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Abstract
Global Navigation Satellite Systems (GNSS) are often the target of malicious attacks and interferences,
mainly spoofing, thus posing a significant threat to both civilian and military equipment, and therefore
necessitating effective detection and identification of such attacks. In this ’Work-in-Progress’ paper, we
propose the application of Machine Learning neural networks, a methodology proven highly effective in fields
like cyberattack detection, to identify spoofing events across various scenarios. Our approach consists in
computing non-time related metrics from a dataset of known spoofed signals, using the observables and
signal-level measurements provided by a GNSS software receiver. The training is validated on both spoofed
and clean scenarios to ensure a comprehensive approach. Furthermore, we provide a description of the feature’s
importance in the decision-making process of the model.

1. Introduction

To meet the needs of the United States armed forces, the first model of a satellite geolocation system,
TRANSIT, was implemented in the early 1960s. Developed by the U.S. Navy, TRANSIT was quickly
followed by more sophisticated models, particularly the Global Navigation Satellite System (GNSS),
which was the first satellite-based geolocation system open to civilians.s. Since then, the Geolocation
and Navigation Satellite System (GNSS) technology has made enormous progress and has become
indispensable for a plethora of uses in daily life. It has become a major economic and political issue,
hence the development of the Galileo and Beidou-3 systems by European and Chinese respectively. Its
architecture and functioning make it an easy target for malicious attacks: in the recent years, successful
attempts of spoofing and jamming by rogue states or academic figures have shifted the debate on
the urgent need to detect attacks and mitigate the damage. Civil GPS, which are embarked in civil
transportation facilities, mainly boats or cars, are particularly vulnerable to this kind of threats but
occurrences of jacking of secured military utilities have also been reported, e.g. Iran allegedly stole a
US Air Force drone using low-cost spoofing [1].
Spoofing involves transmitting counterfeit GNSS-like signals to generate a false position in the target

receiver without disrupting GNSS operations, ultimately gaining control over the receiver. This tech-
nique entails mimicking a false signal that shares the same code phase, carrier frequency, and Doppler
frequency shift as the authentic navigation satellite signal, thereby enabling interference and signal
capture.
Many counter techniques have been developed and published in the recent years, the majority focusing

on analyzing signal level characteristics in order to trigger alarms when abnormal behavior is detected.
They cover mainly disruption detection, for instance an abrupt change in either amplitude, beat carrier
phase, code phase, and primarily power monitoring (RPM). In that sense, signal quality monitoring
(SQM) consists in detecting distortions in the correlation peak that results from the correlation of the
received signal and the local replica. For instance, among these SQM techniques, the most common
metrics are often the delta and ratio tests [2], even though a wide range of similar metrics have also been
proposed in the literature. Moreover, authentication of the signal by verifying the origin and integrity
of signals is used to identify and prevent unauthorized or counterfeit transmissions [1].
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In the past two decades, the integration of machine learning into practical, real-world applications has
experienced a remarkable surge, including the improvement of GNSS navigation performance.[3] Despite
this massive expansion to very various domains, GNSS spoofing detection through machine learning
implementation is fairly restrained [4, 5, 6, 7, 8]. Many of these works involve detection techniques that
require PVT observables, and thus they cannot be applied until the GNSS receiver has succeeded in
obtaining a position fix, which may take several seconds in cold start.
In this paper, we provide a comparative analysis of many of the existing anti-spoofing techniques when

they are tested in a common framework comprising the same GNSS software receiver and the same input
datasets of spoofed signals. To do so, a layer of machine learning algorithms is implemented in order
to gather all the outputs provided by the considered anti-spoofing techniques, and then to determine
the relevance of such techniques on the model decision process that is followed by the machine learning
algorithms. Machine learning’s greatest strength lies in its ability to discover patterns, outliers and
hidden relationships in vast and intricate amounts of data, and therefore this feature is expected to
help in unveiling which are the most effective anti-spoofing techniques among those being considered.
It is important to remark that the input data for the machine learning algorithms (in our case, the
output of the anti-spoofing techniques) often requires pre-processing such data through techniques like
removal, cross-combination, and scaling, rather than directly converting these data into binary data (i.e.
hard-decisions) for triggering alerts. These pre-processed data is then used as input for the machine
learning model, which generates binary output predicting the presence of spoofing [9].
Once the introduction and motivation of this paper has been introduced, the remaining of this paper

is structured as follows. The problem statement and the specific tasks that are conducted in the
present work are briefly presented in Section 2. Next, a high-level explanation of the mathematics and
technology used in this work is introduced in Section 3. The fundamentals of the considered Machine
Learning architecture and its explicit the features are discussed in Section 4. Finally, the experimental
setup is described in Section 5 and conclusions are drawn in Section 6.

2. Problem Statement

This work has two primary objectives. Firstly, we aim at developing a robust and efficient spoofing
detection system that leverages machine learning techniques, including both traditional algorithms
and neural networks to practically predict a malicious spoofing attempt. In parallel, we collect metrics
recently introduced in the literature along with exclusive metrics to retrospectively evaluate their weight
in the machine learning process. The ultimate goal is to establish a ranking that reflects the effectiveness
of each metric in detecting spoofing attempts. By combining a sophisticated detection system with a
comprehensive understanding of the factors influencing its success, we hope to enhance the overall
reliability and practicality of our approach.
To achieve this, we will:

• Analyze multiple datasets containing both genuine and spoofed GNSS signals.

• Investigate, extract and build relevant features and metrics for spoofing detection using a software
receiver.

• Train and evaluate a machine learning neural network to identify the most effective approach.

• Assess the impact of different features on the decision-making process of the models.

• Validate the performance of the developed system in realistic scenarios.

3. Signal Model and Software Receiver

3.1. Signal Model

A typical GNSS signal can be represented in a simplified manner by Eq (1) [10],

s(t;A, fc, ϕ) = Ad(t)c(t) cos(2πfct+ ϕ(t)) (1)

where s(t;A, fc, ϕ) is the received signal at time t, A is the amplitude of the signal, which is related to
the signal power, d(t) is the data-modulated signal containing the bits of the navigation message, c(t)
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Figure 1: Software-Defined Receiver (SDR) architecture.

is the spreading code or the pseudorandom noise (PRN) code, fc is the carrier frequency and ϕ(t) is
the carrier phase.
In a spoofing attack, the attacker generates a counterfeit GNSS signal, ssp(t), that closely resembles

the genuine signal, sgn(t). The goal is to deceive the GNSS receiver into locking onto the counterfeit
signal instead of the genuine one. The received signal in the presence of a spoofing attack can be
modeled by Eq (2) given in [5]:

r(t) = sgn(t− τgn;Agn, fc,gn, ϕgn) + ssp(t− τsp;Asp, fc,sp, ϕsp) + n(t) (2)

where sgn(t) is the genuine GNSS signal and ssp(t) is the counterfeit GNSS signal generated by the
spoofer, τ is the propagation delay and n(t) is the additive noise.
The signal model forms the basis for feature extraction and analysis in the subsequent stages of our

spoofing detection system. By exploring the differences between genuine and counterfeit GNSS signals,
we can identify meaningful features and metrics that can be used as input for the machine learning
models.

3.2. Software Receiver: A High-Level Overview

A GNSS software receiver is a GNSS receiver that processes the received signals using software algo-
rithms. It consists of several modules working together to acquire, track, and decode the GNSS signals.
These modules operate in a synchronized manner to compute the position, velocity, and time (PVT)
information [11]. The main components of a software receiver are summarized in Fig. 1 and briefly
described below:

• Signal Acquisition: This module searches for and acquires the GNSS signals transmitted by the
satellites. It correlates the incoming signals with locally generated replicas of the PRN codes to
determine the time delay and Doppler frequency shift.

• Signal Tracking: Once a signal is acquired, the tracking module continuously adjusts the local
replicas of the PRN code and carrier frequency to keep them aligned with the incoming signal.
This process involves adjusting the code delay and carrier frequency using tracking loops, such as
the code phase tracking loop and the carrier phase tracking loop.

• Demodulation and Decoding: After tracking the signals, the receiver demodulates and decodes
the navigation data. This information includes satellite ephemeris, clock corrections, and other
auxiliary data. These data are essential for calculating the PVT solution.

• PVT Calculation: The receiver uses the decoded navigation data and the measured pseudoranges
to compute the PVT solution. This calculation involves solving a set of nonlinear equations, which
can be done using various algorithms, such as the least squares method or the extended Kalman
filter.
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4. Neural Network, Features and Input Data

4.1. Neural Network

Neural Networks are a subset of machine learning, mimicking the structure and function of biological
neural networks, like the ones found in the human brain. It is typically structured with an input
layer, one or multiple hidden layers and an output layer, they are well suited for modeling non-linear
relationships. Therefore they have been increasingly used in various fields, from image recognition to
language processing [5]. In this work, we choose to focus on one in particular:
The Multi-Layer Perceptron is a type of feedforward artificial neural network that consists of mul-

tiple layers of interconnected neurons. These connections have associated weights that are adjusted
during the training process. The network learns to optimize these weights using an algorithm such
as backpropagation, which minimizes the error between the predicted output and the actual target
values. MLP is convenient in our case for multiple reasons. Firstly, it is a complex enough model to
be able to handle complex and high-dimensional data to sense the outliers and patterns in non-linear
relationships. Secondely, despite being highly efficient in most cases, it remains a fairly straightforward
and computationally light algorithm in our particular architecture. This efficiency also facilitates the
empirical search for optimal parameters through methods such as grid search[12].

4.2. Features Descriptors

To train and evaluate the performance of our machine learning models, we extract a set of features from
the received GNSS signals. The following metrics are used for feature extraction[13] [14]:

• Carrier to noise spectral density (C/N0): It measures the strength of the GNSS signal relative to
the noise level. It is an essential metric to assess signal quality and can be affected by spoofing
attacks.

The C/N0 is computed by first calculating the signal power P and noise variance σ2 from the
tracked signal. Specifically, the signal power is calculated as P = I2P + Q2

P , where IP and QP

represent the in-phase and quadrature components of the signal. We plot it in Fig. 2. In that
case, the scenario being a 10 dB power advantage, the metric is expected to raise, suggesting there
might be an issue. The dataset involves a 2 ms (milliseconds) time delay or ’push’, also described
as a ’two chip delay’, the signal is delayed by the duration of two pulses. In our case the software
receiver, never being able to locate the newest strongest peak, is keeping track of the authentic
signal instead of tracking the spoofed signal.

The noise variance σ2 is obtained from the deviation of the noise level from its mean over a certain
interval. The C/N0 is then given by the formula:

C/N0 = 10 · log10
(︃
P

σ2
· 1

PDI

)︃
(3)

where the PDI factor is the time duration over which the signal power and noise variance are
averaged.

• The delta metric (∆τ(t)): is used as a metric for detecting spoofing and it is based on computing
the following ratio [13]:

∆τ(t) =
IE,τ (t)− IL,τ (t)

2IP (t)
(4)

In this equation, IE,τ (t) and IL,τ (t) correspond to early and late taps, respectively, which are τ
seconds ahead and behind the prompt tap IP (t) in the in-phase component at time t. Since the
delta test exhibits symmetry, E[∆τ(t)] = 0 under conditions free from multipath and spoofing.

• Quadrature discriminant metric: This metric is similar to the delta metric, but for the quadrature
component. It is represented as Qdiscr and calculated as follows in Eq (4):

Qdiscr =
QL,τ (t)−QE,τ (t)

2QP (t)
(5)
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Figure 2: C/N0 observables obtained ∼ 10 seconds before and after the spoofer appeared in scenario ’os2’.

• Early-late phase metric (ELPτ ): This metric captures the phase difference between early and late
taps. It can help detect spoofing and multipath effects. It is calculated in Eq (5):

ELPτ = arctan

(︃
QL,τ (t)

IL,τ (t)
− QE,τ (t)

IE,τ (t)

)︃
(6)

• In-phase and quadrature ratio discriminant metrics (IRD and QRD): These metrics measure the
ratio between the sum of early and late taps and the prompt tap for both in-phase and quadrature
components, respectively, as given in Eq (6) and Eq (7):

IRD =
IL,τ (t) + IE,τ (t)

2IP (t)
, (7)

QRD =
QL,τ (t) +QE,τ (t)

2QP (t)
(8)

• Magnitude Difference Metric (MDτ ): This metric evaluates the difference between the magnitudes
of the early and late taps normalized by the prompt tap magnitude. It can help detect spoofing
attacks. It is calculated in Eq (8):

MDτ =

√︁
IE,τ (t)2 +QE,τ (t)2 −

√︁
IL,τ (t)2 +QL,τ (t)2√︁

IP (t)2 +QP (t)2
(9)

• Q-channel Signal Quality Monitoring (SQM) metric: It is also denoted as Msqm, is a novel SQM
metric proposed in [15] to address the limitations of traditional SQM metrics, such as limited
spoofing detection accuracy and low robustness due to false alarms caused by environmental
effects like multipath. Traditional SQM metrics are mainly constructed based on the in-phase
correlator outputs in the tracking loop of a GNSS instrument. During a spoofing attack, the
interaction between genuine and fake signals may lead to a transfer of correlation energy into the
quadrature channel. This abnormal quadrature channel energy serves as the primary indicator
for the Msqm metric. In the absence of spoofing, the typical value of Q-channel energy is 0, while
the typical value of I-channel energy is large and nonzero. When spoofing is present, even a weak
abnormal energy can quickly appear in the Q-channel. The metric is given in Eq (9):

MSQM =

√︄(︃
QE,τ (t)

IP (t)

)︃2

+

(︃
QL,τ (t)

IP (t)

)︃2

(10)
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Figure 3: Cumulated sum and its linear regression for snapshot for scenario ’os2’ in the absence (left) and
presence (right) of spoofing.

• Partial Correlation: It is computed by means of the cumulative sum of the samples comprising
a bit period. When attempting spoofing, the attacker will struggle to instantly know what to
output in the first instant of a bit sign change, thus often giving a null or random output. This
phenomenon is highlighted in the right hand of Fig. 3, where the presence of random guesses
of the bit during the first samples of the bit period causes the cumulative sum to stagnate for a
while. In contrast, for the case of a clean signal, the cumulative sum follows its linear regression
nicely. The idea of this technique is to exploit this phenomenon by computing the correlation
between the first and last samples of the bit period [16].

• Custom CCAF Metric: We compute the Cross-Ambiguity Function (CCAF) periodically, every
second before the tracking loop when this computation is traditionally only done during the
acquisition process. The CCAF can be useful to spot the presence of multiple signals even in
cases where the spoofing is inaccurate and the counterfeit peak is significantly distant from the
authentic signal by computing the correlation over both the Doppler frequency and code delay [17].
On the other hand, the computation is heavier and longer in time than other metrics proposed.
In the matlab code, we reduced the calculation in an specific area around the first peak found:
the computation is faster but the spoofer signal’s peak could be missed. In our custom metric, we
analyze the CCAF to identify the two largest peak values, which can correspond to the authentic
and counterfeit signals: after finding the first peak, we erase and replace a given area around this
peak by the average noise level before grid searching for the highest peak.
The metric is computed using with Eq (10):

λ =
R1 −R2

R1
(11)

where R1 represents the largest peak value and R2 represents the second-largest peak value of
the CCAF. This custom metric helps us assess the impact of spoofing on the CCAF over time,
by quantifying the relative difference between the two most prominent peaks. As an example,
Fig. 4 displays the CCAF when there is spoofing, where one can see that two peaks do appear,
thus indicating the presence of two simultaneous GNSS signals, one of which must be the spoofed
signal.

• SAM Metric: We adapted a metric originally designed for multipath detection, as described in
[18], to suit our needs. The Slope Asymmetry Metric (SAM) is based on comparing the left and
right slopes of the received signal correlation peak. Ideally, both slopes should be equal (but sign
reversed), and their sum should be close to zero. The metric was developed primarily for static
multipath scenarios, but we have adjusted it to be applicable in our context. Using Least Squares
Regression on four points of each side of the correlation function centered on its peak, the sum of
the two slopes is the metric used to detect any spoofing. Starting from the least squares regression,
we can use the normal equations to find the slopes for the left and right sides of the correlation
function. Given 4 points on each side, we can express the problem in matrix form. Let AL and
AR be the 4× 2 matrices for the left and right sides respectively, where the first column contains
the time shift values x and the second column is filled with ones:

6



Figure 4: CCAF plot when spoofing, zoomed 20 digits around main peak.

AL =

⎡⎢⎢⎣
x1L 1
x2L 1
x3L 1
x4L 1

⎤⎥⎥⎦ , AR =

⎡⎢⎢⎣
x1R 1
x2R 1
x3R 1
x4R 1

⎤⎥⎥⎦ (12)

Let yL and yR be the 4× 1 column vectors containing the corresponding correlation values:

yL =

⎡⎢⎢⎣
y1L
y2L
y3L
y4L

⎤⎥⎥⎦ , yR =

⎡⎢⎢⎣
y1R
y2R
y3R
y4R

⎤⎥⎥⎦ (13)

The normal equation for each side can be expressed as:

AT
LAL

[︃
mL

bL

]︃
= AT

LyL, AT
RAR

[︃
mR

bR

]︃
= AT

RyR (14)

These normal equations can be solved to obtain the slope and intercept (mL, bL,mR, bR) for each
side. In matrix notation, these solutions would be:[︃

mL

bL

]︃
= (AT

LAL)
−1AT

LyL,

[︃
mR

bR

]︃
= (AT

RAR)
−1AT

RyR (15)

After obtaining the slopes mL and mR, we can calculate the Slope Asymmetry Metric (SAM) as
the sum of the two slopes in Eq (15):

SAM = mL +mR (16)

A significant deviation of the SAM metric from zero would indicate potential spoofing.
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4.3. Input Datasets

In this study, we employ two publicly available datasets to evaluate the performance of our machine
learning models, namely the Texas Spoofing Test Battery (TEXBAT) provided by the University of
Texas at Austin, and the Oak Ridge Spoofing and Interference Test Battery (OAKBAT) from the US
Oak Ridge National Laboratory. These datasets consist of diverse scenarios of spoofed GPS L1 C/A
signals, as well as the baseline clean scenarios.

• TEXBAT dataset [19]: The Texas Spoofing Test Battery (TEXBAT) is a collection of six high-
fidelity digital recordings of live static and dynamic GPS L1 C/A spoofing tests, conducted by the
Radionavigation Laboratory of the University of Texas at Austin. The purpose of TEXBAT is to
serve as the data component of an evolving standard aimed at defining spoof resistance for civil
GPS receivers. The recordings capture a wide range of bandwidth and quantization considerations
to support the evaluation of various authentication techniques. TEXBAT includes six spoofing
attack scenarios and two clean datasets, with parameters such as spoofing type, platform mobility,
power advantage, frequency lock, noise padding, and file size. The battery enables researchers
to develop and evaluate spoofing detection techniques by studying the response of GPS L1 C/A
receivers to the different spoofing attack scenarios presented in TEXBAT [20].

• OAKBAT dataset [21] : The OAKBAT dataset is a more recent dataset explicitly designed for
GNSS spoofing detection research. It has been developed following the same methodology as the
TEXBAT dataset to provide more data for researchers as those specific resources have proven
to be scarce. This collection of digitized RF signals serves as both a complementary ”sibling”
and an advancement to the widely used TEXBAT dataset. It comprises both authentic and
spoofed GNSS signals collected in controlled environments, with the latter being generated using
a commercially available signal simulator. The OAKBAT dataset consists of 16 unique datasets,
with eight sets containing only the GPS L1 C/A signal and another eight sets containing only
the Galileo E1 signal. Each group has two spoof-free, clean baseline sets and six sets with various
degrees and types of spoofing. The datasets share several common parameters and are designed
with reproducibility and accessibility in mind, making it an invaluable resource for researchers in
the field of GNSS security and robustness.

5. Results

5.1. Experimental Setup

Our experimental setup comprises three main components: downloading spoofing or clean scenarios
from the TEXBAT and OAKBAT datasets, processing the scenarios through a modified version of our
software receiver to extract and build desired metrics, and building a machine learning neural network
using these metrics as input.
1. Datasets: We aimed to include a diverse range of scenarios from both TEXBAT and OAKBAT

datasets. In our experiments, we specifically used the Scenario 2 dataset from the TEXBAT collection,
referred herein as ’ds2’. This scenario, also known as Static Overpowered Time Push (SOTP), features a
spoofing attack where the spoofer has a 10 dB power advantage over the authentic signal ensemble. This
scenario showcases the effects of a timing attack with a significant power advantage, forcing authentic
signals into the noise floor and making the interaction between authentic and counterfeit signals less
apparent. We also used the scenario 2 of the OAKBAT dataset, herein referred as ’os2’, which gives
similar features. To have a more complete training, we also used the two clean of spoofing static scenarios
from both datasets. As a validation feature, scenario 4, herein referred as ’os4’, of the OAKBAT dataset
will be utilized.
2. Data Processing: We employed the FGI-GSRx software receiver for signal processing and anal-

ysis, which is provided as a companion software to [22]. Developed by the Finnish Geospatial Research
Institute (FGI), this versatile GNSS software-defined radio tool is built with MATLAB, allowing users
to process and analyze GNSS signals, which is particularly useful for research purposes. In our study, we
used the FGI-GSRx software to evaluate the performance of spoofing detection techniques. We input
the entire dataset into the software receiver but we focus on a shortened sample, which spans from
approximately 10 seconds before the start of spoofing to 10 seconds after, according to the timestamps
given by [19] for the TEXBAT dataset and [21] for OAKBAT.
For the non-spoofed scenarios, we compute from 100 to 120 seconds for the TEXBAT dataset and 110
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to 130 seconds for the OAKBAT dataset. As a result, most metrics comprise 20,000 epochs, given
that observations are obtained from the GPS L1 C/A signal every 1 ms. Some other metrics, such as
those using the C/N0, are obtained every 1 s. It is also important to remark that only one satellite is
being processed at a time in the results to be shown next, in particular SV3 for TEXBAT and SV8 for
OAKBAT.
3. Machine Learning: We implemented a feedforward neural network using python libraries

TensorFlow and Keras to classify the presence of spoofing attacks based on the metrics extracted from
the GNSS signals, with the goal of predicting the binary label. The choice to use a neural network was
motivated by multiple reasons. The main reason is their ability to model complex relationships very
well, which is not as efficient in different models like Support Vector Machines (SVMs) or the gradient
boosting XGBoost. They are able to extract non-linear relationships and intricate interactions between
features. Another reason is their flexibility in tuning the parameters and the architecture of the layer;
as the training dataset is still to be updated with more various scenarios, the adaptability of Multi-
Layer Perceptron (MLP) simplifies the modeling process. On the other hand, it is important to pay
attention to overfitting and bias while training, some early setups really struggled to accurately predict
the spoofing due to strong overfitting. To compare performances, we also implemented an SVM model
in our preliminary stages. While the SVM model delivered results comparable to the MLP, we decided
to concentrate on optimizing and detailing results from the neural network due to its aforementioned
benefits.
We aim in this work at using binary classification to predict whether an epoch, here a 1 ms period, is
spoofed or not. The algorithm consists of categorizing data into two classes: True or False. During the
preprocessing, we first removed extreme outliers, mainly the first 1,000 points of the implementation,
to eliminate any anomalous effects at the beginning of the dataset. Then, we applied a 1-second (1,000
points) rolling mean to smooth the data and reduce the noise. Thus, our input data is reduced from
20,000 epochs to 19,000 for 11 features. We also add the spoofed label that indicates whether a row is
spoofed (equals 1) or not (equals 0).
The dataset is randomly divided between training and test datasets with a ratio 70%−30%. To this
effect, we utilized the train test split function from the Scikit-learn Python library. This function first
shuffles the dataset randomly, then allocates a specified proportion of data points to the training set
and the remainder to the test set As a result, the training and test datasets are composed of 13 300
and 5700 points respectively.
Additionally, we computed the correlation between the different features to better understand their
relationships and potentially reduce dimensionality as illustrated in Fig. 5: it displays the 11 features
used before reducing the dimensionality as well as the label value spoofed. It is important to remark that
the importance of the correlation is given by the absolute value: a value close to 1 or -1 means a strong
relationship between the variable whereas the closer to 0 the weaker the link. Reducing dimensionality is
primordial in making the training more efficient by getting rid of useless noisy features and particularly
to avoid overfitting: other methods could be implemented such as Principal Component Analysis (PCA)
to reduce the number of features using their variance [23].
To better training performance, the metrics of size 20,000 are scaled using MinMaxScaler following

the formula:

Xstd =
X −Xmin

Xmax −Xmin
(17)

Xscaled = Xstd ∗ (max−min) + min (18)

where min, max are the features size.
In our model, we employed an L2 regularization technique to prevent any single feature from domi-

nating the learning process. This technique adds a penalty proportional to the square of the magnitude
of the weights to the loss function, discouraging the model from assigning too much importance to any
particular feature. This helps in reducing overfitting and makes the model more generalizable [24].
The architecture of the implemented neural network is as follows:

• Input layer : A dense layer with 32 neurons and a ReLU activation function, which takes the
feature vector with a length equal to the number of metrics.

• Dropout layer : A dropout layer with a dropout rate of 0.5 is added to prevent overfitting.

• Hidden layer : A dense layer with 16 neurons and a ReLU activation function. The Rectified
Linear Unit layer (ReLU) is an activation function that simply retains positive inputs and sets

9



Figure 5: Correlation matrix in percentage for the TEXBAT dataset ’ds2’.

all negative inputs to zero. Although simple, this function has several interesting properties
that make it very useful in neural networks. Firstly, while being a linear function for positive
values, ReLU introduces non-linearity due to the threshold at zero, allowing neural networks with
ReLU activations to model complex patterns and relationships. Secondly, ReLU leads to sparse
activation, meaning that at any layer, some neurons can output a true zero, contrary to tanh
and sigmoid functions that only can approach the zero value, making the network more efficient
and easier to train. Thirdly, the computation is very straightforward and basic, making the
computation very efficient, the function can be represented as f(x) = max(0, x)[25].

• Dropout layer : Another dropout layer with a dropout rate of 0.5 is added.

• Output layer : A dense layer with a single neuron and a sigmoid activation function, as this is a
binary classification problem.The sigmoid activation function, also known as the logistic function,
is commonly used in the output layer of binary classification problems due to its ability to map
any real-valued number into the range between 0 and 1. This makes it useful for outputting prob-
abilities for the two classes in a binary classification problem. The sigmoid function is represented
as f(x) = 1/(1 + e−x) where x is the input to the function.
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Figure 6: Bar plot of feature importance using connections weights (left) and permutation (right).

The model is compiled using the Adam optimization algorithm and the binary cross-entropy loss
function, which is appropriate for a binary classification task. After hypertuning the parameter using a
randomSearch, The model is trained on the training dataset for 30 epochs with a batch size of 32 and
learning rate α = 0.01. The performance of the model is evaluated on the test dataset using validation
data during training.

5.2. Metrics Ranking

In this section, we present the results obtained from our experiments. The primary objective was to
retrospectively identify the most influential metrics in our algorithm’s decision-making process during
training, in the idea to mitigate the ”black-box” effect of such algorithms. At this point of time we
build the ranking for a dataset composed of both TEXBAT and OAKBAT second scenarios and the
OAKBAT clean static scenario. (ds2+os2+cleanStatic os).
To compute the metrics importance, we use two different methods:

• Feature importance using connections weights This method aims at computing the relative im-
portance of input features by calculating the weights of the neural network [26]. In our code, we
evaluate the weight in between the input layer and the first hidden layer. The results are shown
in the left hand side plot of Fig. 6.

• Permutation importance This method involves randomly shuffling the values of a single feature,
running the model with the shuffled data, and measuring the change in performance. The larger
the performance drop, the more important the feature. To visualize the results, we plot the
importance of each feature with bar style, as well as the standard deviation error to estimate
uncertainty in the right hand side plot of Fig. 6. It is worth noting that this does not represent
a percentage because it doesn’t involve breaking a whole into parts: it represents the average
difference between the model with and without shuffling over multiple tries (here ten times for
each feature). A feature could even have a negative value if shuffling it actually improves the
model, for instance if the metrics only add noise to the model [27].

The first method uses directly the inner working of the neural network but treats the metrics inde-
pendently, which could cause a wrong estimation of features’ correlation and therefore output wrong
results. The second method is not relying on the model’s structure, thus can more adequately estimate
more complex models despite being computionally heavier. We hope to have a better vision of the
model computation by exhibiting those two methods together.
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Figure 7: Epochs spoofing decisions using the TEXBAT ’cleanStatic’ scenario (left) and the OAKBAT spoofed
dataset ’os4’ scenario (right).

Validation Dataset Non-Spoofed period Spoofed period
CleanStatic 81% –%

os4 99% 79%

Table 1
Percentage of correctly validated epochs for each dataset.

cleanStatic os4
Top 5 99% 77%

Top 3 97% 75%

Table 2
Summary of results on both validation datasets when retaining the most predictive features.

5.3. Validation Results

In this section, we discuss the validation for our merged datasets (os2+ds2+oakbatCleanStatic). To
ensure a comprehensive evaluation, we validate on two independent datasets: the spoofed OAKBAT
scenario ’os4’ and the clean TEXBAT ’cleanStatic’ scenario. This approach allows us to gauge the
algorithm’s performance in detecting and differentiating between the two types of data.
Firstly, being sure that our algorithm does not wrongly overly identify spoofing events in a clean

dataset is primordial: hereby the left hand side plot in Fig. 7 shows the C/N0 over the acquisition stage
of the GNSS receiver according to the predictions on the non-spoofed scenario. The results are quite
promising: over 80 % of the epochs are predicted correctly.
In terms of the spoofed dataset, we plot the C/N0 where the color-coded data points represent

different prediction states in the right hand side plot of Fig. 7 alongside with the confusion matrix
in Fig. 8: we observe that the model identifies almost perfectly the non-spoofed period (in blue, 98%
precision) whilst it struggles more on the spoofed event (79%). This is confirmed by the confusion
matrix Fig. 8: 417 spoofed epochs are being predicted wrongly.
For a practical use, we could convene that if the frequency of predicted spoofing exceeds a specified
threshold (e.g., 75%) within a certain time frame, it is likely that a spoofing attempt is in progress.
Tab. 1 summarizes all the validation results.
We proceeded to test our model using only the top five (CNO, ccafMetric, MetricSAM, ELP, Msqm)
and top three (CNO, ccafMetric, MetricSAM, ELP, Msqm) metrics according to their importance given
in Fig. 6. The model’s performance degraded slightly: this suggests that even the lowest ranked metrics
have valuable information, as illustrated in Tab. 2. Therefore, while our analysis confirms the significant
impact of the top-ranked metrics, it also highlights the collective contribution of all metrics in achieving
optimal detection accuracy. Regarding the clean Oakbat dataset, the results are sensibly the same.
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Figure 8: Confusion matrix for validation using the OAKBAT dataset ’os4’.

6. Conclusions

This work-in-progress article showcases an approach for developing an efficient machine learning-based
spoofing detector concomitantly with a importance review of various metrics build in the process.
This paper uses the neural network multi-layer perceptron neural network on selected metrics and
combined datasets to classify artificially created spoofing scenarios. The procedure involves acquiring
primary data through a software receiver, constructing the desired metrics mathematically, and applying
classical machine learning pre-processing and scaling techniques.. The results give promising results as
the algorithm is able to display spoofing and non spoofing events with correct results (with a minimum
of 82% recall). As our range of validated datasets is fairly limited, we aim at improving the work by
expanding the dataset with home generated spoofing scenarios using the Skydel GSG-8 GNSS simulator
available at the SPCOMNAV research group. Those new datasets will enable a wider range of spoofing
attacks, helping reduce the potential bias in our results.
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