
Demonstration of Cloud GNSS Signal Processing

V. Lucas-Sabola, G. Seco-Granados, J. A. López-Salcedo, Universitat Autònoma de Barcelona (UAB), Spain;
J.A. Garcia-Molina, European Space Agency (ESA/ESTEC), TEC-ETN, and HE Space, The Netherlands

M. Crisci, ESA, The Netherlands

BIOGRAPHY

Vicente Lucas-Sabola received the B.Sc. in
Telecommunication Systems Engineering in 2015 from
Universitat Autònoma de Barcelona (UAB). Currently, he
is a M.Sc. student in Telecommunication Engineering and
research assistant at the SPCOMNAV group of UAB.

Gonzalo Seco-Granados holds a PhD degree from Univ.
Politecnica de Catalunya (UPC) and an MBA from IESE,
Universidad de Navarra. Since 2006, he is associate prof.
at the Dept of Telecom. Eng. of UAB and head of the
SPCOMNAV group.

José A. López-Salcedo received the M.Sc. and Ph.D.
degrees in Telecommunication Engineering in 2001 and
2007 from UPC. He joined UAB and the SPCOMNAV
group as an assistant prof. in 2006, and since 2013 he is
an associate prof.

José A. García-Molina is Radio Navigation engineer at
ESA/ESTEC in Noordwijk, The Netherlands, where he
leads several R&D activities on GNSS receiver
technology for ground and space applications. His main
research interests include signal processing, estimation
theory, GNSS receivers and signals, and cloud positioning
applications.

Massimo Crisci is the head of Radio Navigation Systems
and Techniques Section at the ESA. He is the technical
domain responsible for the field of radionavigation and
the head of a team of engineers providing radionavigation
expert support to the various ESA programs (EGNOS and
Galileo included). He holds a Ph.D. in automatics and
operations research from the University of Bologna and a
Master’s degree in electronics engineering from
University of Ferrara.

ABSTRACT

Nowadays, Global Navigation Satellite Systems (GNSS)
receivers are used in applications in which size, power or
computational constraints are gradually becoming of
paramount importance. Furthermore, new GNSS will be
fully operational in the coming years, which will
considerably increase the amount of data to be processed

by the user receiver. Because of the constraints of current
user GNSS receivers, the employment of Cloud
computing has become an alternative for migrating the
GNSS signal processing tasks into a distributed, scalable
and high-performance computing platform. Therefore,
the Cloud paradigm facilitates the possibility of
developing innovative applications where their
particularities (e.g. massive processing of data,
cooperation among users, security-related applications,
etc.) make them suitable for implementation using a
cloud-based infrastructure.

In this context, the purpose of this work is to introduce the
concept of Cloud GNSS signal processing, based on the
Cloud GNSS receiver proof-of-concept developed by the
authors in collaboration with ESA. The focus will be
placed on the Cloud GNSS receiver architecture, as well
as on the performance evaluation of Elastic Compute
Cloud (EC2) instances offered by Amazon Web Services
(AWS). To do so, different tests on GNSS signal
processing will be carried out along with the
corresponding the cost of the EC2 service.

INTRODUCTION

In recent years the GNSS world is involved in an epoch of
big changes with the future operability of new GNSS
systems such as Galileo and BeiDou, in addition to
already operable GNSS systems such as GPS or Glonass.
These multiple GNSS will provide more than 40 visible
satellites at a time (multi-constellation), which may solve
different problems like harsh urban environments
positioning or Geometric Dilution of Precision (GDOP).
Nonetheless, the possibility of working with large number
of satellites at the same time has the drawback of
requiring the processing of a huge and overwhelming
amount of data. To do so, an improvement of the
computational requirements of GNSS receivers must be
achieved. In addition, higher computational resources are
translated in a higher power consumption receiver.

On the other hand, all previously mentioned changes are
in opposite direction with current user applications. This
is the case of Internet of Things (IoT), Smart City and
Machine-To-Machine (M2M) applications, which
demand low cost, low power consumption and
miniaturized devices. With these paramount

Proceedings of the 29th International Technical Meeting of the ION Satellite
Division, ION GNSS+ 2016, Portland, Oregon, September 12-16, 2016

34

characteristics, devices are tending to have limited
computational resources, which are not sufficient to
perform GNSS signal processing tasks oriented to multi-
constellation. Furthermore, some user applications require
advanced analyses that can exceed the receiver
capabilities: authentication using regulated signals,
liability-critical applications, crowdsourcing GNSS signal
processing [1].

Due to the unfeasibility of implementing low cost, low
power consumption and miniaturized devices with high
computing resources, this paper presents the Cloud GNSS
receiver paradigm (Figure 1). In this concept, all the
GNSS signal processing workload is migrated to high-
scalable and high-performance Cloud servers, which can
provide nearly unlimited computing resources. In this
manner, user terminals do not have to carry out any kind
of GNSS signal processing tasks in the device itself.
Instead, user terminals only need to gather the GNSS RF
samples and send them to the Cloud. The Cloud GNSS
receiver paradigm therefore allows the implementation of
massive amount of data and sophisticated GNSS signal
processing techniques without significantly increase the
computational workload and energy consumption of the
user terminal. Since the software receiver is allocated in
Cloud servers, all user terminals can be easily upgraded at
the same time applying all the required changes in the
Cloud side.

Figure 1 - Cloud-based GNSS receiver paradigm.

The objective of the present work is to set forth the Cloud
GNSS paradigm based on the Cloud GNSS receiver
proof-of-concept developed by the authors in
collaboration with ESA. In the Cloud computing section,
an introduction to Cloud computing and the services used
under the scope of this work offered by Amazon Web
Services is made. Such services will set the basis to
develop all necessary modules for the implementation of
the Cloud GNSS receiver. Then, the three parts in which
the Cloud GNSS concept is based, i.e. user terminal,
front-end, and back-end, are described in the Cloud-based
GNSS receiver architecture, emphasizing on the uplink
and channel bandwidth matters. Next, the performance of

manifold instance families will be tested under different
workloads, helping the reader to be aware of which EC2
instance is better for GNSS signal processing tasks and
the price of using the service. Finally, in the last section
conclusions are exposed.

CLOUD COMPUTING

Cloud computing is an internet-based computing platform
which delivers on-demand IT resources and applications
allowing users to pay per use: pay only for the resources
and workload they are using. In the present years, Cloud
computing technologies are becoming a reliable, secure,
scalable and cheap way of using the newest IT
technologies and migrating high-demanding tasks into
high-performance computing platforms. Such Cloud
platforms offer virtually unlimited computational power
at low cost, making it an ideal solution for applications
with massive amount users (or sensors). In that sense,
Cloud technologies fit perfectly to be used as the back-
end part of a Cloud-based GNSS receiver as the one
presented in this work, where all the GNSS signal
processing tasks are carried out in the Cloud.

There are three models of Cloud computing services:
Software as a Service (SaaS), Platform as a Service
(PaaS) and Infrastructure as a Service (IaaS) [2]. In the
SaaS, software is hosted in the Cloud and accessible by
internet and users do not have to worry about which
resources or infrastructure is necessary to run the service
they are using. That is the case presented in this work: the
Cloud-based GNSS receiver. PaaS provides a
development environment in the cloud. Thus, users do not
need to install or configure any development software or
environment to work with. Finally, the IaaS provides
Virtual Machines (a machine that acts as a physical
computing machine) to the users. With IaaS, users can
create large computing clusters demanding all the IT
resources as needed.

On the other hand, the Cloud computing infrastructure of
a SaaS can be divided in two sections: front-end and
back-end. The front-end section is the side which is
visible to the user, i.e. user interface, and can be accessed
through a user terminal (computer or smartphone usually).
Throughout this interface, the user can interact with the
Cloud platform, service or application and attach all the
required inputs, e.g. configuration, files, user credentials,
etc. The back-end section is the side which is not visible
to the user. In this section of the cloud infrastructure is
where all the IT resources are allocated and the
computational tasks are carried out.

Cloud infrastructures can also be divided in four models
depending on how the service model is implemented:
private, public, community and hybrid Cloud. The private
Cloud is a Cloud service dedicated for one single

35

organization. Public Cloud is completely open for general
public and it is shared between all the public users. Then,
community Cloud is an infrastructure shared between
multiple organizations. Finally, hybrid Cloud is composed
by multiple Cloud models, and can be public or private.

These days, there is a wide variety of enterprises offering
Cloud platform services such as Amazon Web Services,
Google Cloud Platform, Stratosphere, Microsoft Azure,
Oracle, and so on. Such enterprises are offering Cloud
services for organizations and individual users as well. In
the context of this work, the goal of this paper is to open
the door of Cloud computing to the reader, reviewing the
main services and configurations offered, and in
particular, for the development of a Cloud-based GNSS
receiver. Nonetheless, the selection of one commercial
Cloud platform in front of another is not further discussed
in this paper. For the scope of this work, some of the
services offered by AWS will be discussed and analyzed.

Amazon Web Services

Amazon Web Services (AWS) offers more than 70 cloud-
computing services (e.g. compute, storage, database,
networking) that operates from multiple geographical
locations, composed of regions and Availability Zones

(AZ). These AZ are designed to be isolated from others,
thus achieving better fault tolerance and stability.
Resources can be allocated in multiple locations, which
mean that in case of failure in an AZ, another one can
handle the corresponding request without interrupting the
Cloud service. Services can be controlled and configured
through the Management Console or using a Software
Development Kit (SDK) developed by AWS (e.g. Python,
Ruby, JavaScript). It should be noticed that to automatize
the system, it is preferable to program the infrastructure
using the SDK tools.

Some of these services can be of high interest for Cloud-
based positioning applications and in particular for
implementing a Cloud-based GNSS receiver as the case
study.

Amazon Web Services: Elastic Compute Cloud

The Elastic Compute Cloud (EC2) service forms the main
part of AWS. It is a virtual computing environment that
allows users to launch instances (Virtual Machine)
providing scalable and re-sizable computing capacity.
These instances or Virtual Machines are launched using a
wide range of operating systems and loading custom
application environments if necessary. EC2 provides a

Table 1 - EC2 instance characteristics

Model vCPU Memory
(GB)

Storage
(GB)

Physical
Processors

Clock Speed
(GHz)

Price
($/hour)

t2.nano 1 0.5 EBS Only Intel Xeon family up to 3.3 0.0075
t2.micro 1 1 EBS Only Intel Xeon family up to 3.3 0.015
t2.small 1 2 EBS Only Intel Xeon family up to 3.3 0.03

t2.medim 2 4 EBS Only Intel Xeon family up to 3.3 0.06
t2.large 2 8 EBS Only Intel Xeon family up to 3.3 0.12

m4.large 2 8 EBS Only Intel Xeon E5-2676 v3 2.4 0.143
m4.xlarge 4 16 EBS Only Intel Xeon E5-2676 v3 2.4 0.285

m4.2xlarge 8 32 EBS Only Intel Xeon E5-2676 v3 2.4 0.57
m4.4xlarge 16 64 EBS Only Intel Xeon E5-2676 v3 2.4 1.14
m4.10xlarge 40 160 EBS Only Intel Xeon E5-2676 v3 2.4 2.85
m3.medium 1 3.75 1x4 SSD Intel Xeon E5-2670 v2 2.5 0.079

m3.large 2 7.5 1x32 SSD Intel Xeon E5-2670 v2 2.5 0.158
m3.xlarge 4 15 2x40 SSD Intel Xeon E5-2670 v2 2.5 0.315

m3.2xlarge 8 30 2x80 SSD Intel Xeon E5-2670 v2 2.5 0.632
c4.large 2 3.75 EBS Only Intel Xeon E5-2666 v3 2.9 0.134
c4.xlarge 4 7.8 EBS Only Intel Xeon E5-2666 v3 2.9 0.267

c4.2xlarge 8 15 EBS Only Intel Xeon E5-2666 v3 2.9 0.534
c4.4xlarge 16 30 EBS Only Intel Xeon E5-2666 v3 2.9 1.069
c4.8xlarge 36 60 EBS Only Intel Xeon E5-2666 v3 2.9 2.138

c3.large 2 3.75 2x16 SSD Intel Xeon E5-2680 v2 2.8 0.129
c3.xlarge 4 7.5 2x40 SSD Intel Xeon E5-2680 v2 2.8 0.258

c3.2xlarge 8 15 2x80 SSD Intel Xeon E5-2680 v2 2.8 0.516
c3.4xlarge 16 30 2x160 SSD Intel Xeon E5-2680 v2 2.8 1.032
c3.8xlarge 32 60 2x320 SSD Intel Xeon E5-2680 v2 2.8 2.064

r3.large 2 16 1x32 SSD Intel Xeon E5-2670 v2 2.5 0.2
r3.xlarge 4 30.5 1x80 SSD Intel Xeon E5-2670 v2 2.5 0.4
r3.2xlarge 8 61 1x160 SSD Intel Xeon E5-2670 v2 2.5 0.8
r3.4xlarge 16 122 1x320 SSD Intel Xeon E5-2670 v2 2.5 1.6
r3.8xlarge 32 224 2x320 SSD Intel Xeon E5-2670 v2 2.5 3.201

36

wide catalog of instances types and models comprising
multiple combinations of CPU, RAM, storage and
network capacity.

At high level, the AWS instances can be divided into two
main types: burstable and fixed performance instances.
The former provide a baseline level of CPU performance
with the ability to burst above the baseline. That baseline
performance and ability to burst are governed by CPU
Credits [3], which are received continuously depending
on the instance size. Burstable instances (e.g. T2)
accumulate CPU credits while they are idle, and use CPU
credits when they are active. Thus, burstable instances are
suitable for applications or workloads which do not
require the full CPU consistently (e.g. web servers,
databases). In contrast, fixed performance instances (e.g.
M3, C3, R3, C4) do offer consistent CPU performance.
Therefore, fixed performance instances are better suited
for workloads that require intensive and consistence CPU
performances, protecting the user from the variable
performance of the instance.

A summary of instances types that are offered by AWS
[3] and are on the scope of this work is provided in Table
1. It should be noticed that the price per hour of the
instances is not fixed and can vary from the ones showed
in this work (e.g. the price vary depending on the
Availabilty Zone where launching the instance).
Furthermore, the price of the different EC2 instances
depends on the region it is launched. In Table 1, the
displayed prices are referred to the EU (Frankfurt) region.
As it can be seen, a large range of CPU, memory and
storage combinations is available for the user. Thus, the
selection of the right instance depends on the computing
requirements of the application or workload. For example,
T2 instances are suited for applications which do not
require a consistent CPU performance such as web
servers or small databases; C4 instances are of high
interest for multiple Cloud-based GNSS applications
thank to their CPU cores, e.g. fast executions with low
integration times; R3 instances are suited for Cloud
applications that require an extensive amount of data to be
processed, e.g. executions which require long integration
times in high-sensitivity techniques.

For launching a new instance the user must introduce
some configuration parameters such as the selection of the
Amazon Machine Image (AMI), the type of instance, the
desired storage, security group and the key pair. An AMI
is a packed-up environment that includes all the necessary
OS and software to set up and boot the instance. There are
multiple AMI templates (e.g. private, public, self-created,
in the AWS marketplace) that are provided by AWS. Self-
created AMIs are of high interest when creating clusters
of cloned instances. They can be simply created by
making and image or snapshot (that will be stored in the
Elastic Block Storage service) of an instance from the

Manager Console. Thus, when launching a new instance
as users makes requests and more computational power is
required, the instance will be a copy of the cloned
instance, which means that they will be ready to process
the incoming workloads just after booting the SO.
Therefore, when launching an instance, the id of the
desired AMI must be attached. Then, the type of the
instance must be chosen (Table 1) together with the size
of any additional storage if necessary. Afterward, the
configuration of the Security Group is made. A security
group is a set of firewall rules that control the traffic of
your instance. Hence, rules can be added to allow any
specific traffic to reach the instance (e.g. SSH, HTTP/S).
These security groups can also be easily created through
the Manager Console. Finally, a selection of an existing
key pair or creation of a new one must be done. A key
pair consists of a public key that AWS stores and a
private key file the user stores. Together, both keys allow
the user to connect to the instance securely (e.g. SSH).
This process can also be carried out in the Manager
Console.

Amazon Web Services: Elastic Bloc Storage

The Elastic Block Storage (EBS) provides persistent
block level storage volumes for use with EC2 instances.
That means that created storage volumes (e.g. snapshots
of instances) can be attached to instances. Such snapshots,
as explained before, can be used to initiate new instances,
expand the volume size of a working instance, or move
the volume across different AZ. On the other hand, some
instances storage is based on EBS (e.g. T2, M4) instead of
HDD or SDD. For the first snapshot of a volume, Amazon
EBS saves a full copy of your data to Amazon Simple
Storage Service. For this case, the price of the service in
the EU (Frankfurt) region is of $0.054 per GB-month of
data stored. Hence, the creation of AMIs and storage of
the corresponding EBS volume allows the user to clone
instances in a time and cost-effective way.

Amazon Web Services: Simple Storage Service

Amazon Simple Storage Service (S3) provides a secure,
durable and high-scalable Cloud storage. With this
service, data with a maximum size of 5 TB can be stored,
written, read and deleted as resources, i.e. buckets. In the
Cloud GNSS receiver, S3 is used to store the user’s input
data (e.g. raw GNSS samples file, JSON, RINEX). This
process is carried out uploading the files from the EC2
instance that works as the front-end (web server) to the S3
repository. To do so, the user must be connected to the
corresponding S3 repository and create a key including
the name of the file. Afterwards, the selected file can be
uploaded pointing to the generated key. The same process
is carried out to download objects from S3 to EC2. The
data transfer speed between EC2 instances and S3 (in
both directions) is one of the most outstanding

37

characteristic this service offers: roughly 14 MB/s,
together with a low rate of $0.032 per GB approximately.

Amazon Web Services: Simple Queue Service

The Simple Queue Service (SQS) is a fast, reliable,
scalable, fully managed message queuing service, making
easy to decouple the components of a Cloud applications,
e.g. front-end and back-end. With this service, an
unlimited number of queues with an unlimited number of
messages can be created at low rate: first 1 million SQS
requests per month are free, after which requests have a
rate of $0.0000005. Request can include from 1 to a
maximum of 10 messages and a maximum total payload
of 256 KB. Each chunk of 64 KB of payload is billed as 1
request. That is to say, the maximum payload of 256 KB
is formed by four requests. Furthermore, messages can
also have attributes of different kind, i.e. string, number
or binary, which is useful to provide structured metadata
items about the message itself.

For the sake of clarity a brief summary of when and how
use SQS is provided as follows. In the scope of this work,
this service has been used to connect the front-end
interface (web server) with the back-end (core of the
Cloud GNSS receiver). Thereby, when a user sends an
execution to the Cloud, a JSON message is generated with
all the required input data and sent to a SQS queue. Then,
a resource manager is in charge of read those and sent
them to the corresponding back-end instance. Finally, the
back-end instance read the message and performs the
execution requested by the user. In order to read and send
messages, the user must be connected to the SQS service
through the SQS management console or an instance.
Then, the queue to get connection with must be selected.
Finally, the message is sent by adding the body, attributes

if needed and the previous selected queue.

CLOUD-BASED GNSS RECEIVER
ARCHITECTURE

In previous sections the basic blocks, i.e. EC2, SQS, S3,
and EBS services, to develop a Cloud GNSS receiver
have been explained. In this section we will describe the
architecture of an experimental Cloud-based GNSS
receiver developed in collaboration with ESA. This proof-
of-concept receiver has been successfully tested with real
GNSS data gathered with an USRP N200 and applying
different types of workloads. In Figure 2 is displayed the
block diagram of the developed Cloud GNSS receiver [1].
From a high-level perspective, it is composed of three
main blocks: the Cloud user terminal, the Cloud front-
end, i.e. user interface, and the cloud back-end.

Figure 2 - Cloud-based GNSS receiver architecture

[1].

Table 2 - SDRs comparison

SDR Model Frequency range ADC resolution Bandwidth Rx/Tx Price
USRP N200 DC – 6 GHz 14 bits 100 MHz Rx & Tx $1795.10
LimeSDR 100 kHz – 3.8 GHz 12 bits 61.44 MHz Rx & Tx $289

RTL-SDR Donger 500 kHz – 1.7 GHz 8 bits 3.2 MHz Rx $20
HackRF One 1 MHz – 6 GHz 8 bits 20 MHz Rx & Tx $299
BladeRF x40 300 MHz – 3.8 GHz 12 bits 40 MHz Rx & Tx $420

Airspy R2 24 – 1800 MHz 12 bits 10 MHz Rx $199

Table 3 – Raw GNSS samples file size
GNSS Band Fs Quantization Tsignal Chunk size Packets per hour

(1GB/month)
GPS L1 C/A 4 MHz 2 2 ms 1.95 Kbyte 746.85
GPS L1 C/A 5 MHz 16 40 ms 390.6 Kbyte 3.73

Galileo E1B 8 MHz 2 8 ms 15.6 Kbyte 93.36
Galileo E1C 8 MHz 2 100 ms 195.3 Kbyte 7.46
Galileo E5a data 100 MHz 2 20 ms 488.3 Kbyte 3

38

Cloud user terminal

One of the blocks that form the Cloud GNSS receiver
architecture is the user terminal. It is composed of three
main elements: a RF front-end (not to be confused with
the Cloud front-end) that works at the GNSS frequency
band of interest, a data grabber that digitizes the GNSS
signals, and a communication module to interact and send
the captured GNSS signal to the Cloud GNSS receiver.

Table 2 presents some of the Software Defined Radio
(SDRs) products which are available in the market. Such
SDRs can work as GNSS RF front-end and data grabber,
and in some cases, they can even work as communication
module.

Nevertheless, as explained in the Introduction section, the
advent of Smart City, IoT and M2M applications will
drive devices to be miniaturized and with low power
consumption [4], where SDRs are not the best option for
such applications. Instead, cheap, small and low
consuming sensors should be used in order to capture,
digitize and sent the raw GNSS sample file to the Cloud
GNSS receiver where it would be processed with virtually
unlimited computing capacity. In this manner, the
creation of a sensor network of GNSS receivers would be
very cheap because there is not GNSS signal processing
in the sensor itself. The data transfer can be carried out
through the communication module using different
technologies. In that sense, 3GPP has developed different
standards that address to the IoT market and is suitable for
the Cloud GNSS receiver concept: eMTC, NB-IOT and
EC-GSM-IoT [5]. The former supplies LTE in-band
coverage of roughly 155.7 dB bandwidth of 1.08 MHz
and a peak rate of 1 Mbps both in downlink and uplink.
NB-IOT provides LTE in- and guard-band coverage of
approximately 164 dB, bandwidth of 180 kHz and a peak
rate of 250 kbps for downlink and uplink with multi-tone
or roughly 20 kbps with single tone. The latter supplies
GSM in-band coverage of 154-164 dB depending on the
power class, a bandwidth of 200 kHz per channel, and a
peak rate of 70 kbps both for uplink and downlink using
GMSK or 240 kbps using 8PSK. The coverage of the
mentioned 3GPP standards uses the Maximum Coupling
Loss (MCL) methodology: the coupling loss is defined as
the total long-term channel loss over the link between the
UE antenna ports and the antenna ports, and includes in
practice antenna gains, path loss, shadowing, body loss,
etc. The MCL is the limit value of the coupling loss at
which the service can be delivered, and therefore defines
the coverage of the service. The MCL is independent of
the carrier frequency [6].

Other information of paramount importance that the user
should consider is the size of the raw GNSS samples file
to be sent from the receiver to the Cloud, which is directly
related to the channel bandwidth required for

transmission. In Table 3 is shown the required chunk size
to process different GNSS signals with the necessary
sampling frequency (real samples), the quantization of the
file and the signal time length. The chunk size can be
obtained as:

𝐶ℎ𝑢𝑛𝑘	𝑠𝑖𝑧𝑒 = 𝑇-./012 · 𝐹- · 𝑄𝑢𝑎𝑛𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛 (1)

Nonetheless, the user has to face the tradeoff of choosing
between a short signal length and a small chunk size. This
is because as the signal length increases, so does the
chunk size, as shown in Equation (1). Furthermore, as the
signal length decreases, the sensitivity of the receiver
worsens. Thus, the C/N0 must be higher in order to
acquire the satellites [7]. For the sake of the clarity, in
Table 3 is also shown for each of the cases the number of
packets that could be sent per hour having a 1 GB/month
flat rate, which is usual nowadays in many cellular plans.
This rate of packets per hour would be suitable for the
previously mentioned 3GPP standards eMTC, NB-IOT
and EC-GSM-IoT. Therefore, the required channel
bandwidth is not a potential showstopper for the
transmission of raw GNSS samples files to the Cloud-
based GNSS receiver, since it is just a matter of sending
more or less packets per hour.

Cloud front-end

The front-end is the interface with which the user can
interact with the Cloud GNSS receiver and the back-end.
It is based on a Ruby on Rails webpage where users can
log in and manage their new or current execution through
their own private desktop using the HTTP/S service.
When launching a new execution, the process is divided
in three steps with which the user can configure the GNSS
software receiver parameters as needed:

1) Raw Samples Settings. The first step is targeted to
the raw GNSS samples file. The file can be uploaded
to the Cloud through a file located at the user’s
terminal (e.g. computer, smartphone), selecting a
previously uploaded file or giving an URL (e.g.
Dropbox, Drive, FTP), in such case the file is
automatically downloaded by the Cloud GNSS
Receiver. As explained in Amazon Web Services:
Simple Storage Service, files are automatically
transferred to the S3 repository from the EC2
instance where the front-end is working. In addition,
the user must attach information about the raw
GNSS samples file in order to allow the Cloud-
based GNSS receiver to work with the file, e.g. read,
down-convert. Such information reflects how the
raw GNSS samples file was captured and digitized:
sampling frequency, front-end bandwidth,
intermediate frequency, delay, sample format,
encoding and quantization of the file. This
information can also be attached within an ION SDR
GNSS metadata standard XML file [8], that is

39

defined in terms of core metadata classes as shown
in Figure 3. The objective of using such metadata
files is to facilitate the interoperability between
SDRs and GNSS receivers and to standardize all
metadata related with the capture of raw GNSS
sample file [9].

2) Receiver Settings. In the second step the
configuration of the GNSS software receiver is
made. Thanks to this, the user can select which kind
of analysis wants to perform with parameters such as
GNSS signal and band of interest, the integration
time, number of snapshot, near-far detection, PVT
computation, etc. These parameters will determine
the required computing time and resources in the
back-end.

3) Assistance Settings. The last step purpose is to give
the receiver all the necessary assistance information.
Hence, the user has to attach a list of satellites to be
searched. In addition, a list with the Doppler of the
satellites the user wants to search can be also
attached. This information is of interest when the
user wants to speed up the execution, as it will be
seen in EC2 instance performance in Cloud GNSS
signal processing. Finally, if the computation of the
PVT was enabled in the previous step, a RINEX
(Receiver Independent Exchange Format) file must
be attached. Such RINEX file can be uploaded to the
Cloud either using a local file, a URL or let the
Cloud GNSS receiver download it automatically
from a list of available GNSS Data Center (GDC)
giving the date the raw GNSS samples file was
created and a station close to the location it was
taken.

After filling the required information in the above steps,
the execution can be launched and managed through the
private desktop of the user. Finally, the execution is sent
to the Cloud back-end SQS queue as a JSON message
where will be handled and processed.

Figure 3 - Summary of the ION SDR metadata classes

[8].

Cloud back-end

Back-end EC2 instances are the bulk of the Cloud GNSS
receiver architecture and where all the GNSS signal
processing and computational tasks are carried out.
Instances are based on the High-Sensitivity (HS) GNSS
software receiver developed in the framework of the ESA
funded project DINGPOS (Signal Processing Techniques
and Demonstrator for Indoor GNSS Positioning) [10],
[11]. It is a snapshot-based receiver compatible with GPS
L1/L5 and Galileo E1C/E5a. One of the major assets of
this software receiver is the capability of providing C/N0
sensitivity down to 15 dBHz, implementing long
integration times using advanced non-coherent
integrations, implementing near-far and multipath
detection as well as interference mitigation techniques.
Hence, the Cloud GNSS receiver is suitable for
processing extremely weak signals using long integration
times, acquiring signals under multipath or adverse signal
conditions, e.g. indoor conditions [7].

Once the JSON message with all the configuration
parameters of the previously mentioned steps is sent to
the SQS queue, a resource manager is in charge of
reading the SQS message and sending it to the
corresponding back-end EC2 instance to be processed and
executed. The choice of the back-end EC2 instance to
perform the execution is determined by the workload of
the current running instances, which can be managed by
monitoring software such as Ganglia, Nagios or the
Amazon CloudWatch Service. In case there is not enough
room to launch an execution in the running instances, a
new instance is initiated. Instances are booted with a pre-
configured image (snapshot) previously generated using
the Elastic Block Service of AWS with the HS-GNSS
software receiver and all the other required software.
Thus, new launched instances are ready to work just after
being booted.

Lastly, after finishing the execution, a report in PDF
format is generated with the obtained results by the
software receiver and is sent to the user’s email address.
The report provides: results at signal level, i.e. correlation
peak power, C/N0 and Doppler frequency; results at
observable level if the PVT computing is enabled, i.e.
estimated Time of Week (TOW), 2D projection onto
north-east axis, map screenshot with the position with
different zoom approaches and a polar plot of the visible
satellites; multipath analysis, i.e. estimated C/N0 values
and Slope Asymmetry Metric (SAM); and a data log with
the obtained numeric results.

EC2 INSTANCE PERFORMANCE IN CLOUD
GNSS SIGNAL PROCESSING

In previous sections, an introduction to the wide
collection of EC2 instances offered by AWS has been

40

provided and related with the Cloud-based GNSS receiver
architecture. Next, a performance assessment of the
m3.medium, c3.large, m4.large, r3.large, c4.xlarge,
c4.8xlarge, and t2.small instances according to relative
execution time will be presented. t2.small instance results
can differ depending on the number of running t2
instances, due their burstable behavior. In this sense, this
paper aims at presenting the performance results of
different instances under three workload cases: different
number of frequency bins when searching the Doppler
frequency of the satellites, different integration times, and
different number of satellites to be acquired. Thanks to
this, we can get the notion of which instance, whose
characteristics are presented in Table 1, is better to use
depending on the kind of workload to be carried out.
Based on these results, in EC2 service cost section a study
of the most cost-effective instance for a typical execution
is made.

The test results have been performed with the following
raw GNSS samples file parameters:

§ GNSS signal: GPS L1 C/A
§ Chunk size: 400 Kbyte
§ Sampling frequency: 5 MHz
§ Quantization: 16 bits
§ Signal length: 40 ms
§ Number of snapshots: 1

In the first test case, the integration time is set to 20 ms, a
search of 5 satellites is made, and the number of
frequency bins to be performed when searching the
Doppler frequency of the satellites to be acquired is
varied from -5 kHz to +5 kHz in steps of 1 kHz with a
frequency resolution of ±500 Hz, a mandatory step when
there is no assistance data available. The number of
frequency search (𝑁𝑓) can be obtained as shown in
Equation (2), which depends on the maximum frequency
error the user wants to search (𝐹;1<). In case of attaching
the assistance GNSS data, the software receiver
implements a single search only, at the proper frequency
indicated by the assistance data. In that case, 𝑁𝑓 is equal
to 1. The reader should be aware that as the number of
frequency bins decreases, also does the possibility to
acquire satellites due the lower range of the Doppler
frequency search.

𝑁𝑓 = 	𝑟𝑜𝑢𝑛𝑑
𝐹;1<		
1	𝑘𝐻𝑧

· 2 + 1
(2)

In Figure 4 we show the obtained results for this test, all
of them normalized at the faster execution of 3.57
seconds. It can be seen that the faster instances are the
c4.8xlarge and the c4.xlarge, and the slower one is the
m3.medium, a condition that is repeated in the different
performed workloads during this section. The execution
time of the process of this study of case can be obtained
as:

𝑇C<CD ≅ 𝑇FGGHI 	
𝐹;1<	[𝐻𝑧]
500

(3)

Where 𝑇FGGHI is the time needed for processing 5
satellites with a frequency search of 𝐹;1< = 500	𝐻𝑧.
Meaning that approximately every time the number of
frequency bins is doubled, so does the execution time (i.e.
processing a frequency search of 4000 Hz needs twice the
time than processing a 2000 Hz search).

Figure 4- Relative execution time with different

frequency bins.

Then, in the second study of case, the number of satellites
to be searched is equal to 5, and the integration time is
varied in three steps: 20, 40 and 100 ms. In addition, the
same tests have been performed enabling (red part of the
bar) and disabling (colored part of the bar) the assistance
GNSS data, in such case the frequency bin search has
been set from -4000 Hz to +4000 Hz. At first sight,
looking at Figure 5, where the relative execution time has
been normalized at 1.75 seconds, it is spotted that using
assistance information reduces the execution time
considerably: roughly between 15-20 times depending on
the instance family. Consequently, in order to speed up
the execution it is highly recommended to give the
assistance information. In case of not having assistance
GNSS information, the increase of the execution time can
be obtained as in Equation (4), where 𝑇NG;-OPQRSPTT is
the time needed for an execution with 20 ms of
integration time without using assistance information. If
the user attaches the assistance GNSS information, the
increase can be calculated with the Equation (5), where
𝑇NG;-ORSPTT is the time needed for an execution with 20
ms of integration time using assistance GNSS data.

𝑇C<CD ≅ 𝑇NG;-OPQRSPTT + 𝑇NG;-OPQRSPTT · 0.47	
𝑇.0X	[𝑚𝑠]

20
− 1	 (4)

𝑇C<CD ≅ 𝑇NG;-ORSPTT + 𝑇NG;-ORSPTT · 0.37	
𝑇.0X	[𝑚𝑠]

20
− 1 (5)

41

Figure 5 - Relative execution time with different

integration time.

Finally, in the third and last case of study, the integration
time is fixed to 20 ms and the execution has been
implemented searching 1, 2 and 5 satellites. In addition,
as in the previous case, the test has been carried out
enabling the assistance GNSS data (red bar) and disabling
the assistance information (colored bar), in which case the
frequency bin search has been set up from -4000 Hz to
+4000 Hz. The obtained results are shown in Figure 6,
where we can clearly see how the use of assistance GNSS
data reduces the execution time from roughly 10 to 20
times as the number of satellites to be searched increases.
When the user does not use any assistance information,
the execution time can be obtained through Equation (6),

where 𝑇\-1XOPQRSPTT is the execution time needed for
processing 1 satellite without using assistance GNSS data.
That is to say, the execution time can be calculated
multiplying the time needed to search one satellite by the
total number of satellites to be searcher. On the other
hand, when the user attaches assistance GNSS data, the
execution time depending on the number of satellites can
be calculated using Equation (7), where 𝑇\-1XORSPTT is the
execution time for processing 1 satellite using assistance
information.

𝑇C<CD ≅ 𝑇\]^_`abcdaee · 𝑛-1X

(6)

𝑇C<CD ≅ 𝑇\]^_`cdaee + 𝑇\]^_`cdaee · 0.35	 𝑛-1X − 1 (7)

Figure 6 - Relative execution time with different

number of satellites.

In the three cases of study performed so far, we have seen
that the fastest instances are the c4.xlarge and the
c4.8xlarge, while the slowest one seems to be the
m3.medium. Moreover, we have also seen that using
assistance data reduces the execution time considerably,
which is translated in a lower cost per execution.

EC2 service cost
In EC2 instance performance in Cloud GNSS signal

processing, we have seen which instances are faster and
better suited to perform GNSS signal processing tasks. In
this section, we will study which is the more cost-
effective instance and what is the cost of using these
instances as part of the Cloud GNSS receiver.

Table 4 depicts the EC2 service cost with the following
receiver configuration:

§ GNSS signal: GPS L1 C/A
§ Chunk size: 400 Kbyte
§ Sampling frequency: 5 MHz
§ Quantization: 16 bits

Table 4 - EC2 instances cost.

Model vCPU Memory
(GB)

Price per hour
(EU-Frankfurt)

Executions
per

hour

Price per
execution

Price per
month

m3.medium 1 3.75 $0.079 618.56 $0.000128 $0.34
c3.large 2 3.75 $0.129 1814.74 $0.000071 $0.19
m4.large 2 8 $0.143 2147.65 $0.000067 $0.18
r3.large 2 15 $0.2 2060.44 $0.000097 $0.26

c4.xlarge 4 7.5 $0.267 5971.04 $0.000045 $0.12
c4.8xlarge 36 60 $2.138 44720.50 $0.000048 $0.13

t2.small 1 2 $0.03 1490.31 $0.000020 $0.05

42

§ Signal length: 40 ms
§ Number of snapshots: 1
§ Integration time: 20 ms
§ Assistance-GNSS: Enabled
§ Number of satellites: 5
§ Snapshots per hour: 3.73

T2.small offers the best price per execution, but the
burstable behavior of the T2 instance family makes it not
appropriate for GNSS signal processing workloads. Even
with their higher price per hour, c4.xlarge and c4.8xlarge
instances provides the lower price per execution and price
per month (for a single user terminal with 3.73 packets
per hour to be processed, including the computation of the
PVT for each snapshot) for fixed performance instances
thanks to their computing capabilities.

In this manner, we can see that if the resource manager
optimizes the use of the EC2 instances, the price per
month of the overall service is quite low: ~ $0.1 - $0.3
depending on the instance type. That means that the price
for the use of the Cloud GNSS receiver is low enough to
be properly considered to be implemented in
miniaturized, low powered and low energy consumption
devices (e.g. IoT, Smart City).

CONCLUSION

This paper has given an introduction to the use of Cloud
computing infrastructures such as Amazon Web Services
for the development of a Cloud GNSS receiver. We have
described some of the services offered by AWS which are
convenient for GNSS signal processing, highlighting the
use of the EC2 service. The notion of migrating GNSS
signal processing workloads to the Cloud is of special
interest for many applications which require of
computational demanding techniques. Then, the
architecture of a Cloud GNSS receiver developed by the
authors in collaboration with ESA has been presented. A
summary of SDRs products to be used as user terminal
together with different 3GPP standards for IoT
applications has been provided. Thanks to this, we have
seen that the necessary channel bandwidth for the
communication between the user terminal and the Cloud
is feasible with current 3GPP standards. Next, the front-
end and back-end elements of the Cloud GNSS receiver
have been described. Then, a study of the EC2 instance
performance for GNSS signal processing tasks has been
made with three different study cases, obtaining
quantitative expressions for the calculus of the required
execution time depending on the execution configuration.
Finally, the EC2 service cost has been calculated to
demonstrate the feasibility of developing and using a
Cloud GNSS receiver as the solution for miniaturized,
low powered and low energy consumption devices.

ACKNOWLEDGMENTS

The views presented in this paper represent solely the
opinion of the authors and not necessarily the view of
ESA. This work was partly supported by the Spanish
Government under grant TEC2014-53656-R and by the
European Space Agency (ESA) under contract No.
4000113891/15/NL/HK.

REFERENCES

[1] V. Lucas-Sabola, G. Seco-Granados, J. A. López-

Salcedo, J. A. García-Molina, and M. Crisci,
“Cloud GNSS receivers: New advanced
applications made possible,” in Proc.
International Conference on Localization and
GNSS (ICL-GNSS), 2016.

[2] A. Gajbhiye and K. M. P. D. Shrivastva, “Cloud
computing: Need, enabling technology,
architecture, advantages and challenges,” Proc.
5th Int. Conf. Conflu. 2014 Next Gener. Inf.
Technol. Summit, pp. 1–7, 2014.

[3] Amazon Web Services, “Amazon Web Services
Cloud Products,” in https://aws.amazon.com.

[4] O. Vermesan and P. Friess, Internet of Things:
Converging Technologies for Smart Environments
and Integrated Ecosystems. 2013.

[5] D. Fiore and Qualcomm Technologies Inc.,
“3GPP Standards for the Internet-of-Things,” in
GSMA IoT, 2016.

[6] 3rd generation Partnership Project, “3gpp tr
36.824,” 2012.

[7] G. Seco-Granados, J. a López-Salcedo, D.
Jiménez-Baños, and G. López-Risueño,
“Challenges in Indoor Global Navigation Satellite
Systems,” IEEE Signal Process. Mag., no.
February, pp. 108–131, 2012.

[8] ION GNSS SDR Metadata Working Group,
“Global Navigation Satellite Systems Software
Defined Radio sampled data metadata standard,”
The Institute of Navigation, Revision 0.1, 2015.

[9] S. Gunawardena and T. Pnay, “GNSS SDR
Metadata Standard Working Group Report,” in
Proc. ION GNSS+, 2015, pp. 3218–3221.

[10] J. López-Salcedo, Y. Capelle, M. Toledo, G.
Seco, J. López Vicario, D. Kubrak, M. Monnerat,
A. Mark, and D. Jiménez, “DINGPOS: a hybrid
indoor navigation platform for GPS and
GALILEO,” 21st Int. Tech. Meet. Satell. Div.
Inst. Navig. (ION GNSS 2008), vol. 2, pp. 1780–
1791, 2008.

[11] J. A. López-Salcedo and G. Seco-Granados,
“Datasheet of the DINGPOS HS-GNSS Software
Receiver,” in SPCOMNAV-UAB,
http://spcomnav.uab.es/docs/projects/datasheet_
HSGNSS-SPCOMNAV.pdf.

43

