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Abstract—The relationship between Geometrical Dilution Of

Precision (GDOP) and maximum volume1 of the polytope2

expanded by the user-satellite unit vectors endpoints has been

used for long as an approach to reduce the time that a receiver

devotes to the satellite selection process. Although receivers are

able to track all satellites in view, a satellite selection process

may still be needed for some applications or when the number

of satellites available is large (i.e., due to the availability of several

constellations of satellites). This paper evaluates the relationship

between the determinant of the GDOP matrix and the maximum

volume of the polytope expanded by the user-satellite unit vectors

endpoints when any number of satellites is employed for the

computation of the position.

I. INTRODUCTION

Along decades, it has been largely considered that the

GDOP is approximately minimized by optimizing the ge-

ometry of the satellites [2, ch. 5]. Note that GDOP �ttrrpGTGq�1su1{2 where

tr

�pGTGq�1

� � 1

detpGTGq
i̧i

g1ii (1)

and g1ij are the elements of the adjoint matrix of GTG.

The matrix G is known as the geometry matrix since it

characterizes the satellite-user geometry, i.e.,

G � ������� �d1x �d1y �d1z 1�d2x �d2y �d2z 1

...
...

...
...�dhx �dhy �dhz 1

������� (2)

where h is the number of satellites being tracked by the

receiver and di � pdix, diy , dizq is the estimated line-of-sight

unit vector from the user to the satellite i.

Thus, as the adjoint varies less strongly with the geometry

than does the determinant3 of pGTGq, minimization of GDOP

1To maintain the nomenclature, volume is used in R
2 referring to area.

2A polytope is a finite convex region of n-dimensional space enclosed by
a finite number of hyperplanes [1, pg. 126].

3detpGT
Gq � detpGq2 when G P R

n�n.

can be approximated by the maximization of the determinant

[2, ch. 5]. Although, ideally, satellite selection should be based

on the minimization of the GDOP parameters, this approach is

very convenient from a computational point of view since there

are efficient algorithms to analyze 2-dimensional (2-D) and 3-

dimensional (3-D) geometries. Based on this approximation

and the fact that the volume of the n-dimensional paral-

lelepiped expanded by the columns of a matrix, A P R
m�n

with m ¥ n, is Vn � rdetpAT Aqs1{2 [3, Example 6.1.4],

research has focused on minimizing GDOP by maximizing the

volume of the tetrahedron expanded by the user-satellite unit

vectors endpoints. In fact, it was shown in [4] that for h � 4

satellites, the volume of the tetrahedron equals det pGq{6.

Various publications discuss the relationship between

GDOP and the volume of the tetrahedron defined by the user-

satellite-unit vectors endpoints, such as [5], [6], [7], [8], and

[9]. Therefore, several satellite selection methods have been

developed during the last decades based on the correspondence

between GDOP minimization and the maximization of the

polytope volume [4], [9], [10], [11], [12], and [13], for more

than three satellites in 2-D positioning and more than four

satellites in 3-D positioning.

However, this correspondence requires that the volume is

expanded by the column vectors of a m�n matrix with m ¥ n.

In our case, the satellite-user unit vectors are the row vectors

of matrix G. Consequently, this only holds for three satellites

in 2-D positioning and four satellites in 3-D positioning for

which matrix G is square, i.e., det pGq � det pGTq. The

equivalence between maximum volume and minimum GDOP

for five satellite in 2-D positioning is demonstrated for the

optimal case, i.e., the regular polytope, in [2, ch. 5]. The

purpose of this paper is to evaluate the relationship between

maximization of the volume expanded by the user-satellite unit

vectors and maximization of detpGT Gq in the general case,

i.e., for any number of satellites.

The paper is organized as follows. The GDOP concept is

reviewed in Section II. The relationship between the determi-
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nant of the geometry matrix, G, and the maximum volume

polytope defined by the user-satellite unit vectors endpoints

for any number of satellites is studied in Section III. Finally,

conclusions are drawn in Section IV.

II. GDOP CONCEPT

To determine its position, a navigation receiver computes

its distance to several satellites. The receiver computes the

distance by measuring the time, δt, it takes to a satellite-

generated signal to reach the receiver antenna. As satellite and

receiver clocks are not synchronized, the measured distance is

called pseudorange. The pseudorange is given by δt multiplied

by the speed of light in the vacuum, i.e., ρ � c � δt. Thus the

measured pseudorange between a user and a satellite i can be

related to the user position and clock offset as follows:

ρi � ||ri � ru|| � bu � ǫρi
, i � 1, 2, . . . , h (3)

where ri � pxi, yi, ziq is the satellite position at the transmit

time, ru � pxu, yu, zuq is the receiver position at the receive

time, bu is the bias of the receiver clock in meters, and ǫρi
is

the composite of errors produced by satellite ephemerides and

atmospheric delays mismodeling, receiver noise, etc.

The pseudorange residual error relative to satellite i (i.e.,

∆ρi) which is the difference between the predicted pρi and

the actual ρi, can be linearly related to the error in the state

estimate, ∆x � r∆rT
∆bsT, by performing a Taylor series

expansion about the current state estimate. Only first order

partial derivatives are considered, resulting in,

∆ρi � r�dT

i 1s ∆x�∆ǫρi
(4)

where

di � ri � pru||ri � pru|| , ∆r � pru � ru, (5)

∆b � pbu � bu, and ∆ǫρi
� pǫρi

� ǫρi

∆r is the residual error in the estimation of the receiver

position, ∆b is the residual error in the estimation of the

receiver clock bias in meters, ∆ǫρi
is the residual error after

the known biases from satellite i have been removed.

The navigation equations can be put in matricial form

by defining the vectors ∆ρ � r∆ρ1, ∆ρ2, . . . , ∆ρhsT and

∆ǫρ � r∆ǫρ1
, ∆ǫρ2

, . . . , ∆ǫρh
sT yielding

∆ρ � G ∆x�∆ǫρ. (6)

Assuming that the measurement errors ∆ǫρi
are independent

and identically Gaussian distributed zero-mean and variance

σ2, the least-squares solution for general h ¥ 4 (in 3-D

positioning) or h ¥ 3 (in 2-D positioning) is [14, pp. 329]

∆px � pGTGq�1GT
∆ρ. (7)

Note that in the case of 2-D positioning the third component

of the user position diz is assumed to be perfectly known, i.e.,

it is not considered as an unknown in the navigation equations

(3). Therefore, matrix G has one column less.

The accuracy of this least-squares solution is decided by

two factors, i.e., the quality of the measurements and the user-

to-satellite geometry. The measurement quality is described

by σ2, whereas the geometry is described by matrix G. The

covariance of position, under the stated assumptions on the

distribution of the measurement errors, is given by

Er∆px ∆pxTs � σ2pGTGq�1 (8)

Matrix pGTGq�1 is known as the GDOP matrix. The scalar

parameter GDOP is defined as the square root of the trace of

the GDOP matrix, i.e.,

GDOP � 1

σ

�
σ2

xu
� σ2

yu
� σ2

zu
� σ2

bu

�1{2
(9)

In selecting the satellites, the GDOP values should be as

small as possible in order to generate the best user position

accuracy. Several parameters are typically employed to charac-

terize the time/position solution derived from GDOP: position

dilution of precision
�
PDOP � σ�1rσ2

xu
� σ2

yu
� σ2

zu
s1{2 �,

horizontal dilution of precision
�
HDOP � σ�1rσ2

xu
�

σ2

yu
s1{2 �, vertical dilution of precision

�
VDOP � σ�1σzu

�
,

and time dilution of precision
�
TDOP � σ�1σbu

�
.

III. DETERMINANT MAXIMIZATION THROUGH VOLUME

MAXIMIZATION

For three satellites in 2-D and four satellites in 3-D, there

is a direct relationship between determinant and volume [15,

ch. 9 sec. 5]. However, when more than three or four satellites

are to be selected, the relationship is not direct any more

[15, ch. 9 sec. 5]. In this section, we analyze the relationship

between detpGTGq and the volume of the polytope formed

by the user-satellite unit vectors endpoints.

Let us review first what happens when three satellites are

employed for the computation of a 2-D position (or four

satellites in 3-D). Three satellites are needed to obtain a

position estimate in a 2-D coordinate system. The clock

synchronization error is accounted for as an unknown in the

linearized navigation equation (4). Therefore, the geometry

matrix is

G � ��� �d1x �d1y 1�d2x �d2y 1�d3x �d3y 1

��� . (10)

The addition of the column of ones results in the determi-

nant of G matching the area of the parallelogram formed by

the user-satellite unit vectors endpoints when taking one of
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them as a vertex. That is,| detpGq| � |a� b| (11)� �����det

� pd2x � d1xq pd3x � d1xqpd2y � d1yq pd3y � d1yq ������
where a � d2 � d1 and b � d3 � d1, di � pdix, diyq,
i � 1, 2 and 3, � denotes the cross product, and | � | denotes

absolute value. The situation is illustrated graphically in Fig. 1.

b

a

b |a × b|

(d1x, d1y) (d2x, d2y)

(d3x, d3y)

Fig. 1. Area of a parallelogram as a cross-product.

Thus, the area of the polygon formed by those points

is equal to half the determinant of the geometry matrix,� 1{2 detpGq, [3, Example 5.13.2], [16]. The � is meant to

take whichever sign is needed so that the result is positive

(non-negative); a minus meaning that the order of the vectors

is not counterclockwise. The same applies when selecting four

satellites to obtain a 3-D position. In that case detpGq is

proportional to the volume of the tetrahedron - specifically,

detpGq � � 6 � Vn [16].

The previous conclusions are a consequence of the prop-

erty of the determinant whereby row substraction leaves the

determinant unchanged. But this is only valid for a square

matrix. Therefore, one could argue that this is true only for

the cases presented here of selecting three satellites in 2-D or

four satellites in 3-D positioning. When h is the number of

satellites to be considered for the position computation, the

geometry matrix is Gh�4,

Gh�4 � ������� �d1x �d1y �d1z 1�d2x �d2y �d2z 1

...
...

...
...�dhx �dhy �dhz 1

������� . (12)

If A P R
n�n, then Vn � | detpAq| [3, Example 5.13.2].

Furthermore, if A P R
m�n with m ¥ n, Vn �rdetpAT Aqs1{2 is proportional to the volume of the n-

dimensional parallelepiped expanded by the columns of A

[3, Example 6.1.4]. However, the volume we are interested

in is not the one spanned by the columns of A but the one

expanded by its rows. Therefore, the relationship between the

determinant of the GDOP matrix and the volume expanded by

its row vectors is analyzed next.

The relationship between the volume expanded by the

satellite-user unit vectors endpoints and detpGTGq for more

than four satellites in 3-D or more than three satellites in

2-D is not direct, as stated before. However, what actually

occurs when having a larger number of satellites has not

been evaluated. A Monte Carlo simulation of 105 runs was

performed, where a geometry matrix was generated with

random unitary vectors di P R
2. The area determined by the

set of vectors di and the determinant, 1{2 rdetpGTGqs1{2,

were obtained. This process was repeated for several amounts

of satellites. Results for h � 3, 4, 5 and 6 satellites in R
2

are plotted in Figs. 2(a), (b), (c), and (d), respectively. Area

denotes the area of the polygon formed by the endpoint vectors

and Determinant denotes 1{2 rdetpGTGqs1{2.

When h � 3, Fig. 2(a), there is a direct relationship

Determinant�Area, in agreement with Equation (11). But,

when the number of satellites increases, the relationship is

not direct anymore and the points are spread over a region,

i.e., the blue dots in Fig. 2. The upper line in Figs. 2(b), (c),

and (d), corresponds to a regular polygon whose number of

sides is determined by the area value. That is, considering that

the area of a regular polygon of l sides inscribed in the unit

circle is given by [17, pg.111],

Area � l cos

�
180

l



sin

�
180

l



, (13)

the upper line of each plot corresponds to drawing a geometric

figure that is the closest to a regular polygon for that area

value. Thus, several regions can be identified in Fig. 2(b), (c)

and (d); these regions correspond to the value of the area for

the different regular polygons that can be formed. They are

delimited by the red vertical lines in Fig. 3. That is, 0 ¤ Area¤ 1.299 for a triangle, 1.299   Area ¤ 2 for a quadrilateral,

2   Area ¤ 2.3776 for a pentagon, and 2.3776   Area ¤
2.5981 for a hexagon.

To illustrate this, the geometric figures resulting from simi-

lar values of the area and the two extreme values of the

determinant are plotted in Figs. 3 and 4 for h � 5 and h � 6 in

R
2, respectively. Fig. 3(a) and (b) correspond to the equilateral

triangle region, i.e., Area � 1.299, and Fig 3(c) and (d) to the

regular quadrilateral region, i.e., Area � 2. Similar results are

plotted in Fig. 4 for h � 5 to show that the same happens

for any h at the same Area values. Note that the set giving

the smallest GDOP will be the one that expands a geometric

figure that is closer to the corresponding regular polyhedron,

i.e., the one with the largest determinant value.

In conclusion, there is a relationship between the largest

volume polytope that can be formed and the minimum GDOP

(following the statement in [2, ch. 5]) when more than three

satellites are considered in R
2 or more than four in R

3.

However, apart from volume value, satellite disposition should

also be considered; giving priority to those closer to a regular
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(a) (b)

(c) (d)

Fig. 2. Discrepancy plots of determinant versus the volume for all possible solutions in R
2. (a) h � 3. (b) h � 4. (c) h � 5. (d) h � 6.
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(d)

Fig. 3. Areas generated at several points of Fig. 2(c), i.e., with h � 5 in R
2. (a) Area � 1.299 and Determinant � 1.65. (b) Area � 1.299 and Determinant� 2.6. (c) Area � 2 and Determinant � 2.4. (d) Area � 2 and Determinant � 2.7.

polytope. For example, for each of the regions identified

before, we should search for the set of l satellites whose

geometry is closer to a regular polyhedron with equal number

of satellites in all its vertices. Thus, the volume can be

considered as an indicative of the disposition of the satellites

that the receiver needs to track in order to get a specific

performance in terms of GDOP.

This is exemplified in Fig. 5 for h � 5 in R
2 and Area

� 1.299, i.e., for an equilateral triangle. The area of Fig. 5(a) is

larger than that of Fig. 5(b) while the determinant is the other

way round. It can be seen that, even if the area is smaller in

Fig. 5(b), the determinant is larger and, thus, the GDOP value

is smaller. This supports the statement that, for each of the

regions delimited by the volume of the polygon, the figure

providing the smallest GDOP is the one whose geometry is

closer to the one of the corresponding regular polygon.
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Fig. 4. Areas generated at several points of Fig. 2(d), i.e., with h � 6 in R
2. (a) Area � 1.299 and Determinant � 1.65. (b) Area � 1.299 and Determinant� 2.6. (c) Area � 2 and Determinant � 2.4. (d) Area � 2 and Determinant � 2.7.
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Fig. 5. Areas generated at several points of Fig. 2(c), i.e., with h � 5 in R
2. (a) Area � 1.2 and Determinant � 1.5. (b) Area � 1.0 and Determinant �

2.0.

IV. CONCLUSIONS AND SIGNIFICANCE

The discrepancy between maximization of the determinant

of the GDOP matrix and the volume defined by the satellite-

user-unit vectors was evaluated. Results show that both func-

tions have a very similar behavior for large volumes and thus,

the error can be considered negligible. However, only when

the optimal solution corresponding to a regular polytope is

present can we assure that the solution provided is the optimal

one, i.e., the one that minimizes GDOP. Note that the larger

the number of satellites in view is, the more likely a regular

polytope volume can be obtained. Therefore, the possibility

of choosing a geometry close to the one of a regular polytope

increases and so it does choosing a GDOP value closer to the

optimal one.

It was also concluded that the approximation between

maximum volume defined by the user-to-satellite unit vectors

endpoints and minimization of the error due to the user-

satellite geometry is also valid when more than three or

four satellites are to be selected in 2-D and 3-D positioning,

respectively. However, other aspects must be considered along

with volume maximization; i.e., the number of satellites l to

track should be those whose geometry is closer to a regular

polyhedron with equal number of satellites in all its vertices.

Summarizing, the value of the volume can be considered as

an indicative of the optimal disposition of the satellites that

will result in a minimal value of GDOP.
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