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José A. López-Salcedo, Gonzalo Seco-Granados
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Abstract—The design of efficient architectures for Multi-Carrier (MC)
communication systems can be a challenging task when it involves the
adoption of Filter-Bank Multi-Carrier (FBMC) modulation techniques.
The main design issues found in FBMC systems are generated by the
incorporation of band-limited shaping pulses. Yet, these pulses have
many advantages in terms of performance, such as providing either
improved spectral confinement or no frequency overlap between adjacent
subcarriers. They also benefit from robustness in front of narrowband
interferences, and reduced out-of-band power emission, among others.
However, the advantages of FBMC schemes are often obscured when it
comes to the implementation point of view. This is particularly true for
the flexible FBMC systems, where on top of incorporating band-limited
shaping pulses, no restrictions are imposed on the signal parameters (i.e.
symbol rate, carrier spacing or sampling frequency). In this context,
the present paper will provide a unified framework to describe flexible
FBMC signals when both signal design and implementation criteria are
combined.

I. INTRODUCTION

Currently there is a growing interest in Filter Bank Multi-Carrier
(FBMC) systems, particularly for applications involving digital sub-
scriber lines [1], wireless communications [2] or cognitive radio,
just to mention a few. The main advantage of FBMC with respect
to traditional Orthogonal Frequency Division Multiplexing (OFDM)
resides in the replacement of the rectangular shaping pulse by a
band-limited (non-rectangular) one. This property provides a more
robust system performance in front of carrier frequency mismatches
and narrowband interferences. Moreover, FBMC signals can also
be designed so as to preserve the subcarrier orthogonality without
requiring the insertion of a cyclic prefix, in contrast to what occurs
in OFDM. This advantage, together with the reduction of out-of-band
power emissions, may lead to FBMC signals with a higher spectral
efficiency than conventional OFDM. It is for this reason that FBMC
is currently being considered for future software defined radio (SDR)
and spectrally agile communication systems.

Different variations of FBMC schemes can be found in the
literature, such as Filtered Multi-Tone (FMT), Cosine Modulated
Multi-Tone (CMT), Discrete Wavelet Multi-Tone (DWMT) or Offset
Quadrature Amplitude Modulated OFDM (OQAM/OFDM). How-
ever, each of these variations uses a specific and case-dependant
signal model, thus making it difficult to perform a fair comparison
among the possible alternatives. Attempts have been made to pro-
vide a general and unified formulation for the family of filterbank
architectures. Most contributions are circumscribed to the field of
digital signal processing, where analysis and synthesis filterbanks are
widely adopted for speech coding or image compression [3]. The
application of these results to the field of digital communications
is not straightforward, since the conceptual approach is completely
different (i.e. analysis and synthesis operations are exchanged) and
new signal parameters, design constraints and performance metrics
do appear. It is for this reason that current research efforts are
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being devoted to provide a suitable and generalized formulation for
communications-oriented filterbank architectures [4]. The few exist-
ing proposals do encompass different multi-carrier modulations such
as OFDM, DWMT and OFDM/OQAM, but they restrict some of the
signal parameters, which cannot be freely adjusted. Such a limitation
is a serious drawback for the case of flexible FBMC systems, where
no constraints are imposed on the relationship between the different
signal parameters. This is the case of Non Orthogonal Frequency
Division Multiplexing (NOFDM), where neither the number of sub-
carriers, their spectral spacing, the shaping pulse (and its length),
nor the symbol rate are specified [5]. Such a flexible scheme is an
interesting approach that allows to freely optimize the transmitted
signal so as to fulfill some predefined criteria in terms of out-of-
band radiation, power/bandwidth efficiency, physical-layer security
or synchronization performance.

In this context, the present contribution is intended to cover the gap
between existing generalized FBMC formulations and the require-
ments of emerging flexible FBMC communication systems. A unified
framework is proposed first, where any FBMC signal is mapped onto
a quadruple of key parameters. Some multi-rate techniques and basic
filter-bank theory are reviewed in order to support the derivation
of flexible FBMC architectures as a function of the signal’s key
parameters. Then, implementation guidelines are provided through
the extensive use of polyphase filters. Finally, equivalent efficient
transmitter architectures are presented for different types of polyphase
network layouts and signal parameter sets.

II. SIGNAL MODEL

In this section, we formulate a signal model that is flexible enough
to encompass all existing MC signal formats by properly selecting the
values of a few key parameters. Thus, if we have a scheme to generate
this generic signal for any set of parameters, we will have a unique
architectural framework that can be particularized to generate any
MC signal. Let us consider the following continuos-time baseband
equivalent model for a Flexible MC signal formed by N subcarriers
with a frequency separation of F0

.
= 1/T0

x(t) =

∞∑
l=−∞

N−1∑
n=0

s′n(l) g(t− lT ) e
j2πn t

T0 ejϕn(l), (1)

where s′n(l) are the symbols to be transmitted (in general, s′n(l) ∈ C),
g(t) is the shaping waveform, R = 1/T is the signaling rate (i.e., T
is the MC symbol period) , and ϕn(l) is a possibly additional phase
term used in some cases to ensure that the symbols are separable
at the receiver. For instance, in OQAM-OFDM a 90◦ rotation is
alternatively applied in the frequency and time dimensions (which
are represented by indexes n and l, respectively) to force that the
symbols adjacent to a real one are imaginary, and vice versa. In order
to simplify the notation, we can gather the symbols and the additional
phases into an equivalent symbol term sn(l) = s′n(l) e

jϕn(l). The
model in (1) can also be used to represent offset modulations; it is
only necessary to interpret T as half of the actual symbol period.



The analog signal propagating through the channel is evidently
independent of any sampling frequency. However, we are interested
in transmit digital architectures, so we formulate the discrete-time
version of (1) sampled at a rate Fs

.
= 1/Ts:

x[m]
.
= x(mTs) =

∞∑
l=−∞

N−1∑
n=0

sn[l] g[m− lNss] ej2πn
m
P , (2)

where the fundamental subcarrier discrete-time period (i.e., expressed
in samples) is P = Fs/F0, and Nss = FsT = Fs/R the number
of samples per MC symbol. The discrete-time shaping pulse g[k] .=
g(kTs) (so called prototype filter) has a length of Lg samples, and
parameters P and Nss are considered to be integer values. Note that
this does not entail any loss of generality because (2) is a model at
transmission, where there is a perfect control of the MC symbol rate
and subcarrier frequency relative to the sampling rate regardless of
any absolute bias in the transmitter frequency reference.

One of the main characteristics of MC modulation systems resides
on the fact that a total of N source symbols sn[l] are involved in
the generation of a single MC symbol. Normally, each sn[l] will
be associated to an individual subcarrier frequency so the signaling
rate of each subcarrier will be at least N times lower than the
original input signaling rate. Such a decrease in the signaling rate
leads to longer symbol periods, thus mitigating undesired channel
effects like fast fading due to multi-path propagation and increasing
the robustness of the communication system.

The format of an FBMC signal is uniquely defined by four
parameters: N,Nss, P, Lg or combinations thereof. In particular, we
choose the quadruple:

{N,D,Q,L′g}
.
= {N,Nss/N,Nss/P, Lg/P}. (3)

The flexibility of the proposed model comes from the fact that any
MC signal can be represented by specific values of these parameters.
The value of Q = F0T represents the subcarrier spacing normalized
to the symbol rate. The minimum spacing that makes subcarrier
orthogonality possible corresponds to the case of Q = 1. Since Q can
take non-integer values, the model is also valid for the representation
of Non-Orthogonal or Generalized MC signals. The parameter D can
be regarded as an oversampling factor; and D = 1 corresponds to
the so-called critical sampling condition.

Some illustrative examples are the paradigmatic case of OFDM
with N subcarriers. It is sampled at N samples per symbol and
characterized by {N,D,Q,L′g} = {N, 1 + β, 1 + β, 1 + β}. A
fraction β of the symbol time is devoted to the cyclic prefix. If
a null guard interval is used instead of the cyclic prefix, then the
representation is {N, 1 + β, 1 + β, 1}. Let us consider a FBMC
signal with square-root raised-cosine shaping pulses of roll-off factor
α (whose effective length is limited to Lg) that overlap each other
in frequency at the half-amplitude point. If the signal is critically
sampled, the representation is {N, 1, 1, Lg/N}. In case the pulses do
not overlap, the signal format corresponds to the FMT case, whose
characteristic quadruple is {N, 1+α, 1+α,Lg/N}. This formulation
has the advantage of making apparent that, for instance, FMT is very
similar to OFDM with guard interval from an structural point of view,
but FMT simply uses a longer pulse.

III. MULTIRATE PRELIMINARIES FOR FBMC MODULATIONS

Prior to the derivation of the efficient architectures proposed in
this work it is necessary to review some concepts from the field of
multi-rate digital signal processing and filter banks [6]. In fact, the
processes of FBMC signal transmission and reception usually require
rate conversion operations. Fig. 1 shows a typical FBMC transmission
architecture that generates the transmit digital signal in (2). As
it can be noticed, the convolution between each sub-band signal

and the prototype filter g[n] is carried out at the highest sampling
rate. Additionally, each convolution involves all the prototype filter
coefficients and it is replicated for each branch. Therefore, it becomes
apparent that there is room for improvement in the computational
efficiency and memory resources usage of this architecture. Then, it
it is interesting to gain more insight in rate conversion operations
and their interaction with digital filters. First of all, we are going to
define the discrete-time signal y[m] as the output of the convolution
between the input signal u[m] (upsampled by a factor B) and a digital
filter g[n] (interpolation filter):

y[m] =

∞∑
l=−∞

u[l]g[m− lB] = IB{u[m]} ∗ g[m], (4)

where the notation IB{·} denotes an upsampling operator by a factor
B before the filtering operation. Analogously, we will be interested
in the expression of a digital filter followed by a downsampling
operation by B (decimation filter):

y[m] =

∞∑
l=−∞

u[l]g[mB − l] = DB{u[m] ∗ g[m]}, (5)

being DB{·} the notation for digital signal downsampling by B.
Likewise, it is also interesting to introduce the complementary cases
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Fig. 1. General architecture for a flexible FBMC transmitter.

to the interpolation and decimation filters which correspond to
the time-domain expression of a filter followed by an upsampling
operation (6) and a filter preceded by a downsampling operation (8):

ỹ[m] = IB{y[m]} = IB{
∞∑

l=−∞

u[l]g [m− l]}, (6)

where:
ỹ[m]

.
=

{
y
[
m
B

]
ifm = kB ; ∀k∈N

0 otherwise
(7)

and

y[m] =

∞∑
l=−∞

u[lB]g[m− l] = DB{u[m]} ∗ g[m]. (8)

It should be noticed that these properties allow a direct matching
between the conventional FBMC transmitter architecture (Fig.1) and
the reference signal model in (2). For instance, a quick inspection of
(2) reveals that the signal x[m] is generated by adding up N different
signals sn[l], being each one modulated by a different exponential
term (subcarrier) and convolved with the interpolation filter g[n] by
a factor of Nss (which is precisely what is shown in Fig. 1).

Furthermore, in this section we introduce the concept of polyphase
structures which constitute a useful tool to provide efficient FBMC
transmitters with reduced computational cost. Such structures allow
to take advantage of the cyclic behavior of the MC signal complex
exponentials. The prototype filter coefficients are grouped into sub-
sets of samples (called sub-filters) according to the phase of the
exponential term they are associated to in the convolution operation.

According to the polyphase theory [6], both the interpolation filter
(4) and the decimation filter (5) can be decomposed into B polyphase



sub-filters. The coefficients of the i-th sub-filter (i ∈ (0, 1, ..., B −
1)) are defined by the expression: gi[n] = g[nB + i] where B is
considered herein as the order of the polyphase network. The obtained
sub-filter gi[n] can be interpreted as a downsampled version (by a
factor B) of the prototype filter with a sampling offset (or delay) of
i samples. Hence, as a consequence of this re-arrangement, the rate
of each polyphase component is B times lower than the serial signal
x[m]. This is advantageous from an implementation point of view
since it reduces the rate of operation of each individual branch.

IV. EFFICIENT MULTI-CARRIER TRANSMITTER ARCHITECTURES

Similarly to the MC signal formulation, efficient architectures have
also been subject to unification efforts to provide a valid common
framework under different design criteria [1], [3], [4], [7]. However,
current hardware architectures do not exploit all the available degrees
of freedom that flexible FBMC communication systems demand.
Previous contributions have attempted to structure and homogenize
the process of polyphase architecture definition. Efficient polyphase
architectures have been proposed in [1], [7], [8], but they are restricted
to FMT modulations. Other works like [9] do consider generic MC
signal parameters but as in [1], the resulting architectures entail a time
variation of the filter coefficients that requires a complex control and
operation of memory buffers. Besides, these solutions do not solve
the problem of relying on a time-variant architecture

In the present contribution, a truly unified framework has been
derived in the form of a generic architecture for the implementation
of flexible FBMC transmitters with unrestricted signal design pa-
rameters. This general architecture is schematically depicted in Fig.
2. Apart from the quadruple of key signal parameters described in
Section 2, flexible FBMC architectures are mainly determined by two
parameters: the order of the polyphase network B and the normalized
frequency spacing factor Q. Typically, B = {l.c.m.(N,Nss), Lg}
values have been adopted in the existing literature (where l.c.m
stands for least common multiple). However, a more general approach
suggests a wider range of possibilities. In particular, we consider
the set of values B = {P,Nss, l.c.m(P,Nss)} as the more rep-
resentative cases for our study. The interpolation modules within
Fig. 2 can easily accommodate integer values of Q. For rational
values of Q, the role of these interpolation modules would lead
to a time-variant input-output response of the polyphase network.
Addressing such an extra complexity (usually avoided in practice) is
one of the main contributions of this paper. In the first part of this
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Fig. 2. General polyphase architecture for a flexible FBMC transmitter

section we introduce the architectures obtained for integer values of
Q which are simpler in terms of implementation. Secondly, we focus
on rational values of Q and study the implementation issues that
arise with standard polyphase networks. Next, we provide a detailed
derivation of alternative time-invariant polyphase architectures for
different values of B.

A. Type A: Polyphase architectures for integer values of Q

The main advantages of the polyphase structures become apparent
in this case since it is possible to obtain a polyphase network of

order P that minimizes the amount of required hardware. According
to a given quadruple of values we can particularize the reference
transmission signal model (2) as follows:

x[m] =

∞∑
l=−∞

N−1∑
n=0

sn[l] g[m− lQP ] ej2πn
m
P . (9)

The P -points Inverse Discrete Fourtier Transform (IDFT) operation
over the source symbols can be directly inferred from (9). Assum-
ing that P≥N , we can define s[l] .= [s0[l], s1[l], . . ., sN−1[l]]

T and
Smod(m,P )[l]

.
=IDFTm,P (s[l]) =

∑N−1
n=0 sn[l]e

j2πnm
P , which leads

to the following compact form of the signal model:

x[m] =

∞∑
l=−∞

Smod(m,P )[l] g[m− lQP ]. (10)

The IDFT operation for MC modulations was initially introduced in
[10] and it is truly convenient from an implementation point of view
since it enables the use of Fast Fourier Transform (FFT) modules. The
use of such modules is considered one of the catalysts in the success
of multicarrier techniques and its widespread deployment in modern
wireless communication systems during the last years. Considering
the cyclic nature of the IDFT exponentials we introduce the following
modulo operation in the signal model: m = mod(m,P) + bm

P
cP .

Then, we can re-write (10) as:

x[m] =

∞∑
l=−∞

Smod(m,P )[l] g
[
mod(m,P ) +

(⌊m
P

⌋
− lQ

)
P
]
.

(11)
Given that mod(m,P ) ∈ (0, 1, ..., P −1) we can interpret the signal
obtained in (11) as a total of P digital convolution operations. Hence,
in terms of polyphase decomposition we regard the term mod(m,P )
as a branch index that identifies the specific sub-filter involved in the
filtering process. Moreover, since each sub-filter will operate at a
sampling rate which is P times lower, we ought to apply a sub-filter
decimation by a factor of P over the prototype filter g[n]. From this
point on we propose the following notation to reflect the mentioned
manipulations:

x[m] =
∑
l

Smod(m,P )[l] gmod(m,P )

[⌊m
P

⌋
− lQ

]
(12)

= IQ{IDFTm,P (s[k])} ∗ gmod(m,P )[k]
∣∣∣
k=bmP c

. (13)

Therefore, the transmit signal x[m] is generated as the result of the
convolutions of each IDFT output Smod(m,P )[k] (upsampled by Q)
and a downsampled version of the prototype filter gmod(m,P )[k] fol-
lowed by an up-sampling operation by P . The resulting transmission
architecture once the polyphase decomposition has been applied is
depicted in Fig. 3.
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Fig. 3. General architecture for a flexible FBMC transmitter and an integer
oversampling factor Q



B. Type B: Polyphase architectures for non-integer values of Q

It follows from (12) that in this case a rational Q up-sampling
operation would be required prior to the sub-filter convolution, thus
complicating the design of a time-invariant architecture. The main
implementation obstacle is given by a rate imbalance between the
symbol rate and the polyphase network output rate which is set by
the order of the polyphase network. In particular, the output of a P -
branch long polyphase transmitter generates blocks of P samples (one
for each sub-filter output). However, the number of generated samples
per symbol should be Nss in order to meet the target output rate of the
digital communication signal being transmitted. In other words, the
symbol period in samples Nss does not account for an integer number
of periods of the fundamental subcarrier frequency, thus making it
hard to exploit the cyclic nature of the FFT. Furthermore, since the
duration of the symbol (in samples) is not a multiple of the order of
the polyphase network, it becomes necessary to apply a different set
of sub-filter samples to every symbol delivered by the IDFT block.

Despite these issues, we show in this work that if the polyphase
network is conveniently designed it is certainly possible to obtain a
time-invariant structure for any rational value of Q. It should be also
noticed that the following architectures are essentially equivalent and
they only differ in the layout of the polyphase network. The flexibility
of the framework provided in this work is clearly highlighted by this
fact since any of these schemes can be used indistinctly depending
on the specific constraints of the application.

1) Order of the polyphase network B = P : let us express the
index of the convolution l in (2) as l = lbP + lr being lb

.
=b l

P
c and

lr
.
=mod(l, P ). Then replacing it in (2) and according to (10):

x[m] =

P−1∑
lr=0

∞∑
lb=−∞

Smod(m,P )[lbP + lr] g[m− lrNss − lbPNss]. (14)

Additionally, we can further decompose the term m − lrNss =⌊
m−lrNss

P

⌋
P +mod(m − lrNss, P ). Therefore, we can re-write

x[m] following a P -order sub-filter decimation:

x[m] =

P−1∑
lr=0

∞∑
lb=−∞

Smod(m,P )[lbP + lr]

· gmod(m−lrNss,P )

[⌊
m− lrNss

P

⌋
− lbNss

]
(15)

=

P−1∑
lr=0

INss{DP {Smod(m,P )[k + lr]}}

∗ gmod(m−lrNss,P )[k]
∣∣∣
k=bm−lrNss

P c
. (16)

In this case there appears a delay of lrNss samples that affects each
sub-filter convolution as well as the sub-filter indexes. Therefore, it
is not possible to generate the transmit signal x[m] with a single P -
branches polyphase structure like the one shown in Fig. 3. However, it
is certainly possible to consider separately the architecture defined by
each value of lr . This architecture can be interpreted as a hardware
replica of a polyphase network of order P (being the index lr ∈
(0, 1, ..., P −1) a replica index). The architecture defined by each lr
simply differs from the one in (12) in the introduction of a lrNss-
samples delay that, according to the properties of the convolution,
can be placed at the sub-filter outputs as shown in Fig. 4.

Moreover, it should be noticed in (15) that the branch index of the
polyphase sub-filters and the IDFT output do not coincide. Then, it
is necessary to introduce of a phase rotation over the input source
symbols sn[l] in order to keep the phase continuity imposed by the
transmitted signal model. According to the Fouriter transform prop-
erties, we can define S̃mod(m−lrNss,P )[l]

.
=IDFTm−lrNss,P (s̃[l]) =∑N−1

n=0 s̃n[l]e
j2πnm−lrNss

P where s̃n[l] = sn[l]e
j2πn lrNss

P . Then,

S̃mod(m−lrNss,P )[l] is defined as the IDFT of the source symbols
array s[l] subject to a phase rotation that yields s̃[l]. Finally, defining
a replica-dependant row index m(lr)

.
=m− lrNss we are left with:

x[m] =

P−1∑
lr=0

INss{DP {IDFTm(lr),P (̃s[k + lr])}}

∗ gmod(m(lr),P )[k]
∣∣∣
k=

⌊
m(lr)

P

⌋. (17)

It should be noticed that the phase rotation on the source symbols
is constant for each replicated block. The resulting transmission
architecture is depicted in Fig. 4.
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Fig. 4. General P th-order polyphase architecture for a FBMC transmitter
with a non-integer normalized frequency spacing factor Q

2) Order of the polyphase network B = Nss: here it is convenient
to apply the change of variable l = b m

Nss
c − p in (10) to obtain:

x[m] =

∞∑
p=−∞

Smod(m,P )

[⌊
m

Nss

⌋
− p
]

· g
[
m−

⌊
m

Nss

⌋
Nss + pNss

]
. (18)

Since, m−
⌊
m
Nss

⌋
Nss = mod(m,Nss), we apply a Nss-order sub-

filter decimation to obtain the desired polyphase structure:

x[m] =

∞∑
p=−∞

Smod(m,P )

[⌊
m

Nss

⌋
− p
]
gmod(m,Nss)[p]

= IDFTm,P (s[k]) ∗ gmod(m,Nss)[k]
∣∣∣
k=

⌊
m

Nss

⌋. (19)

It is worth to notice that the order of the polyphase network Nss
is usually higher than the duration (in samples) of the subcarrier
fundamental period. In this paper, we propose a solution based on
a cyclic extension of the IDFT output (Fig. 5). The Nss − P extra
samples generated can be seen as a cyclic prefix appended to the
actual symbol. Indeed, the number of source symbols sn[l] required
to generate an FBMC symbol is N , so if the target number of samples
per symbols is higher (Nss) there is a degree of freedom from a
design point of view to fill the samples in the last part of the symbol.



Hence, the solution adopted in here is not unique and other solutions
like zero-padding or pilot signaling are equally valid and do not have
any meaningful effect on the presented architectures.

Moreover, due to the imbalance between the order of the polyphase
network and the length of the IDFT, the phase continuity of the
different subcarriers cannot be ensured. Since the order of the network
B = Nss is not an integer number of subcarrier periods there
appears a phase discontinuity at the end of each generated symbol
forced by the characteristics of the implementation. Hence, once
again it is convenient to resort to the phase rotation over the input
source symbols to keep the signal phase continuous at every symbol
transition (Fig. 5)
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Fig. 5. General Nssth-order polyphase architecture for a FBMC transmitter
with a non-integer normalized frequency spacing factor Q

3) Order of the polyphase network B = l.c.m(P,Nss): let us
assume that l.c.m(P,Nss) = PoNss = NssoP where both Po and
Nsso are integers. As in the previous architectures we conveniently
decompose the convolution index l = lbPo + lr with lb = b lPo

c and
lr = mod(l, Po). Thus, replacing in (10) we obtain:

x[m] =

Po−1∑
lr=0

∞∑
lb=−∞

Smod(m,P )[lbPo + lr] g[m− lrNss − lbPoNss]

(20)
Similarly, we can consider m − lrNss =

⌊
m−lrNss
PoNss

⌋
PoNss +

mod(m− lrNss, PoNss). Likewise, a phase rotation over the source
symbols is also required to ensure carrier phase continuity. Then,
according to the reasoning in (17) and applying a PoNss sub-filter
decimation and replacing in (20) we obtain:

x[m] =

Po−1∑
lr=0

∑
lb=0

Smod(m,P )[lbPo + lr]

· gmod(m−lrNss,PoNss)

[⌊
m− lrNss
PoNss

⌋
− lb

]
(21)

=

Po−1∑
lr=0

DPo{IDFTm(lr),P (̃s[k + lr])}

∗ gmod(m(lr),PoNss)[k]
∣∣∣
k=

⌊
m(lr)
PoNss

⌋. (22)

As in the case of a polyphase network of order P , the index lr can
be seen as a hardware replica index for blocks of order PoNss. The
signals Smod(m,P )[lbPo + lr] correspond to downsampled versions
by Po of the IDFT outputs with a sampling offset of lr samples that
is constant for each replica. This implies that the signal delivered by
the IDFT is going to be processed separately by different parts of the
polyphase network. The resulting architecture is depicted in Fig. 6

V. CONCLUSION

We have presented a unified framework for the definition of FBMC
signals based on a quadruple of key parameters that uniquely defines
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Fig. 6. General l.c.m.(P,Nss)th-order polyphase architecture for a FBMC
transmitter with a non-integer normalized frequency spacing factor Q

any MC signal. Likewise, we show how to derive efficient FBMC
transmitter architectures based on the polyphase decomposition of
the discrete-time shaping pulse. Different polyphase architectures are
provided for quadruple values that have been traditionally avoided in
practical implementations because of their complexity or solved by
means of time-variant filtering.
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