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Abstract—This paper addresses the problem of finding the
optimal non-coherent detector or Post Detection Integration
(PDI) technique to acquire weak signals in the context of High-
Sensitivity Global Navigation Satellite System (HS-GNSS) re-
ceivers. This detector is derived using the Generalized Likelihood
Ratio Test (GLRT) in the presence of data bits and variations in
the carrier phase. The resulting detector is difficult to implement
in practice because the amplitude of the signal must be known
a priori. Two approximations of the resulting detector, which
depend on the signal-to-noise ratio, are proposed, namely the
Non-coherent PDI (NPDI) and non-quadratic NPDI (NPDInq)
techniques. From this result, we prove that in general the NPDInq

technique is the best option to detect weak signals in HS-GNSS
receivers. In addition, a new statistical characterization of the
NPDInq technique is proposed, which improves the approach
used in the literature by applying the central limit theorem.

Index Terms—Detection threshold, fractional exponent, GLRT,
HS-GNSS receivers, PDI techniques.

I. INTRODUCTION

Weak signal conditions are certainly the main obstacle

in High-Sensitivity Global Navigation Satellite system (HS-

GNSS) receivers since the severe attenuation makes it difficult

to detect the received signal [1]. In this situation, the increase

of the coherent integration time is the optimal way to reduce

the effect of noise so that the signal can be detected more

easily. Nonetheless, the coherent integration time duration is

limited in practice by the followings uncertainties: residual

frequency offset, data bits, and phase noise.

The way to circumvent this limitation is to adopt Post De-

tection Integration (PDI) techniques or non-coherent accumu-

lations, which are more robust against frequency offset, data

bits, and phase noise than the coherent integration. Although

PDI techniques suffer some degradation in the signal detection

performance with respect to the ideal coherent integration

(without taking into account the impairments that limit the

coherent integration duration), the use of PDI techniques is

the only choice we have if long integration times need to be

implemented [2]. Thereby, PDI techniques have become an

indispensable tool to acquire weak signals in the context of

HS-GNSS receivers.

HS-GNSS receiver architectures use advanced signal pro-

cessing techniques to improve the acquisition of weak sig-

nals, resorting to increased correlation intervals through the

combination of coherent integrations and PDI techniques [3].

Weak GNSS signals are detected by exploiting long coherent

integration times and adopting an optimal number of non-

coherent accumulation [4].

The PDI technique most commonly used in GNSS is the

Non-coherent PDI (NPDI), which is robust against the limi-

tation arising from the coherent integration such as frequency

offset and data bits [5]. Another alternative is the Differential

PDI (DPDI) technique, which might lead to a better detection

probability than the NPDI technique in absence of data bits.

Nevertheless, it suffers a significant degradation in presence

of data bits. Alternatively, a key technique that is often

dismissed is the non-quadratic NPDI (NPDInq), which is robust

against residual frequency offset, phase noise, and data bits.

The drawback of the NPDInq technique is that its statistical

distribution is not known in a closed-form and it makes more

difficult to set a threshold to determinate if the signal is present

or not.

However, although several PDI techniques have been pro-

posed, the question about what is the optimal PDI technique

to acquire weak signals under practical conditions in HS-

GNSS remains open. The purpose of this paper is twofold.

Firstly, finding the best PDI technique in presence of several

impairments such as the data bits and the variations produced

in the carrier phase of the received signal due to the frequency

offset. To do so, we derive the Generalized Likelihood Ratio

Test (GLRT), which leads to a trade off between the NPDI and

NPDInq techniques. Secondly, we propose a new statistical

characterization of the NPDInq metric, which improves the

approximation of the Central Limit Theorem (CLT) usually

employed in the literature.

II. SIGNAL MODEL

The main task of the acquisition stage in HS-GNSS re-

ceivers is to perform a correlation between the received signal

from different satellites with a local replica of the signal

transmitted by one satellite. This correlation is computed using

several trial values of time-delay and Doppler frequency in

order to know if the satellite is in view for given values of

time-delay and Doppler frequency or the satellite is absent.

The resulting correlation is the cross ambiguity function (CAF)

or output of the coherent correlation. This process is usually

done for all the satellites, but in this paper, we focus on
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acquiring only a satellite because it is enough to analyse the

detection problem.

HS-GNSS receivers use long correlation intervals to detect

weak signals in two steps. First, the CAF is calculated by

performing the correlation between the local replica and the

received signal using an integration time as long as possible.

Second, several CAFs are combined non-coherently by the

application of a PDI technique to avoid the cancellation of the

signal due to the residual frequency offset and data bits. The

result of this process is the output detection metric, which can

be expressed as

Z =
Nnc

∑
k=1

h(yk), (1)

where k = 1, ...,Nnc and Nnc is the number of non-coherent

combinations, yk is the CAF in the instant k evaluated for a

value of time-delay and Doppler frequency, and Z = h(yk) is a

non-linear transformation of yk. It should be added that there

is a value of Z for each trial value of time-delay and Doppler

frequency, but we omit this dependence since we can consider

we are performing the analysis only for one of these values.

The problem of detecting signals can be modelled under two

hypotheses H0 and H1 since the satellite can be in view or

not.

• Under H0: yk = nk is a complex Gaussian noise with

mean zero and variance σ2 (the signal from the satellite

is absent).

• Under H1: yk = Adke jφk + nk is the signal plus complex

Gaussian noise (the signal from the satellite is present).

where dk is a uniform random variable that contains the

unknown data bits taking values -1 or 1 and A is a constant

amplitude affected by an unknown phase φk. The discrimi-

nation between the hypotheses H0 and H1 is determined by

comparing the maximum value of several Z obtained from

different trial values of time-delay and Doppler frequency

with a given detection threshold. If the maximum value of

Z surpasses the value of the threshold, the satellite is assumed

to be present. However, if the maximum magnitude of Z does

not exceed the detection threshold, the satellite is considered

to be absent.

III. GENERALIZED LIKELIHOOD RATIO TEST

In this subsection, we derive the GLRT assuming that the

incoming signal contains data bits of the GNSS signal and

that the phase of the signal can change for different time

instants. To do so, we have to calculate the likelihood ratio test

and replacing the unknown phase by its Maximum Likelihood

(ML) estimate [6]. A related approach was used in [7], but they

used a ML estimator assuming that the phase of the received

signal does not change during the whole observation interval.

This causes that the detector in [7] is not robust against the

frequency offset. However, in this paper, we want to find the

optimal detector being robust against the frequency offset and

data bits.

The probability density function (pdf) of the CAF yk,

assuming that it is affected by data bits uniformly distributed

taking values 1 and -1, is expressed under H1 as

p(y;H1,φk) =

1

(πσ2)Nnc
exp

(

−
Nnc

∑
k=1

1

σ2
(I2

k +Q2
k +A2)

)

Nnc

∏
k=1

cosh

(

2A

σ2
(Ik cos(φk)+Qk sin(φk))

)

, (2)

where Ik = ℜ(yk), Qk = ℑ(yk) and y = [y1, ...,yNnc ]
T . Under

H0, the pdf can be written as

p(y;H0) =
1

(πσ2)Nnc
exp

(

−
Nnc

∑
k=1

1

σ2
(I2

k +Q2
k)

)

. (3)

The detector is derived by invoking the GLRT, which consist

in applying the likelihood ratio test and replacing the unknown

parameter with its ML estimate as follows,

Λ(y) =
p(y;H1, φ̂k)

p(y;H0)
≶ γ̃, (4)

where γ̃ is the detection threshold, Λ(y) is the likelihood ratio

test and φ̂k is the ML estimate of φk. Substituting (3) and (2)

into (4) and including the constants terms in a new threshold

γ ′, the likelihood ratio test can be rewritten as

Λ′(y) =
Nnc

∏
k=1

cosh

(

2A

σ2
(Ik cos(φ̂k)+Qk sin(φ̂k))

)

≶ γ ′. (5)

Taking the logarithm operation on both sides of (5), we get

the log-likelihood ratio test as

L(y) =
Nnc

∑
k=1

ln

(

cosh

(

2A

σ2
(Ik cos(φ̂k)+Qk sin(φ̂k))

))

, (6)

where L(y) = ln(Λ′(y)). Now, we must replace the ML esti-

mate of the phase assuming that φk can take different values

for different time instants. In this case, the ML estimate is the

arctangent discriminator [8], [9] as φ̂k = atan(Qk/Ik). By re-

placing the unknown phase and making some simplifications,

the optimal detector is expressed as follows,

L(y) =
Nnc

∑
k=1

[

ln

(

cosh

(

2A|yk|
σ2

))]

≶ γ, (7)

where γ = ln(γ ′). Nevertheless, it is not desirable to use this

detector because the relationship between the amplitude A and

the noise power σ2 must be known a priori and, in practice,

this is normally not possible. To circumvent this impairment,

some approximations can be made to the function ln(cosh(x)).

On the one hand, by Taylor’s formula, an approximation of

cosh(x) for small values of x is 1+x2/2. Moreover, the Taylor

series expansion of the logarithm function is ln(x+ 1) ≈ x.

Combining the two series, we obtain ln(cosh(x))≈ x2/2. Thus

for small values of x and including all the constant terms in
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the threshold, the resulting detector is well approximated by

the conventional NPDI technique as

ZNPDI =
Nnc

∑
k=1

|yk|2 ≶ γZNPDI
. (8)

On the other hand, for large values of x, the cosh(x) can

be approximated by e|x|/2. Taking the logarithm function,

the approximation of the function ln(cosh(x)) is |x| − ln(2).
Thereby, if x is large, the approximation of the resulting

detector leads to the NPDInq technique since the constant terms

can be incorporated into the threshold as

ZNPDInq =
Nnc

∑
k=1

|yk|≶ γZNPDInq
. (9)

IV. DETECTION THRESHOLD

The signal detection boils down to the comparison of the

metric Z of a PDI technique with a detection threshold to

distinguish either the satellite is considered to be in view

or not. The detection threshold is affected by the individual

probability of false alarm (Pf a) as

Pf a = 1− cdfZ(γ;H0), (10)

where cdfZ(γ;H0) is the cumulative density function of the

metric of a PDI technique under the condition H0. However,

the definition of the detection threshold is usually set fixing

a value of global probability of false alarm (PFA). The PFA

depends on Pf a as

PFA = 1− (1−Pf a)
L, (11)

where L is the number of independent trial points of Doppler

frequency and time-delay.

A. Detection threshold for the NPDI technique

The detection threshold for the NPDI technique can be

defined in closed-form as

γZNPDI
= cdf−1

X (1−Pf a,2Nnc;H0), (12)

where cdf−1
X is the inverse cumulative distribution function of

a chi-square with 2Nnc degrees of freedom.

B. Detection threshold for the NPDInq technique

The definition of a threshold for the NPDInq technique is

more complicated than the determination of a threshold for

the NPDI technique since the cdf of the NPDInq metric is

not known in closed-form. This occurs because the cdf of the

NPDInq metric is composed by the sum of Nnc independent

Rayleigh random variables and the calculation of this cdf is

far from being trivial. The approach used in the literature to

define the detection threshold for the NPDInq technique is by

invoking the CLT because the NPDInq metric asymptotically

converges to a Gaussian distribution for large values of Nnc

[10].

However, although the CLT approximation provides a tight

fit in the central part of the statistical distribution, it is often

too loose at the tail, where false alarm probabilities need to be

calculated. For this reason, in this subsection, we improve the

accuracy of the CLT approximation used to estimate the pdf

of the NPDInq metric. To do so, a non-linear transformation

can be applied to enhance the convergence speed of the

NPDInq metric to a Gaussian distribution with respect to

Nnc. In this case, if the metric of NPDInq is raised to an

appropriate fractional exponent, the pdf of the NPDInq metric

may converge faster to a Gaussian distribution. To define the

detection threshold for the NPDInq technique following this

approach, the mean and the variance of the NPDInq metric

raised to a fractional exponent must be calculated. To do this,

we suppose that Y is a random variable, which is raised to β
as

T = Y β . (13)

The mean and the variance of T , denoted by µT and σ2
T , can

be calculated using a Taylor series, which results in [11]

µT ≈ µ
β
Y

[

1+
1

2
β (β −1)

σ2
Y

µ2
Y

]

, (14)

σ2
T ≈ β 2 σ2

Y

µ
2(1−β )
Y

, (15)

where µY is the mean of Y and σ2
Y is its variance. Applying

(14) and (15) in our problem, the mean and the variance of the

NPDInq metric under H0 raised to the power of β are given

by (16) and (17), respectively

µ
NPDI

β
nq|H0

≈ µ
β
NPDInq|H0

[

1+
1

2
β (β −1)

σ2
NPDInq|H0

µ2
NPDInq|H0

]

, (16)

σ2

NPDI
β
nq|H0

≈ β 2
σ2

NPDInq|H0

µ
2(1−β )
NPDInq|H0

, (17)

where µNPDInq|H0
and σ2

NPDInq|H0
are the mean and the variance

of the NPDInq metric under H0, respectively, which are given

by

µNPDInq|H0
= Nncσ

√
π

2
, (18)

σ2
NPDInq|H0

= Nncσ2
(

1− π

4

)

. (19)

Finally, the threshold for the NPDInq technique is defined as

γZNPDInq
≈ cdf−1

N

(

1−Pf a,µNPDI
β
nq|H0

,σ
NPDI

β
nq|H0

;H0

)
1
β

, (20)

where cdf−1
N is the inverse cumulative distribution function of

a Gaussian distribution.
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Fig. 1. Kullback-Leibler divergence between the empirical pdf and the
Gaussian approximation for different fractional exponents.

Optimum value of β : The problem is to find the optimum

fractional exponent to improve the convergence speed of the

NPDInq metric to a Gaussian distribution for small values of

Nnc, which are the typical values used in HS-GNSS receivers

to acquire weak signals. In order to determine which is the

best value of β to enhance the convergence speed of the

NPDInq metric, we use the Kullback-Leibler (KL) distance or

divergence. The KL divergence is a measure of the distance

between two pdfs as

DKL(P||Q) =
M

∑
i=1

P(i) ln

(

P(i)

Q(i)

)

, (21)

where i = 1, ...,M, M is the number of points of the pdf, P(i)
is the pdf of the NPDInq metric and Q(i) is the Gaussian

approximation of the NPDInq metric.

The KL distance is computed by using different frac-

tional exponent values i.e. raising the term NPDInq to

β = 1/3,1/2,2/3,3/4, and 1 in Fig. 1. The case of

β = 1 corresponds to the CLT approximation used in the

literature. The result shows that the minimum error between

the empirical pdf and the Gaussian approximation is obtained

for β = 2/3. As we will see, the use of β = 2/3 in the NPDInq

outperforms the accuracy of the computation of the detection

threshold compared to the conventional CLT approximation.

We have used the fractional exponent of 2/3 in the simulation

on purpose since it is known the convergence speed of a

chi-squared random variable to a Gaussian distribution can

be improved using the fractional exponent of 1/3 [11]. If a

Rayleigh distribution is squared, this distribution becomes a

chi-square with 2 degrees of freedom. Then, intuitively, if the

NPDInq metric is raised to 2/3, its convergence to a Gaussian

distribution will be faster, as we confirm in Fig. 1.

V. SIMULATION RESULTS

The simulation results present the Receiver Operating Char-

acteristic (ROC) of the NPDI and NPDInq detectors, and the
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Fig. 2. ROC comparison between the NPDI and NPDInq techniques for
coherent integration time of 100 ms and C/N0 = 20 dBHz.

statistical characterization of the NPDInq metric. Simulations

are based on a Galileo E1BC signal [12]. The acquisition of

the signal is performed by the application of a HS-GNSS

receiver, which utilizes the double-FFT algorithm [13], [1].

This algorithm provides an efficient signal acquisition using a

long coherent integration time and assuming some assistance

information about the Doppler of the satellite. The approach

used in the simulations is to adopt a small value of Nnc and

a long coherent integration time, which is the typical way to

acquire weak signals in HS-GNSS receivers.

Fig. 2 compares the ROC (i.e. the detection probability

versus the global false alarm probability) of the NPDI and

NPDInq detectors for a coherent integration time of 100 ms,

carrier-to-noise ratio (C/N0) equal to 20 dBHz and Nnc = 5,7
and 9. The results show that using a small value of Nnc

the NPDInq technique outperforms the NPDI technique in

terms of signal detection. This fact occurs because the term

inside the function cosh in (7) is not a small number since

the signal can be detected by applying a few non-coherent

integrations. Therefore, the optimal detector is more accurately

approximated by the NPDInq technique providing a gain over

the NPDI technique. This is an important result because GNSS

receivers usually use the NPDI technique to acquire signals.

However, as it can be seen in Fig. 2, the use of the NPDInq

technique leads to a better performance to detect signals in the

context of HS-GNSS receivers.

Fig. 3 illustrates the Pf a of the NPDInq metric, the CLT

approximation and the new approximation proposed herein

by introducing the fractional exponent for different numbers

of Nnc. The CLT approximation provides a significant error

with respect to the empirical value of Pf a, especially for

small values of Pf a. The value of the Pf a obtained analytically

for NPDInq under H0 using the Gaussian approximation after

having applied the β = 2/3 exponent is much more accurate

in the tail region. From this result, we can conclude that the

approximation, which uses the fractional exponent, allows us
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Fig. 3. Empirical and approximated Pf a of the NPDInq technique for
Nnc = 3,6, and 10 (in the legend, A. frac. refers to the approximation by
using the fractional exponent).

to define a more accurate detection threshold for the NPDInq

technique.

VI. CONCLUSIONS

Based on the GLRT approach, this paper has derived the

optimal PDI technique for HS-GNSS receivers. This PDI tech-

nique is difficult to implement in practice since the amplitude

of the signal must be known a priori. Due to this fact, two

approximations of this detector are used leading to the NPDI

and NPDInq techniques. We have shown that the NPDInq

technique outperforms the NPDI technique, which is the most

common technique used to detect weak signals in HS-GNSS

receivers. In addition to this, a new statistical characterization

of the NPDInq metric has been proposed. We have obtained

the optimum value of the exponent of the sum of Rayleigh

variables by minimizing the Kullback-Leibler distance to a

target Gaussian distribution. Finally, we have shown that this

transformation allows us to predict the relation between the

probability of false alarm and the detection threshold with

extraordinary accuracy.
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