
LimeSDR 100 kHz – 3.8 GHz 12 bits 61.44 MHz Rx & Tx $289 

RTL-SDR Donger 500 kHz – 1.7 GHz 8 bits 3.2 MHz Rx $20 
HackRF One 1 MHz – 6 GHz 8 bits 20 MHz Rx & Tx $299 
BladeRF x40 300 MHz – 3.8 GHz 12 bits 40 MHz Rx & Tx $420 

Airspy R2 24 – 1800 MHz 12 bits 10 MHz Rx $199 
 
 

Table 3 – Raw GNSS samples file size 
GNSS Band Fs Quantization Tsignal Chunk size Packets per hour 

(1GB/month) 
GPS L1 C/A 4 MHz 2 2 ms 1.95 Kbyte 746.85 
GPS L1 C/A 5 MHz 16 40 ms 390.6 Kbyte 3.73 

Galileo E1B 8 MHz 2 8 ms 15.6 Kbyte 93.36 
Galileo E1C 8 MHz 2 100 ms 195.3 Kbyte 7.46 
Galileo E5a data 100 MHz 2 20 ms 488.3 Kbyte 3 
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Cloud user terminal 
 
One of the blocks that form the Cloud GNSS receiver 
architecture is the user terminal. It is composed of three 
main elements: a RF front-end (not to be confused with 
the Cloud front-end) that works at the GNSS frequency 
band of interest, a data grabber that digitizes the GNSS 
signals, and a communication module to interact and send 
the captured GNSS signal to the Cloud GNSS receiver.  
 
Table 2 presents some of the Software Defined Radio 
(SDRs) products which are available in the market. Such 
SDRs can work as GNSS RF front-end and data grabber, 
and in some cases, they can even work as communication 
module. 
 
Nevertheless, as explained in the Introduction section, the 
advent of Smart City, IoT and M2M applications will 
drive devices to be miniaturized and with low power 
consumption [4], where SDRs are not the best option for 
such applications. Instead, cheap, small and low 
consuming sensors should be used in order to capture, 
digitize and sent the raw GNSS sample file to the Cloud 
GNSS receiver where it would be processed with virtually 
unlimited computing capacity. In this manner, the 
creation of a sensor network of GNSS receivers would be 
very cheap because there is not GNSS signal processing 
in the sensor itself. The data transfer can be carried out 
through the communication module using different 
technologies. In that sense, 3GPP has developed different 
standards that address to the IoT market and is suitable for 
the Cloud GNSS receiver concept: eMTC, NB-IOT and 
EC-GSM-IoT [5]. The former supplies LTE in-band 
coverage of roughly 155.7 dB bandwidth of 1.08 MHz 
and a peak rate of 1 Mbps both in downlink and uplink. 
NB-IOT provides LTE in- and guard-band coverage of 
approximately 164 dB, bandwidth of 180 kHz and a peak 
rate of 250 kbps for downlink and uplink with multi-tone 
or roughly 20 kbps with single tone. The latter supplies 
GSM in-band coverage of 154-164 dB depending on the 
power class, a bandwidth of 200 kHz per channel, and a 
peak rate of 70 kbps both for uplink and downlink using 
GMSK or 240 kbps using 8PSK. The coverage of the 
mentioned 3GPP standards uses the Maximum Coupling 
Loss (MCL) methodology: the coupling loss is defined as 
the total long-term channel loss over the link between the 
UE antenna ports and the antenna ports, and includes in 
practice antenna gains, path loss, shadowing, body loss, 
etc. The MCL is the limit value of the coupling loss at 
which the service can be delivered, and therefore defines 
the coverage of the service. The MCL is independent of 
the carrier frequency [6]. 
 
Other information of paramount importance that the user 
should consider is the size of the raw GNSS samples file 
to be sent from the receiver to the Cloud, which is directly 
related to the channel bandwidth required for  

transmission. In Table 3 is shown the required chunk size 
to process different GNSS signals with the necessary 
sampling frequency (real samples), the quantization of the 
file and the signal time length. The chunk size can be 
obtained as: 
 
𝐶ℎ𝑢𝑛𝑘	𝑠𝑖𝑧𝑒 = 𝑇-./012 · 𝐹- · 𝑄𝑢𝑎𝑛𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛 (1) 

 
Nonetheless, the user has to face the tradeoff of choosing 
between a short signal length and a small chunk size. This 
is because as the signal length increases, so does the 
chunk size, as shown in Equation (1). Furthermore, as the 
signal length decreases, the sensitivity of the receiver 
worsens. Thus, the C/N0 must be higher in order to 
acquire the satellites [7]. For the sake of the clarity, in 
Table 3 is also shown for each of the cases the number of 
packets that could be sent per hour having a 1 GB/month 
flat rate, which is usual nowadays in many cellular plans. 
This rate of packets per hour would be suitable for the 
previously mentioned 3GPP standards eMTC, NB-IOT 
and EC-GSM-IoT. Therefore, the required channel 
bandwidth is not a potential showstopper for the 
transmission of raw GNSS samples files to the Cloud-
based GNSS receiver, since it is just a matter of sending 
more or less packets per hour.  
 
Cloud front-end 
 
The front-end is the interface with which the user can 
interact with the Cloud GNSS receiver and the back-end. 
It is based on a Ruby on Rails webpage where users can 
log in and manage their new or current execution through 
their own private desktop using the HTTP/S service.  
When launching a new execution, the process is divided 
in three steps with which the user can configure the GNSS 
software receiver parameters as needed: 

1) Raw Samples Settings. The first step is targeted to 
the raw GNSS samples file. The file can be uploaded 
to the Cloud through a file located at the user’s 
terminal (e.g. computer, smartphone), selecting a 
previously uploaded file or giving an URL (e.g. 
Dropbox, Drive, FTP), in such case the file is 
automatically downloaded by the Cloud GNSS 
Receiver. As explained in Amazon Web Services: 
Simple Storage Service, files are automatically 
transferred to the S3 repository from the EC2 
instance where the front-end is working. In addition, 
the user must attach information about the raw 
GNSS samples file in order to allow the Cloud-
based GNSS receiver to work with the file, e.g. read, 
down-convert. Such information reflects how the 
raw GNSS samples file was captured and digitized: 
sampling frequency, front-end bandwidth, 
intermediate frequency, delay, sample format, 
encoding and quantization of the file. This 
information can also be attached within an ION SDR 
GNSS metadata standard XML file [8], that is 

39



defined in terms of core metadata classes as shown 
in Figure 3. The objective of using such metadata 
files is to facilitate the interoperability between 
SDRs and GNSS receivers and to standardize all 
metadata related with the capture of raw GNSS 
sample file [9].  

2) Receiver Settings. In the second step the 
configuration of the GNSS software receiver is 
made. Thanks to this, the user can select which kind 
of analysis wants to perform with parameters such as 
GNSS signal and band of interest, the integration 
time, number of snapshot, near-far detection, PVT 
computation, etc. These parameters will determine 
the required computing time and resources in the 
back-end. 

3) Assistance Settings. The last step purpose is to give 
the receiver all the necessary assistance information. 
Hence, the user has to attach a list of satellites to be 
searched. In addition, a list with the Doppler of the 
satellites the user wants to search can be also 
attached. This information is of interest when the 
user wants to speed up the execution, as it will be 
seen in EC2 instance performance in Cloud GNSS 
signal processing. Finally, if the computation of the 
PVT was enabled in the previous step, a RINEX 
(Receiver Independent Exchange Format) file must 
be attached. Such RINEX file can be uploaded to the 
Cloud either using a local file, a URL or let the 
Cloud GNSS receiver download it automatically 
from a list of available GNSS Data Center (GDC) 
giving the date the raw GNSS samples file was 
created and a station close to the location it was 
taken.  

 
After filling the required information in the above steps, 
the execution can be launched and managed through the 
private desktop of the user. Finally, the execution is sent 
to the Cloud back-end SQS queue as a JSON message 
where will be handled and processed. 

 
Figure 3 - Summary of the ION SDR metadata classes 

[8]. 
 

Cloud back-end 
 
Back-end EC2 instances are the bulk of the Cloud GNSS 
receiver architecture and where all the GNSS signal 
processing and computational tasks are carried out. 
Instances are based on the High-Sensitivity (HS) GNSS 
software receiver developed in the framework of the ESA 
funded project DINGPOS (Signal Processing Techniques 
and Demonstrator for Indoor GNSS Positioning) [10], 
[11]. It is a snapshot-based receiver compatible with GPS 
L1/L5 and Galileo E1C/E5a. One of the major assets of 
this software receiver is the capability of providing C/N0 
sensitivity down to 15 dBHz, implementing long 
integration times using advanced non-coherent 
integrations, implementing near-far and multipath 
detection as well as interference mitigation techniques. 
Hence, the Cloud GNSS receiver is suitable for 
processing extremely weak signals using long integration 
times, acquiring signals under multipath or adverse signal 
conditions, e.g. indoor conditions [7].  
 
Once the JSON message with all the configuration 
parameters of the previously mentioned steps is sent to 
the SQS queue, a resource manager is in charge of 
reading the SQS message and sending it to the 
corresponding back-end EC2 instance to be processed and 
executed. The choice of the back-end EC2 instance to 
perform the execution is determined by the workload of 
the current running instances, which can be managed by 
monitoring software such as Ganglia, Nagios or the 
Amazon CloudWatch Service. In case there is not enough 
room to launch an execution in the running instances, a 
new instance is initiated. Instances are booted with a pre-
configured image (snapshot) previously generated using 
the Elastic Block Service of AWS with the HS-GNSS 
software receiver and all the other required software. 
Thus, new launched instances are ready to work just after 
being booted.  
 
Lastly, after finishing the execution, a report in PDF 
format is generated with the obtained results by the 
software receiver and is sent to the user’s email address. 
The report provides: results at signal level, i.e. correlation 
peak power, C/N0 and Doppler frequency; results at 
observable level if the PVT computing is enabled, i.e. 
estimated Time of Week (TOW), 2D projection onto 
north-east axis, map screenshot with the position with 
different zoom approaches and a polar plot of the visible 
satellites; multipath analysis, i.e. estimated C/N0 values 
and Slope Asymmetry Metric (SAM); and a data log with 
the obtained numeric results.  
 
EC2 INSTANCE PERFORMANCE IN CLOUD 
GNSS SIGNAL PROCESSING 
 
In previous sections, an introduction to the wide 
collection of EC2 instances offered by AWS has been 
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provided and related with the Cloud-based GNSS receiver 
architecture. Next, a performance assessment of the 
m3.medium, c3.large, m4.large, r3.large, c4.xlarge, 
c4.8xlarge, and t2.small instances according to relative 
execution time will be presented. t2.small instance results 
can differ depending on the number of running t2 
instances, due their burstable behavior. In this sense, this 
paper aims at presenting the performance results of 
different instances under three workload cases: different 
number of frequency bins when searching the Doppler 
frequency of the satellites, different integration times, and 
different number of satellites to be acquired. Thanks to 
this, we can get the notion of which instance, whose 
characteristics are presented in Table 1, is better to use 
depending on the kind of workload to be carried out. 
Based on these results, in EC2 service cost section a study 
of the most cost-effective instance for a typical execution 
is made. 
 
The test results have been performed with the following 
raw GNSS samples file parameters: 

§ GNSS signal: GPS L1 C/A 
§ Chunk size: 400 Kbyte 
§ Sampling frequency: 5 MHz  
§ Quantization: 16 bits 
§ Signal length: 40 ms 
§ Number of snapshots: 1 

 
In the first test case, the integration time is set to 20 ms, a 
search of 5 satellites is made, and the number of 
frequency bins to be performed when searching the 
Doppler frequency of the satellites to be acquired is 
varied from -5 kHz to +5 kHz in steps of 1 kHz with a 
frequency resolution of ±500 Hz, a mandatory step when 
there is no assistance data available. The number of 
frequency search (𝑁𝑓) can be obtained as shown in 
Equation (2), which depends on the maximum frequency 
error the user wants to search (𝐹;1<). In case of attaching 
the assistance GNSS data, the software receiver 
implements a single search only, at the proper frequency 
indicated by the assistance data. In that case, 𝑁𝑓 is equal 
to 1. The reader should be aware that as the number of 
frequency bins decreases, also does the possibility to 
acquire satellites due the lower range of the Doppler 
frequency search.  
 

𝑁𝑓 = 	𝑟𝑜𝑢𝑛𝑑
𝐹;1<		
1	𝑘𝐻𝑧

· 2 + 1 
(2) 
 

 
In Figure 4 we show the obtained results for this test, all 
of them normalized at the faster execution of 3.57 
seconds. It can be seen that the faster instances are the 
c4.8xlarge and the c4.xlarge, and the slower one is the 
m3.medium, a condition that is repeated in the different 
performed workloads during this section. The execution 
time of the process of this study of case can be obtained 
as: 

 

𝑇C<CD ≅ 𝑇FGGHI 	
𝐹;1<	[𝐻𝑧]
500

 
(3) 
  

  
Where 𝑇FGGHI is the time needed for processing 5 
satellites with a frequency search of 𝐹;1< = 500	𝐻𝑧. 
Meaning that approximately every time the number of 
frequency bins is doubled, so does the execution time (i.e. 
processing a frequency search of 4000 Hz needs twice the 
time than processing a 2000 Hz search).   

 
Figure 4- Relative execution time with different 

frequency bins. 
 
Then, in the second study of case, the number of satellites 
to be searched is equal to 5, and the integration time is 
varied in three steps: 20, 40 and 100 ms. In addition, the 
same tests have been performed enabling (red part of the 
bar) and disabling (colored part of the bar) the assistance 
GNSS data, in such case the frequency bin search has 
been set from -4000 Hz to +4000 Hz. At first sight, 
looking at Figure 5, where the relative execution time has 
been normalized at 1.75 seconds, it is spotted that using 
assistance information reduces the execution time 
considerably: roughly between 15-20 times depending on 
the instance family. Consequently, in order to speed up 
the execution it is highly recommended to give the 
assistance information. In case of not having assistance 
GNSS information, the increase of the execution time can 
be obtained as in Equation (4), where 𝑇NG;-OPQRSPTT is 
the time needed for an execution with 20 ms of 
integration time without using assistance information. If 
the user attaches the assistance GNSS information, the 
increase can be calculated with the Equation (5), where 
𝑇NG;-ORSPTT is the time needed for an execution with 20 
ms of integration time using assistance GNSS data. 
 

𝑇C<CD ≅ 𝑇NG;-OPQRSPTT + 𝑇NG;-OPQRSPTT · 0.47	
𝑇.0X	[𝑚𝑠]

20
− 1	  (4) 

  

𝑇C<CD ≅ 𝑇NG;-ORSPTT + 𝑇NG;-ORSPTT · 0.37	
𝑇.0X	[𝑚𝑠]

20
− 1  (5) 
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Figure 5 - Relative execution time with different 

integration time. 
 
Finally, in the third and last case of study, the integration 
time is fixed to 20 ms and the execution has been 
implemented searching 1, 2 and 5 satellites. In addition, 
as in the previous case, the test has been carried out 
enabling the assistance GNSS data (red bar) and disabling 
the assistance information (colored bar), in which case the 
frequency bin search has been set up from -4000 Hz to 
+4000 Hz. The obtained results are shown in Figure 6, 
where we can clearly see how the use of assistance GNSS 
data reduces the execution time from roughly 10 to 20 
times as the number of satellites to be searched increases. 
When the user does not use any assistance information, 
the execution time can be obtained through Equation (6), 

where 𝑇\-1XOPQRSPTT is the execution time needed for 
processing 1 satellite without using assistance GNSS data. 
That is to say, the execution time can be calculated 
multiplying the time needed to search one satellite by the 
total number of satellites to be searcher. On the other 
hand, when the user attaches assistance GNSS data, the 
execution time depending on the number of satellites can 
be calculated using Equation (7), where 𝑇\-1XORSPTT is the 
execution time for processing 1 satellite using assistance 
information. 

𝑇C<CD ≅ 𝑇\]^_`abcdaee · 𝑛-1X 
 
(6) 

 
  

𝑇C<CD ≅ 𝑇\]^_`cdaee + 𝑇\]^_`cdaee · 0.35	 𝑛-1X − 1  (7) 

  

 
Figure 6 - Relative execution time with different 

number of satellites. 
 
In the three cases of study performed so far, we have seen 
that the fastest instances are the c4.xlarge and the 
c4.8xlarge, while the slowest one seems to be the 
m3.medium. Moreover, we have also seen that using 
assistance data reduces the execution time considerably, 
which is translated in a lower cost per execution. 
 
EC2 service cost 
In EC2 instance performance in Cloud GNSS signal 

processing, we have seen which instances are faster and 
better suited to perform GNSS signal processing tasks. In 
this section, we will study which is the more cost-
effective instance and what is the cost of using these 
instances as part of the Cloud GNSS receiver.  
 
Table 4 depicts the EC2 service cost with the following 
receiver configuration: 

§ GNSS signal: GPS L1 C/A 
§ Chunk size: 400 Kbyte 
§ Sampling frequency: 5 MHz  
§ Quantization: 16 bits 

 
Table 4 - EC2 instances cost. 

Model vCPU Memory 
(GB) 

Price per hour 
(EU-Frankfurt) 

Executions 
per 

hour 

Price per 
execution  

 

Price per 
month 

m3.medium 1 3.75 $0.079 618.56 $0.000128 $0.34 
c3.large 2 3.75 $0.129 1814.74 $0.000071 $0.19 
m4.large 2 8 $0.143 2147.65 $0.000067 $0.18 
r3.large 2 15 $0.2 2060.44 $0.000097 $0.26 

c4.xlarge 4 7.5 $0.267 5971.04 $0.000045 $0.12 
c4.8xlarge 36 60 $2.138 44720.50 $0.000048 $0.13 

t2.small 1 2 $0.03 1490.31 $0.000020 $0.05 
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§ Signal length: 40 ms 
§ Number of snapshots: 1 
§ Integration time: 20 ms 
§ Assistance-GNSS: Enabled 
§ Number of satellites: 5 
§ Snapshots per hour: 3.73 

 
T2.small offers the best price per execution, but the 
burstable behavior of the T2 instance family makes it not 
appropriate for GNSS signal processing workloads. Even 
with their higher price per hour, c4.xlarge and c4.8xlarge 
instances provides the lower price per execution and price 
per month (for a single user terminal with 3.73 packets 
per hour to be processed, including the computation of the 
PVT for each snapshot) for fixed performance instances 
thanks to their computing capabilities.  
 
In this manner, we can see that if the resource manager 
optimizes the use of the EC2 instances, the price per 
month of the overall service is quite low: ~ $0.1 - $0.3 
depending on the instance type. That means that the price 
for the use of the Cloud GNSS receiver is low enough to 
be properly considered to be implemented in 
miniaturized, low powered and low energy consumption 
devices (e.g. IoT, Smart City).  
 
CONCLUSION 
 
This paper has given an introduction to the use of Cloud 
computing infrastructures such as Amazon Web Services 
for the development of a Cloud GNSS receiver. We have 
described some of the services offered by AWS which are 
convenient for GNSS signal processing, highlighting the 
use of the EC2 service. The notion of migrating GNSS 
signal processing workloads to the Cloud is of special 
interest for many applications which require of 
computational demanding techniques. Then, the 
architecture of a Cloud GNSS receiver developed by the 
authors in collaboration with ESA has been presented. A 
summary of SDRs products to be used as user terminal 
together with different 3GPP standards for IoT 
applications has been provided. Thanks to this, we have 
seen that the necessary channel bandwidth for the 
communication between the user terminal and the Cloud 
is feasible with current 3GPP standards. Next, the front-
end and back-end elements of the Cloud GNSS receiver 
have been described. Then, a study of the EC2 instance 
performance for GNSS signal processing tasks has been 
made with three different study cases, obtaining 
quantitative expressions for the calculus of the required 
execution time depending on the execution configuration. 
Finally, the EC2 service cost has been calculated to 
demonstrate the feasibility of developing and using a 
Cloud GNSS receiver as the solution for miniaturized, 
low powered and low energy consumption devices. 
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