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ABSTRACT

This paper focuses on approximating the false alarm and detec-

tion probabilities of the optimal non-coherent detector for a signal,

which contains a constant amplitude and unknown phase, corrupted

by Gaussian noise. Several closed-form approximations of these

probabilities are obtained using different truncations of the Edge-

worth series and the Central Limit Theorem (CLT). The accuracy

of the different approximations is contrasted to the performance of

the optimal non-coherent detector revealing that the best approxi-

mation corresponds to the Edgeworth expansion using the longest

series, which offers a great precision. The CLT approximation is not

accurate enough to predict the performance of the optimal detector.

The closed-form expression based on the Edgeworth series allows

us to set a detection threshold for a false alarm probability value

and obtain the detection probability of the detector with extreme

accuracy.

Index Terms— CLT, detection threshold, Edgeworth series,

post-detection integration techniques, ROC curves.

1. INTRODUCTION

Many technologies such as Global Navigation Satellite Systems

(GNSS), Cognitive Radio (CR), and radar, require detecting weak

signals with power levels below the noise level. High-sensitivity

GNSS receivers need to acquire weak signals to be able to provide

an estimation of its location, particularly in indoor or urban envi-

ronments [1, 2]. CR applications detect these signals to know the

availability of frequency bands [3]. Radar systems also use detec-

tion techniques to obtain the position of vehicles and atmospheric

research [4]. These technologies are clear examples in which the

application of weak signal detection techniques is of paramount

importance.

In weak reception conditions, the receiver is not usually able to

detect the signals since they arrive highly attenuated owing to the

presence of obstacles in the path between the transmitter and the

receiver. In this situation, the receiver must apply non-coherent de-

tection techniques or post-detection integration techniques to detect

these weak signals. The problem of detecting a weak signal, which

includes a constant amplitude and unknown phase that varies during

the time immersed in additive white Gaussian noise, has been widely

studied and the optimal non-coherent detector is well-known. Nev-

ertheless, the drawback of this detector is that its detection and false

alarm probabilities are unknown in closed-form. This optimal de-

tector is often approximated by the square law detector, which is

a good approximation of the optimal detector, especially for really

small values of Signal-to-Noise Ratio (SNR) [4, 5, 6]. Moreover, the

square law detector is easy to implement in a receiver and it also has

closed-form expressions for its detection and false alarm probabili-

ties.

The advantages of the square-law detector have lead most re-

ceivers to use this detector to acquire weak signals. However, for

relatively large SNR values, the approximation of this detector be-

comes less accurate causing a degradation performance with respect

to the optimal detector. These values of SNR are easy to find in

detection problems where the signal must be discriminated among

several samples of noise and detected applying a small number of

non-coherent combinations. In the high SNR regime, the optimal

detector can be approximated by the linear detector [4].

Nonetheless, the exact expressions of the false alarm and de-

tection probabilities for the linear detector are completely unknown.

Two analysis of this detector are found in [5, 7]. Although theoreti-

cal analysis of the linear and square law detectors have been widely

carried out in the literature, the literature still lacks a theoretical anal-

ysis of the optimal non-coherent detector, as far as the authors know.

This theoretical analysis is really important since it would predict

the performance of the optimal non-coherent detector in any SNR

region and set a detection threshold from a false alarm probability

value.

For this reason, the purpose of this paper is to provide a closed-

form expression of the false alarm and detection probabilities for

the optimal non-coherent detector. These expressions are obtained

by applying the Edgeworth series, which offer an excellent approx-

imation of the sum of random variables. Moreover, the accuracy

of different truncations of these series is compared to the accuracy

provided by the Central Limit Theorem (CLT), revealing a clear ad-

vantage in favour of the Edgeworth series.

2. SIGNAL MODEL

The detection of weak signals is a statistical hypothesis problem and

it is usually solved by using the detection theory [8, 9]. The receiver

usually discriminates between the hypothesis H0, the signal is ab-

sent, and the hypothesis H1, the signal is present, as

• Under H0: xk = ωk is a complex additive white Gaussian

noise with zero-mean and variance σ2 .

• Under H1: xk = Aejφk + ωk corresponds to the signal plus

complex additive white Gaussian noise with zero-mean and

variance σ2,

where A is a constant affected by an unknown phase φk and xk is the

received signal in the time instant k. The discrimination between the

two hypotheses is carried out by setting a signal detection threshold.

However, there many situations where the noise level does not allow

the receiver to detect the signal. In these circumstances, the receiver

must apply non-coherent detection techniques to be able to acquire



the weak signal. The optimal non-coherent detector is obtained by

using the Bayesian approach for our signal model assuming that the

phase φk is a uniform random variable on the interval (0, 2π]. This

result is well-known in the literature [4, 5] and is given by

Y =

Nnc
∑

k=1

ln

[

I0

(

2A|xk|
σ2

)]

≶ γ, (1)

where k = 1, ..., Nnc, Nnc is the number of non-coherent combi-

nations, γ is the detection threshold and I0 is the modified Bessel

function of order 0. The distribution of the random variable Y is

completely unknown since it is composed by the sum of Nnc in-

dependent unknown distributions. The distribution of the metric Y
provides highly desirable information about the performance of the

detector in (1) since it allows us to obtain the false alarm and detec-

tion probabilities, which are defined as

Pfa = 1− cdfY (γ;H0) (2)

Pd = 1− cdfY (γ;H1), (3)

where cdfY (γ;H0) and cdfY (γ;H1) are the cumulative density

function under H0 and H1 of the metric Y , respectively.

3. APPROXIMATION OF DETECTION AND FALSE

ALARM PROBABILITIES FOR THE OPTIMAL

DETECTOR

Closed-form expressions of the detection and false alarm probabil-

ities become necessary to set an appropriate detection threshold or

to be able to predict the performance of a detector. In our problem,

these probabilities require the knowledge about the cdf of Y under

H0 and H1. However, closed-form expressions of these cdfs are

not known owing to the complexity introduced by the sum of Nnc

independent random variables, which use modified Bessel function.

In this situation, approximations of the cdfs of Y are needed to

be able to compute the probabilities of interest. A simple approxima-

tion of the sum of distributions involves the use of the CLT theorem

because the variable Y asymptotically converges to a Gaussian dis-

tribution for large values of Nnc. However, if the Nnc value is not

large enough, the CLT does not offer an acceptable approximation,

particularly at the tail region, where the probabilities of interest are

often calculated.

One way to reduce the error introduced by the CLT approxima-

tion is by exploiting the Edgeworth series, which use some coeffi-

cients that depend on the moments of the variable Y [10, 11, 12, 13].

Another approach consists in applying the saddle-point approxima-

tion, which could offer even better accuracy than the Edgeworth se-

ries. Nevertheless, the saddle-point approximation requires the prior

knowledge about the moment-generating function for the distribu-

tion of interest [14]. Unfortunately, this function is unknown for the

problem at hand. For this reason, the best option to estimate the

distribution of the variable Y is by using the Edgeworth series.

3.1. Edgeworth series

Edgeworth series are an indispensable tool to obtain an accurate ap-

proximation of the probability density function (pdf) and cdf for a

random variable, which has been obtained from summing several in-

dependent random variables. These series provide us some clues to

enhance the CLT approximation by introducing some terms that de-

pend on Hermite polynomials and the moments of the random vari-

able. More precisely, Edgeworth series are a particular case of the

Gram-Charlier Type A series, which are defined as

fGC(Ỹ ) =
1√

2πσY

e−
Ỹ

2

2

[

1 +
∞
∑

n=3

Cn

n!
Hn

(

Ỹ
)

]

, (4)

FGC(Ỹ ) = Φ(Ỹ )− 1√
2π

e−
Ỹ

2

2

[ ∞
∑

n=3

Cn

n!
Hn−1

(

Ỹ
)

]

, (5)

where fGC and FGC are the Gram-Charlier Type A series approxi-

mation for the pdf and cdf, respectively, Ỹ = Y −µY

σY
, µY and σY

are the mean and the standard deviation of the variable Y , which are

obtained from evaluating a numerical integral due to the complexity

of the variable Y , Φ(Ỹ ) =
∫ Ỹ

−∞
1√

2πσY

e−
λ
2

2 dλ, Hn(Ỹ ) are the

Hermite polynomials, which are given by

Hn(Ỹ ) = (−1)ne
Ỹ

2

2
∂n

∂Ỹ n
e

−Ỹ
2

2 . (6)

The coefficients Cn can be expressed as

Cn =

∫ ∞

−∞
Hn(Ỹ )pdfY (Ỹ )dỸ , (7)

where pdfY (Ỹ ) is the pdf of the random variable Y . After some

straightforward, but tedious manipulations, it is found that

C3 =
µY,3 − 3µY,1µY,2 + 2µ3

Y,1

σ3

Y

, (8)

C4 =
µY,4 − 4µY,1µY,3 + 6µ2

Y,1µY,2 − 3µ4

Y,1

σ4

Y

− 3, (9)

C5 =
µY,5 − 5µY,4µY,1 + 10µY,3µY,1

2 − 10µY,2µY,1
3

σ5

Y

+
4µY,5

5

σ5

Y

− 10
µY,3 − 3µY,1µY,2 + 2µY,1

3

σY
3

, (10)

C6 =
µY,6 − 6µY,5µY,1 + 15µY,4µY,1

2 − 20µY,1
3µY,3

σ6

Y

+
15µY,2µY,1

4 − 5µY,1
6

σ6

Y

+ 30

− 15
µY,4 − 4µY,1µY,3 + 6µ2

Y,1µY,2 − 3µ4

Y,1

σ4

Y

, (11)

where µY,p = E [Y p] is the p-th moment of the random variable

under analysis, which has been calculated through many tedious

manipulations. This result is shown at the top of next page. The

µY,p moments depend on the moments of ln
[

I0
(

2A|xk|
σ2

)]

variable,

which are denote as µx,l = E

[

(

ln
[

I0
(

2A|xk|
σ2

)])l
]

. Because of

the Rayleigh or Rice nature of |xk| for the hypotheses H0 and H1,

respectively, the moments can be computed numerically for H0

µx,l,H0
=

∫ ∞

0

(

ln

[

I0

(

2A|xk|
σ2

)])l

pdf |xk|(|xk|;H0)d|xk|,
(18)

and for H1

µx,l,H1
=

∫ ∞

0

(

ln

[

I0

(

2A|xk|
σ2

)])l

pdf |xk|(|xk|;H1)d|xk|.
(19)



µY,1 =Nncµx,1, (12)

µY,2 =Nnc(µx,2 + (Nnc − 1)µ2

x,1), (13)

µY,3 =Nnc(µx,3 + (Nnc − 1)(3µx,2µxk,1 + (Nnc − 2)µ3

x,1)), (14)

µY,4 =Nnc(µx,4 + (Nnc − 1)(4µx,3µx,1 + 3µ2

x,2 + (Nnc − 2)(6µx,2µ
2

x,1 + (Nnc − 3)µ4

x,1))), (15)

µY,5 =Nnc (µx,5 + (Nnc − 1)(5µx,4µx,1 + 10µx,3µx,2 + (Nnc − 2)(10µx,3µx,1
2 + 15µx,2

2µx,1 + (Nnc − 3)(10µx,1
3µx,2

+ (Nnc − 4)µx,1
5)))), (16)

µY,6 =Nnc(µx,6 + (Nnc − 1)(6µx,5µx,1 + 10µx,3
2 + 15µx,4µx,2 + (Nnc − 2)(15µx,4 µx,1

2 + 15µx,2
3 + 60µx,2µx,3µx,1

+ (Nnc − 3)(20µx,3µx,1
3 + 45µx,1

2µx,2
2 + (Nnc − 4)(15µx,2µx,1

4 + (Nnc − 5)µx,1
6))))). (17)

Series L C∗
n

E. 1 3 C3

E. 2 3,4,6 C3, C4, 10C
2

3

E. 3 3,4,6, C3, C4, 10C
2

3 ,
5,7,9 C5, 35C4C3, 280C

3

3

E. 4 3,4,6, C3, C4, C6

5,7,9, C5, 35C4C3, 280C
3

3

8,10,12 35C2

4 + 56C5C3, 2100C
2

3C4, 15400C
4

3

Table 1. Relationship between the group of terms L and the coeffi-

cients Cn.

Although the series in (4) and (5) decrease as 1/n! in the coeffi-

cients, they suffer from having poor convergence properties, which

can cause an inaccurate estimation of the pdf of interest. This prob-

lem is circumvented by taking a specific grouping of terms that guar-

antees the convergence of the series expansion. These groupings of

terms lead to the approximations known as Edgeworth series, which

are given by (20) and (21)

fE(Ỹ ) =
1√

2πσY

e−
Ỹ

2

2

[

1 +
∑

n∈L

C∗
n

n!
Hn

(

Ỹ
)

]

, (20)

FE(Ỹ ) = Φ(Ỹ )− 1√
2π

e−
Ỹ

2

2

[

∑

n∈L

C∗
n

n!
Hn−1

(

Ỹ
)

]

, (21)

where fE and FE are the Edgeworth series approximation for the

pdf and the cdf, respectively. There are different group terms L that

guarantee the convergence of the series. These group of terms are

affected by the coefficients C∗
n. The relationship between the group

of terms L and the coefficients C∗
n is shown in Table 1. The more

coefficients are included in the Edgeworth series approximation, the

more accurate the approximation tends to be. Nevertheless, if no

coefficients are added, the Edgeworth series is the same as the CLT

approximation.

Taking into account the expressions in (20) and (21), it is possi-

ble to obtain the approximation of the cdfY (γ;H0) and cdfY (γ;H1)
depending whether the moments of the variable Y have been com-

puted using (18) for H0 or using (19) for H1. Finally, from the

estimation of cdfY (γ;H0) and cdfY (γ;H1), we can obtain the false

alarm and detection probabilities of the optimal non-coherent detec-

tor using the expressions in (2) and (3), respectively.
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Fig. 1. ROC curve approximations for the performance of the optimal de-
tector using the Edgeworth series and the CLT approximation for parameters:
A = 1.7, σ = 1, and Nnc = 10.

4. SIMULATION RESULTS

Simulation results are based on comparing the performance of the

optimal detector in (1) obtained through the Monte Carlo simula-

tions with the theoretical approximations proposed herein. Fig. 1

illustrates ROC (Receiver Operating Characteristic) curves, which

show the Pd vs. Pfa, for the optimal non-coherent detector, the ap-

proximations obtained using the different Edgeworth series and the

CLT approximation. The result shows that the CLT approximation

is a very inaccurate approximation, particularly for small values of

Pfa. Nevertheless, the Edgeworth series approximation reduces the

error offered by the CLT approximation. The more coefficients we

add to the series, the smaller the error between the simulated ROC

curve and the theoretical one. From this result, we can conclude that

the E.4 approximation of the Edgeworth series defined in the Table 1

is the most accurate approximation and it allows us to predict the

performance of the optimal detector even for small values of Pfa,

which are the most common values used in the receivers.

Fig. 2 shows the Pd vs. SNR for the optimal non-coherent detec-

tor and the E.4 approximation obtained from the Edgeworth series.

The result shows that the E.4 approximation is a very good fit and

it is able to predict the detection probability of the optimal detector

for any value of Nnc and SNR. This is an important result since it
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Fig. 2. Pd vs. SNR with Nnc = 5, 10, 50 and Pfa = 1e − 4 for the E.4
approximation and the optimal non-coherent detector obtained from simula-
tions.

provides us prior knowledge about the Pd of this detector.

Fig. 3 illustrates the error between the Pfa of the optimal detec-

tor with the E.4 and CLT approximations. The use of the Edgeworth

series is preferable since it is a more effective approximation than the

CLT, particularly at the tail region. The Edgeworth series allow us

to set an extremely accurate detection threshold to distinguish if the

signal is present or absent. The error introduced by the CLT is really

significant, especially for small values of Pfa, which are typically

implemented in receivers to avoid false alarm problems.

5. CONCLUSIONS

This paper has proposed different approximations of the false alarm

and detection probabilities for the optimal non-coherent detector,

which are based on the Edgeworth series and the CLT. Simulation

results prove that the approximation E.4 of the Edgeworth series,

which introduces a larger number of coefficients, is the most effec-

tive one. This approximation allows us to predict the performance

of the detector and set an accurate signal detection threshold. The

Edgeworth approximations E.1, E.2 and E.3, which use less coeffi-

cients than the E.4 approximation, exhibit a larger error. We can con-

clude that, in this case, the more coefficients the Edgeworth series

uses, the more accurate the approximation tends to be. The most in-

accurate approximation is the one that corresponds to the CLT, which

provides a poor accuracy, especially for small values of false alarm

probability.
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