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Abstract—In Global Navigation Satellite Systems, receivers
have to cope with ionospheric scintillation, which is of paramount
importance for high-precision positioning applications. However,
the design of robust carrier tracking techniques under these
condition still remains an open problem. The time-varying cor-
related scintillation phase can be modeled as an AR(p) process,
whose linear nature fits very well into the linear Kalman filter
formulation and can be embedded into its architecture. State-of-
the-art techniques stand for fixed architectures optimized for very
specific scenarios, namely the KF-AR(1). In this paper, a new
adaptive KF-AR(p) approach with new implementations with
high order AR models (AR-2, AR-3) is proposed so as to match
better the input scintillation time series in time-varying scenarios,
which also include the presence of AWGN noise. Simulation
results are provided to show the enhanced performance and
adaptability in these scenarios compared to previous approaches
such as the standard Kalman filter and the KF-AR(1).

I. INTRODUCTION

Carrier tracking is one of the nuclear tasks to be carried

out in a GNSS receiver, and the exploitation of carrier phase

measurements is of paramount importance for high-precision

positioning applications, since they do provide ultraprecise

positioning information. So far, most of the existing GNSS

receivers are implementing carrier tracking using the well-

known phase-locked loop (PLL) technique [1]. However, de-

spite its maturity and widespread deployment, conventional

PLL techniques are facing new challenges due to the increas-

ing need of extending the use of GNSS receivers beyond the

limits of their original open-sky designs. On the one hand,

this is a result of the commercial push for providing ubiquitous

positioning capabilities to user mobile terminals. This involves

moving GNSS receivers to the urban and soft-indoor arena,

where propagation impairments and time-varying working

conditions abound. On the other hand, the expansion of

GNSS in emerging countries has unveiled the need to cope

with ionospheric scintillation, which is a frequent impairment

in equatorial regions [2] and poses serious concerns to the

widespread deployment of GNSS in those areas.

Conventional PLL-based carrier tracking is known to expe-

rience serious troubles in the presence of the above-mentioned

challenges. However, PLL techniques are known to be nothing
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but a particularization of the Kalman filter [3], which is well-

known to outperform the previous techniques. The Kalman

filter makes use of the general framework of optimal minimum

mean square error (MMSE) estimation, and therefore becomes

the best way to optimally perform carrier tracking in GNSS

receivers. The use of Kalman filters in GNSS carrier tracking

can be seen as the natural improvement to cope with the

challenges to be faced by next-generation GNSS receivers.

The presence of scintillation disturbances often introduces

deep fades together with abrupt phase changes, the so-called

canonical fades. Thus, the design of robust adaptive carrier

tracking techniques to deal with it becomes of paramount

importance. Scintillation time series can be modeled through a

linear model such as the class of autoregressive (AR) random

processes. The approaches so far account for a Kalman filter

with an AR augmentation in its formulation to deal with both

dynamics and scintillation phase in a decoupled manner [4].

However, its fixed architecture is optimized for very specific

scenarios, but makes it not suitable for others, due to the time-

varying nature of scintillation events, or when scintillation is

absent. On the other hand, a simple AR(1) model may not be

sufficient to model all kinds of scintillation. As an example, it

is found that, for severe scintillation, AR(1), AR(2) and AR(3)

models are found to fit pretty well the power spectral density

(PSD) of the actual input scintillation phase. In contrast, for

moderate scintillation the PSD departs from an AR(1) model,

which suggests that AR(2) or eventually AR(3) models provide

a better fit to moderate scintillation phase. Even the presence

of additive white Gaussian noise (AWGN) may cause the

scintillation time series to be better fitted by higher order AR

models.

Under these premises, in this contribution, 1) the Kalman

filter formulation is extended to incorporate a generic AR(p)

model to cope with scintillation disturbances in the presence

of AWGN noise, 2) an adaptive KF-AR(p) approach is

presented to estimate the AR parameters that provide the

best matching with the current input scintillation time

series, 3) a doubly-adaptive KF-AR approach is presented,

consisting in: 3.1) a switching mechanism to estimate the

AR model order best matching the input working conditions,

3.2) a method to counteract the deep fades that appear in

the presence of severe scintillation, based on the actual C/N0.
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II. STATEMENT OF PROBLEM AND SIGNAL MODEL

The ionospheric electron density irregularities are known

to affect GNSS signals by introducing rapidly time-varying

amplitude fades and phase variations. This poses a serious

concern to the operation of GNSS receivers, since they are

prone to suffer from severe carrier phase jitter and to fall into

frequent losses of lock.

Autoregressive (AR) random processes are a useful class of

random time series that are obtained by filtering white Gaus-

sian noise through an all-pass filter. Let the scintillation phase

at time n be denoted by ψn. The time-domain representation

of an AR scintillation phase model is given by (1),

ψn =

p
∑

k=1

βkψn−k + sn (1)

where p is the order of the AR process, referred to as AR(p),

{βk}
p
k=1

are the filter coefficients and sn ∼ N
(

0, σ2
s

)

is the

zero-mean white Gaussian driving noise with variance σ2
s [5].

III. KALMAN FILTER AUTOREGRESSIVE (KF-AR)

At the phase level, a correlated Gaussian distribution is often

considered as a first-order approximation to model scintillation

disturbances [6]. This observation is of interest for the applica-

tion of Kalman filter-based carrier tracking techniques, which

can therefore take advantage of the optimality properties of the

Kalman filter in the presence of Gaussian disturbances, and

thus encompass scintillation disturbances in a natural manner.

The approach adopted herein is to focus on the estimation of

the scintillation phase disturbance in such a way that once

estimated, it can be removed from the input carrier phase by

decoupling both the carrier phase dynamics and scintillation

phase.

The objective of this section is to extend the standard

Kalman filter formulation to the case of carrier phase tracking

in the presence of scintillation disturbances. This can easily be

done by taking advantage of the linear nature of AR random

processes stated before, which fits very well into the linear

Kalman filter formulation.

A. AR(p) state-space system model

According to the signal model introduced in Section II, an

AR(p) random process can be represented using the recursion

shown before in (1). In matrix form, this expression leads to

the state-space model in (2),

ψn,p =













β1 β2 β3 · · · βp
1 0 0 · · · 0
0 1 0 · · · 0
... 0

...
. . .

...
0 · · · 0 1 0













ψn−1,p +













1
0
0
...
0













sn (2)

with ψn,p
.
=

[

ψn ψn−1 ψn−2 · · · ψn−p+1

]T
the (p×1)

state-space vector of the AR(p) random process, and sn ∼
N

(

0, σ2
s

)

the model noise. From this state-space representa-

tion, a constant (p× p) transition matrix Fψ,p and a constant

(p×1) model noise matrix Gψ,p can be identified, respectively

in (3) and (4). These matrices allow the state-space model for

an AR(p) random process in (2) to be represented as (5).

Fψ,p
.
=













β1 β2 β3 · · · βp
1 0 0 · · · 0
0 1 0 · · · 0
... 0

...
. . .

...
0 · · · 0 1 0













(3)

Gψ,p
.
=
[

1 0 0 · · · 0
]T

(4)

ψn,p = Fψ,pψn−1,p +Gψ,psn (5)

B. Carrier dynamics and AR(p) state-space system model

For the problem at hand, it is considered that the carrier

phase is evolving according to the carrier dynamics (i.e. user

dynamics) and the phase scintillation disturbance that can be

modeled as an AR(p) random process. Regarding the former,

the time-varying evolution of the carrier phase θn can be

approximated through a third-order Taylor series expansion,

θn ≈ θn−1 + T θ̇n−1 +
1

2!
T 2θ̈n−1 +

1

3!
T 3

...
θn−1 (6)

where T is the sampling time, and θ̇ (n), θ̈ (n),
...
θ (n) are the

carrier frequency, frequency rate and frequency jerk (i.e. the

first, second and third derivatives of the carrier phase). For a

third order model, (6) can be represented in matrix form as

the state-space model in (7), in normalized notation,

xn =





1 1 1/2
0 1 1
0 0 1



xn−1 +





1/6
1/2
1



 vn−1 (7)

with xn
.
=

[

θn T θ̇n T 2θ̈n
]T

the (3× 1) state-space vector

of the carrier phase dynamics, and vn
.
= T 3

...
θ n the model

noise accounting for the missing higher order terms. Similarly

to Section III-A, a constant (3× 3) transition matrix Fθ and a

constant (3×1) model noise matrix Gθ are identified, allowing

the state-space model for the carrier phase dynamics to be

represented as (8).

θn = Fθθn−1 +Gθvn (8)

At this point, the state-space system model for user dynam-

ics in (8) can be merged with the one for AR(p) scintillation

disturbance in (5) into the augmented system in (9), which

can be expressed in compact form as (10). Expression (10)

becomes the core of the so-called Kalman filter autoregressive

(KF-AR).
[

θn
ψn,p

]

=

[

Fθ 03×p

0p×3 Fψ,p

] [

θn−1

ψn−1,p

]

+

[

Gθ 03×1

0p×1 Gψ,p

] [

vn
sn

]

(9)

xn,p = Fpxn−1,p +Gpun,p (10)

The state transition is degraded by the presence of the model

noise un,p, which propagates to the rest of the Kalman states

through Gp. This noise affecting the transition equation is

modeled as a zero-mean Gaussian process with covariance

matrix,

Qn,p
.
=

[

σ2
vGθG

T
θ 03×p

0p×3 σ2
sGψ,pG

T
ψ,p

]

(11)



On the other hand, taking into account that the Kalman filter

deals with scalar phase measurements, the Kalman measure-

ment model is (12),

zn = θn + ψn + wn =
[

Hθ Hψ,p

]

xn,p + wn (12)

with Hθ =
[

1 0 0
]

and Hψ,p =
[

1 0Tp−1

]

the

user dynamics and scintillation observation matrices, and

wn ∼ N (0, Rn) the measurement noise whose variance

Rn corresponds to the phase noise at the discriminator output.

IV. ADAPTIVE HARD-LIMITED KALMAN FILTER WITH

ADAPTIVE AUTOREGRESSIVE MODEL (AHL-KF-A2R)

The name AHL-KF-A2R is given by the different new

implementations proposed here, which are detailed next. The

block diagram of the AHL-KF-A2R is shown in Figure 1.

A. Estimation of scintillation parameters

The problem of fitting a given random process to an AR(p)

model boils down to the problem of determining the set of

filter coefficients {βk}
p
k=1

. Such problem can be addressed

following two approaches, namely the Yule-Walker equations

or the least squares or linear prediction method. Both are

equivalent AR estimation methods [7]. However, the Yule-

Walker method is presented herein because of its simplicity.

The recursion in (1) can be expressed in terms of the auto-

correlation of the AR process given by rψ (k)
.
= E [ψn+kψ

∗

n]
resulting in the so-called Yule-Waker equations. In matrix

form, these equations can conveniently be expressed as (13),

which can be denoted as (14),








rψ (0) rψ (1) · · · rψ (p− 1)
rψ (1) rψ (0) · · · rψ (p− 2)

...
...

. . .
...

rψ (p− 1) rψ (p− 2) · · · rψ (0)

















β1
β2
...
βp









=









rψ (1)
rψ (2)

...
rψ (p)









(13)
Rψβ = rψ (14)

where the autocorrelation of the random process under analy-

sis, rψ (k), can be estimated from the available measurements

at the carrier phase discriminator output as (15),

r̂ψ (k) =
1

N

N−1
∑

n=0

ψn+kψ
∗

n (15)

Substituting (15) into (13), the system can be solved for the

unknown coefficients as (16). Once the filter coefficients are

known, the driving noise variance can be obtained as (17),

β̂ = R̂−1

ψ r̂ψ (16)

σ̂2
s = r̂ψ (0)−

p
∑

k=1

β̂k r̂ψ (k) (17)

The purpose of the following analysis is two-fold. On one

hand, it is important to estimate the scintillation parameters,

so that the Kalman filter is adaptively configured to match

the actual input working conditions. The Kalman filter will be

processing the input samples and applying some corrections

to the local signal replica at the same time, thus having some

Kalman 
gain

Kn

z
−1

Signal 
generator

x̂n

x̂n|n−1

Signal 
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Incoming 
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I&D
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(state correction and 
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Discriminator

Kalman innovations sequence

( · )*

εn = zn − ẑn =
(

θn + ψn + wn
)

− θ̂n − ψ̂n
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e
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Discriminator
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switching

( · )*

{β̂ββn, σ̂
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{
p̂n, β̂ββn

}
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(β̂ββ

n
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0

(
Ĉ

N0

)
?

> γ

1

Fig. 1: Block diagram of the adaptive hard-limited Kalman

filter with adaptive autoregressive model (AHL-KF-A2R).

effect on the next samples to be processed. Thus, the “online”

performance of the AR model estimation discussed above

is compared to an “offline” (i.e. theoretical) realization in

the sense that the input samples are directly processed, with

no Kalman filtering involved at all. On the other hand, the

presence of AWGN is an important problem because it causes

the resulting (i.e. aggregated) random process to be better fitted

by high order AR(p) processes such as AR(2) or AR(3), or

even to depart from an AR model.

This is the case of Figure 2 for severe scintillation using an

AR(2) model. As the C/N0 increases, β1 → −1 and β2 → 0,

thus tending to an AR(1) process in the absence of AWGN (i.e.

C/N0 of 55 dB-Hz and beyond). However, in the presence of

AWGN (i.e. C/N0 below 50 dB-Hz), the values of β1 and β2
depart from the previous consideration, which proves the need

for higher order AR models under these circumstances.

As for the estimation performance, it can be concluded from

Figure 2 that the online KF-AR(2) estimator is performing

correctly, since the estimated scintillation coefficients match

the theoretical values. Figure 3 drives to the same conclusion.

It shows the comparison between the offline and online esti-

mation of σ2
s , for both moderate and severe scintillation. The

only remark is that for severe scintillation, there is a small

mismatch between both estimations for C/N0 of 40 dB-Hz

and beyond. This is expected to some extent, since severe

scintillation poses difficulties for the Kalman filter to estimate

σ2
s precisely, due to the abrupt variations of the input samples.

B. Switching AR model

Higher AR models can easily be obtained according to

(14), and in some circumstances they may provide a tighter

approximation to scintillation time series. Hence, it is of

interest to extend the AR modeling of scintillation time series

to higher model orders such as AR(2) and AR(3), already

considered in Section IV-A. In these circumstances, having

three possible models to work with, namely AR(1), AR(2),

AR(3), it is clear that a selection mechanism is needed in order

to choose the best model to be used at every time, and to switch

from one model to the other. This gives raise to the KF-A2R

technique. Determining the correct order of a statistical model

is a well-known problem in the field of signal processing and
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Fig. 3: Estimation of the AR(2) driving noise power for

moderate (upper plot) and severe (lower plot) scintillation time

series.

often referred to as model-order selection [8]. From (1), the

signal model for the problem at hand can be formulated as

(18),
ψ = Ψpβp + sp (18)

where ψ is the (N × 1) vector of input samples to be fitted to

some AR model, Ψp is the (N × p) matrix containing time-

shifted replicas of the input samples, βp is the vector of (p×1)

AR coefficients corresponding to some AR(p) model, and sp
is a zero-mean noisy (N×1) vector with uknown noise power

σ2
sp

that can be understood as the model mismatch errors for

this particular problem. Assuming these errors to be Gaussian

distributed, the likelihood function for the problem at hand

becomes (19),

fp
(

ψ|βp, σ
2
sp

)

=
1

(2π)
N
2 σNsp

e
−

1

2σ2
sp

‖ψ−Ψpβp‖
2

(19)

which depends on the unknown set of AR(p) coefficients βp
and the model mismatch error power σ2

sp
. The maximum

likelihood estimates of both unknowns become (20) and (21),

β̂p =
(

Ψ
T
pψ
)

−1

Ψ
T
pψ (20)

σ̂2
sp =

1

N

∥

∥

∥ψ −Ψpβ̂p

∥

∥

∥

2

(21)

Using these estimates, the compressed log-likelihood func-

tion becomes (22),

−2 log fp
(

ψ|β̂p, σ̂
2
sp

)

= C +N log σ̂2
sp (22)

for some irrelevant constant C. Once the compressed log-

likelihood function is available, different model order selection

criteria can be applied to determine the most likely model

order p̂, such as the Akaike, MAP, or MDL (also referred

to as BIC–Bayesian information criterion) [8]. In the sequel,

the minimum description length (MDL) is adopted, since it is

found to be a consistent criterion [9]. The MDL criterion finds

the most likely model order p̂ as (23),

p̂MDL = arg min
p
JMDL (p) (23)

where after some mathematical process, the MDL cost func-

tion is given by (24), with σ̂2
sp

obtained from (17).

JMDL (p) = N log σ̂2
sp + p logN (24)

C. Estimation of C/N0

The measurement noise covariance matrix Rn is one of

the parameters playing a key role in the Kalman filter per-

formance. An interesting point is that the Kalman formulation

explicitly indicates the time dependence of this matrix through

the subindex n, thus allowing this matrix to be dynamically

adjusted to match the actual working conditions. On the other

hand, the presence of canonical fades caused by scintillation

is a major source of loss-of-lock. In these circumstances, the

performance of the Kalman filter will be severely degraded.

From the Kalman filter perspective, these type of measure-

ments have a rather nonlinear nature, and thus it is difficult to

deal with them with a linear approach.

An alternative, though, would be to estimate the instanta-

neous C/N0 of the received signal, and to use this information

to update Rn accordingly in the computation of the Kalman

gains. For the problem at hand, Rn is indeed a scalar term,

and for the four-quadrant arctangent discriminator, Rn can be

obtained from the received C/N0 as (25),

R̂n =
1

2T
(

Ĉ
N0

)

n






1 +

1

2T
(

Ĉ
N0

)

n






(25)

with
(
Ĉ
N0

)
n

the estimated C/N0 and T the predetection

integration time at the code correlator.

Based on the estimated C/N0, the adaptive hard-limited

(AHL) KF relies on the use of R̂n to update the Kalman

equations, but implements instead a hard-limiting of the value

of R̂n such that,
{

Rn = R̂n, if
(

Ĉ
N0

)

n
≥ γ

Rn = Γ, otherwise
(26)



for some threshold γ that is empirically set at γ = 25 dB-

Hz for the application under analysis, and with Γ → ∞, thus

causing Kn = 0. In this case, the corrected state vector x̂n is

computed using the internal state-space model, only, and thus

it gets isolated from the carrier discriminator output. In this

way the Kalman filter is protected from abnormal measure-

ments, and the loss-of-lock performance can be improved. For

this purpose, the C/N0 needs to be estimated and the narrow-

wideband power ratio estimator (NWPR) is used herein.

The NWPR estimator can be found in detail in [10], and

it is briefly summarized here. It is based on the fact that the

noise power at the prompt correlator output can be analysed

on two different noise bandwidths, see (27) and (28),

WBPn =

M
∑

m=1

|yn−m|2 (27)

NBPn =

∣

∣

∣

∣

∣

M
∑

m=1

yn−m

∣

∣

∣

∣

∣

2

(28)

where WBP is the 1/T wideband noise power and NBP is

the 1/MT narrowband noise power, M is the length of a

sliding window within which the C/N0 is estimated at a given

time instant n, and yn is the prompt correlator output. Based

on these estimated powers, the mean of the power ratio can

be computed using an exponential filter that weights through

some constant α the estimates in previous time instants and the

new estimates, as (29), and the C/N0 can be finally estimated

through expression (30),

µ̂n = α

(

NBPn
WBPn

)

+ (1− α) µ̂n−1 (29)

(

Ĉ

N0

)

n

=
1

T

µ̂n − 1

M − µ̂n
(30)

When estimating the C/N0 through the NWPR method,

two trade-offs are dealt with. On one hand, the constant α
is a trade-off between the estimator convergence time and

the accuracy of the estimates in steady state regime. The

parameter is set to α = 0.95 herein. On the other hand, the

value of M has the trade-off that: if M is too large, the

averaging may be too large to detect spurious deep fadings,

and thus Rn will not be adapted properly; if M is too small,

the estimated C/N0 may change too rapidly so as to make

the Kalman filter unstable. As a rule of thumb, M is selected

herein to be 0.25 seconds.

V. SIMULATION RESULTS

In this section, simulations are carried out to compare the

original KF techniques with the improved ones proposed in

this document. Two scenarios are selected as representative of

real cases for static user, with small relative motion between

the user and the satellites caused by the movement of the

latter. In particular, a Doppler shift of 10 Hz, Doppler rate

of 1 Hz/s and Doppler jerk of 2·10-4 Hz/s2 are considered.

The scintillation time series are generated using the Cornell

Fig. 4: Phase RMSE for standard KF, KF-AR(1) and AHL-KF-

A2R(p) with model order switching mechanism for SCEN1.

Scintillation Model (CSM), with moderate (S4 = 0.5, τ0 =
0.8) and severe (S4 = 0.8, τ0 = 0.4) scintillation. For these, to

configure the KF-AR(1), the AR(1) driving noise variance σ2
s

can be in the range of 3·10−4 and 1·10−3 in normalized units,

whereas β1 can be in the range of (−1,−0.95]. Simulations

are carried out for 100 Monte Carlo iterations.

A. SCEN1

This scenario simulates a real case where scintillation

suddenly appears at a given moment, and after a while it

disappears. The time-varying conditions refer to no-moderate-

no scintillation following the pattern specified in Figure 4,

which also shows the phase RMSE for the standard Kalman

filter, the KF-AR(1) and the AHL-KF-A2R(p).

The standard Kalman filter is the technique showing the

best performance when scintillation is absent, whereas in

the presence of scintillation, it shows the worst performance,

since the carrier phase state absorbs both the dynamics and

scintillation phase. In the absence of scintillation, the AHL-

KF-A2R technique is able to mostly select an AR(0) model

(i.e. standard KF with no AR augmentation), and consequently

it attains the performance lower bound. The technique also

deals pretty well with moderate scintillation. However, in

this region with moderate scintillation, the AHL-KF-A2R is

outperformed by the fixed KF-AR(1). This may be due to the

fact that the AR(1) parameters already implemented within this

technique match pretty well the moderate scintillation events

considered. In contrast, estimation of the AR(p) parameters in

the AHL-KF-A2R inevitably contain errors, which introduce

some additional jitter in the RMSE. But despite of this fact,

the KF-AR(1) shows the worst performance in the absence of

scintillation, caused by the fact that introducing an unnecessary

AR model into de Kalman filter configuration also introduces

some additional jitter. Moreover, when stepping from moderate

to no scintillation, it takes a huge time to stabilize the phase

RMSE. According to Figure 6 top, in the presence of moderate

scintillation, the switching mechanism selects mainly either



Fig. 5: Phase RMSE for KF-AR(1) and AHL-KF-A2R(p) with

model order switching mechanism for SCEN2.

KF-AR configuration Loss-of-lock probability

KF-AR(1) 0.79

AHL-KF-A2R(p) < 0.01

TABLE I: Probability of loss-of-lock for KF-AR(1) and AHL-

KF-A2R(p).

AR(2) or AR(3) models, and barely selects AR(1). This is also

in agreement with the theoretical statements, where moderate

scintillation is not properly modelled by an AR(1) process.

B. SCEN2

This scenario simulates a real case where moderate scin-

tillation is present, and at a given time it gets stronger. The

time-varying conditions refer to moderate-severe scintillation

following the pattern specified in Figure 5, which also shows

the phase RMSE for the KF-AR(1) and AHL-KF-A2R tech-

niques. Table I shows their probabilities of loss-of-lock.

In the presence of severe scintillation, the AHL-KF-A2R

clearly outperforms the KF-AR(1) technique. The KF-AR(1)

shows a huge phase RMSE, which is considerably reduced

by the AHL-KF-A2R, and a probability of loss-of-lock above

70%, whereas the AHL-KF-A2R is able to deliver a proba-

bility of loss-of-lock below 1%. Thus, it is proven that the

AHL-KF-A2R introduces signiticant improvements over the

KF-AR(1) in both metrics, and it delivers a much better

performance. According to Figure 6 bottom, in the presence of

severe scintillation, all AR model orders are selected, which

is in agreement with the theoretical statement that severe

scintillation can be fairly modelled by different model orders.

Depending on the particular input working conditions (i.e.

local effects of scintillation time series, presence of AWGN),

some models may be more adequate than others at given time

instants, and this is what is reflected in Figure 6 bottom.

VI. CONCLUSION

A new Kalman filter-based approach has been presented

for next-generation GNSS receivers to deal with time-varying
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Fig. 6: Selection of AR(p) models as a function of time for

AHL-KF-A2R.

ionospheric scintillation. Firstly, the Yule-Walker equations

are used to estimate the scintillation parameters, so that

the Kalman filter is adapted to fit the actual input working

conditions. An AR model order switching mechanism by

analysing the MDL cost function has been presented to select

the most appropriate AR model at each time instant. Lastly, a

C/N0 estimator has been also included to adapt the Kalman

filter in the presence of canonical fades caused particularly by

severe scintillation. Simulations have been carried out in two

representative time-varying scenarios, and simulation results

have shown the goodness and enhanced performance of the

proposed implementations.
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