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ABSTRACT  
 
In this paper, we will concentrate on interferences as one 
of the major impairments that can threat the integrity of 
mass-market GNSS receivers. While the topic of 
interference detection has already been covered in the 
existing GNSS literature, the purpose of this work is to 
focus on the fast and reliable detection of interferences, 
using the tools of the so-called “quickest detection” 
theory. To do so, time plays a relevant role, since we are 
often interested in minimizing the time for detecting a 
given threat. This is in contrast to classical detection 
techniques, where the goal is to maximize the detection 
probability subject to some probability of false alarm, but 
where “time” is not explicitly considered. 
 
Theoretical results on quickest detectors are 
complemented in this work with experimental tests using 
real signals, obtained in the framework of the EC funded 
iGNSSrx project. The effects of different types of 
interferences onto the proposed quickest detection 
techniques are shown and the performance of the 
designed detection algorithms working in real conditions 
is presented. The results show how the behavior of the 
proposed algorithms is satisfactory for being used in 
integrity monitoring applications. 
 



INTRODUCTION  
 
With the widespread deployment of GNSS, one of the 
major challenges to be solved is the provision of integrity 
to users beyond the civil aviation community, where this 
feature is already a well-established performance 
criterion. Position integrity is typically provided in civil 
aviation by Receiver Autonomous Integrity Monitoring 
(RAIM) algorithms and Satellite Based Augmentation 
Systems (SBAS). However, such methods require 
conditions that cannot be fulfilled in road and urban 
environments due to effects like multipath propagation 
and interference signals [1]. This implies that signal 
integrity, which in civil aviation is almost translated into 
position integrity, can hardly be used to ensure position 
integrity in terrestrial environments. It is for this reason 
that signal integrity is actually a concern within the GNSS 
community, motivated by the widespread deployment of 
terrestrial GNSS receivers and the emergence of new 
GNSS-based applications and services [2], specially 
safety of life and critical systems.  
 
Herein, we will concentrate on interferences as one of the 
major impairments that can threaten the integrity of mass-
market GNSS receivers. This is in line with the increasing 
concern on the unauthorized use of low-cost portable 
jammers, which have become a real threat for GNSS-
based services [3], especially in road or urban 
environments. While the topic of interference detection 
has already been covered in the existing GNSS literature 
[4], the purpose of this work is to focus on the fast and 
reliable detection of interferences, using the tools of the 
so-called “quickest detection” theory. The output 
information from quickest detectors can be used either to 
discard the current measurements (i.e. thus avoiding 
outliers in subsequent stages of the receiver) or to apply 
mitigation techniques as soon as possible (i.e. thus 
bounding the performance degradation within some given 
limits). To do so, time plays a relevant role, since we are 
often interested in minimizing the time for detecting a 
given threat. This is in contrast to classical detection 
techniques, where the goal is to maximize the detection 
probability subject to some probability of false alarm, but 
where “time” is not explicitly considered. This makes 
these techniques relevant to applications requiring a time 
of alert, as generally is the case for safety-of-life users. 
 
One of the most popular techniques of quickest detection 
is the CUSUM algorithm, which is a sequential method 
aimed at minimizing the detection delay subject to a false 
alarm constraint. This method is derived as a solution to 
“statistical change detection” problems, where the 
incoming measurements exhibit a sudden change in either 
their statistical parameters (e.g. mean, variance) or even 
in the type of its probability density function (e.g. moving 
from a Gaussian to a uniform distribution). This approach 
fits very well onto the kind of threats (e.g. interference) 
that a GNSS receiver may experience in real life, where 
sudden changes in the properties of the received signal are 
likely to be experienced.  

 
The quickest detection framework has been extensively 
studied in the past decades, being applied into a large 
number of fields [5]. Nevertheless, to the best of the 
authors’ knowledge, quickest detection has not been 
applied yet to GNSS at signal level. Based on this 
observation, we already addressed this problem for the 
case of multi-antenna GNSS receivers (see [6], [7]), and 
for single-antenna receivers in [8]. Moreover, in [9] we 
provided a framework to introduce and stimulate the use 
of quickest detection in GNSS. In this paper, though, we 
focus only on interference detection for single-antenna 
GNSS receivers. It is worth noting that none of the above 
literature presents results with real measurements, which 
is the main objective of this work. Therefore, our 
contribution in this work is twofold: (i) to provide a 
complete set of quickest interference detection techniques 
able to cope with the wide range of GNSS interference 
types; (ii) to provide realistic results of the proposed 
techniques in order to show the capability of our 
techniques to operate in real working conditions.  
 
Real signals considered in this work were gathered in the 
framework of the “Integrity Receivers” project (iGNSSrx) 
funded by the European Commission, being UAB part of 
the consortium. Thanks to the use of these real data, 
recommendations are provided herein for setting and 
tuning the algorithms in practice, when real working 
conditions need to be faced. The results show that the 
proposed algorithms can successfully be tuned for 
different scenarios, and that satisfactory results are 
obtained, thus paving the way for the implementation of 
realistic integrity monitoring algorithms. 
 
Next, we introduce the signal model used for developing 
the detection algorithms. In the following section, we 
present the quickest interference detectors and their 
configuration. Finally, we present numerical results 
obtained with real life signals, showing the capability for 
detect different kinds of interferences of the proposed 
approaches.  
 
SIGNAL MODEL 
 
Let us consider a sequence of independent observations 
𝒙 =    𝑥 0 , 𝑥 1 ,… , 𝑥 𝑣 ,… , 𝑥(𝐾 − 1) !, where 𝑣 is the 
time instant at which an integrity threat appears (e.g. 
interference). Consequently, it is assumed that before 𝑣 
(i.e. at hypothesis ℋ!) the observation 𝑥(𝑛) follows a 
given statistical distribution, whereas after the change (i.e. 
at hypothesis ℋ!) it follows a different one: 

ℋ!:    𝑥 𝑛   ~  𝑓! 𝑥 𝑛 ,          𝑛 < 𝑣 
ℋ!:    𝑥 𝑛   ~  𝑓! 𝑥 𝑛 ,          𝑛 ≥ 𝑣. 

(1) 

 
Based on these premises, sequential change detection 
aims at finding the strategy that minimizes the detection 
delay, while keeping the mean time between false alarms 
larger than a conveniently set value. For this purpose, the 
CUSUM algorithm was proposed, which is based on the 
logarithm of the likelihood ratio, defined by 



LLR 𝑛 ≐ ln
𝑓! 𝑥
𝑓!(𝑥)

 (2) 

and referred to as the log-likelihood ratio (LLR). For the 
sake of clarity we have omitted the time index 𝑛 from the 
independent random variables 𝑥, keeping in mind that 
each variable correspond to a given time instant (i.e. 
𝑥(𝑛)). For instance, in the case of a Gaussian mean 
change, where 𝑓! 𝑥 = 𝒩(µμ!,𝜎!!) and 𝑓! 𝑥 =
𝒩(µμ!,𝜎!!), we have the following LLR: 

LLR 𝑛 =
𝜇! − 𝜇!
𝜎!!

· 𝑥(𝑛) −
𝜇! + 𝜇!

2
. (3) 

 
From [9], we know there are two cases: 
1) Completely known LLR: In this case (i.e. known 

distributions and parameters), the CUSUM is defined 
by the next decision rule: 

𝑔 𝑛 ≐ 𝑔 𝑛 − 1 + LLR 𝑛
!
≥ ℎ (4) 

for some threshold ℎ, where 𝑥 ! = max(0, 𝑥). By 
doing so, it is known that the CUSUM algorithm 
minimizes the detection delay (i.e. 𝜏) subject to a 
constraint in terms of samples between false alarms 
(i.e. 𝑇 ≥ 𝑁!"). Actually, the optimality of the CUSUM 
is achieved with the following results: 

𝑇 ≥ 𝑒! ,                   

𝜏≤
ℎ

K 𝑓!, 𝑓!
, 

(5) 

with K 𝑓!, 𝑓! ≐ E! LLR 𝑛  the Kullback-Leibler 
divergence, and E! ·  the expectation under 𝑓!. 

 
2) Unknown LLR: In this case (i.e. when parameters or 

distribution after change are unknown), we can 
replace the LLR by any other function of the 
observations 𝑥(𝑛) (i.e. 𝜌 𝑛 ≐ 𝑞 𝑥 𝑛 ), with some 
negative mean before the change and positive mean 
after the change (i.e. E! 𝜌 𝑛 < 0 and E! 𝜌 𝑛 >
0), as described in [9]. That is, 
𝑔!""#$% 𝑛 ≐    𝑔!""#$% 𝑛 − 1 + 𝜌 𝑛

!
. (6) 

In this case, the detection is no longer guaranteed to 
be optimal, but it is still a very good candidate, 
provided that an appropriate function is chosen, 
satisfying: 

𝑇 ≥ 𝑒!!!  ,             

τ≤
ℎ

E! 𝜌 𝑛
, 

(7) 

with 𝜔! > 0 the non-zero root of the equation 
E! 𝑒!" ! = 1. 

 
QUICKEST INTERFERENCE DETECTION 
 
Interference detection has been carried out at the output of 
the GNSS front-end, since it is here where the 
interference is visible in most cases. In this section we 
provide different methods for detecting interferences with 
the aim of detecting a wide range of potential threats. 
These methods provide different measures (i.e. 
interference metrics) whose behavior is known when no 
interference is present and they change when some 

interference impinges onto the GNSS receiver. The 
proposed interference metrics can be classified into 
! Statistical metrics: based on the statistical properties of the 

samples at the GNSS front-end output.  
! Time-Frequency metrics: based on the time and 

frequency characteristics of the received samples.  
Variations on the values of these metrics can suggest the 
presence of an interference threat, thus making these 
metrics suitable for automatic interference detection. First 
of all, though, we need to statistically characterize these 
metrics in order to find the proper CUSUM-type 
algorithm (i.e. known or unknown LLR) to be used. 
 
To do so, let us define the following signal model. In the 
absence of interference, the received signal is dominated 
by noise, since the GNSS signal remains under the noise 
floor, whereas in the presence of interference, the 
received signal will be dominated by the interference 
itself. The detection problem thus becomes: 

ℋ!:    𝑟 𝑛 =   𝑤 𝑛 ,                             
ℋ!:    𝑟 𝑛 =   𝑖 𝑛 + 𝑤 𝑛 , 

(8) 

where 𝑟(𝑛) is the discrete-time baseband sample at time 
𝑛, 𝑖(𝑛) models the interference, and 𝑤(𝑛) is the thermal 
noise disturbing the received samples, which can be 
modeled as an independent and identically distributed 
(i.i.d) zero-mean Gaussian random process with variance 
𝜎!! . 
 
Statistical Analysis 
The statistical analysis is based on the fact that, in 
absence of interference, the statistical distribution of the 
samples at the front-end output should resemble a 
Gaussian distribution. This is so for the case when the 
automatic gain control (AGC) of the front-end is disabled 
(i.e. fixed gain) and the dynamic range of the ADC is 
large enough for resembling the Gaussian distribution. If 
the AGC is not disabled (i.e. variable gain), we could use 
the gain indicator evolution instead of the received 
samples. Henceforth we assume the AGC is disabled and 
the ADC has enough resolution. Different approaches can 
be used to measure the degree of Gaussianity, but in this 
work, we restrict ourselves to three approaches whose 
combination is able to provide early warnings in case of 
any kind of potential GNSS interference. These three 
different approaches are based on the histogram, the 
kurtosis and the autocorrelation function (ACF) of the 
front-end output samples, respectively.  
 
Histogram 
 
We know that in the interference free-case, the received 
signal is dominated by noise, so that the histogram of the 
received samples should match a Gaussian shape. 
Meanwhile, when interference is present, the received 
signal is dominated by the interference, and then the 
histogram of the received samples should depart from a 
Gaussian shape. This detection problem is equivalent to a 
goodness-of-fit test (GoF), in which we are interested on 
determining whether our received signal follows a 
Gaussian distribution or not. With this idea in mind, we 



propose a method based on a GoF test, which has the 
advantage of not requiring any a-priori information, and it 
is applicable to all types of interferences.  
 
This problem was addressed in [9], which uses the 
following test statistic: 

𝑥!!"# 𝑚 =
𝑂!

! − 𝐸!
!

𝐸!

!!

!!!

, (9) 

with 𝐸! the value of the 𝑖-th bin of the reference 
theoretical histogram evaluated under ℋ! with 𝑁! bins, 
and 𝑂!

!  is the value of the 𝑖-th bin of the measured 
histogram with 𝑁! bins at snapshot 𝑚, where each 
snapshot contains 𝑁 samples of 𝑟(𝑛). Moreover, it is 
shown how the variable 𝑥!!"# 𝑚  under ℋ! is 
approximately chi-squared distributed with 𝑁! − 1 
degrees of freedom, whereas under ℋ! it departs from a 
central chi-square distribution. That is: 

ℋ!:    𝑥!!"# 𝑚   ~  𝜒! 𝑁! − 1 ,                  𝑚 < 𝑣 
ℋ!:    𝑥!!"# 𝑚 ≁ 𝜒! 𝑁! − 1 ,                𝑚 ≥ 𝑣. 

(10) 

 
Since the distribution under ℋ! is unknown, the LLR 
cannot be completely defined, and then we must resort to 
the so-called Offset-CUSUM (see (6)). To do so the 
function  

𝜌!!"# 𝑚 ≐ 𝑥!!"# 𝑚 − 𝑏 (11) 

is defined, being 𝑏 a proper offset for which the mean of 
𝜌!!"#(𝑚) before change (i.e. under ℋ!)  is negative, but it 
is positive after change (i.e. under ℋ!)  . 
 
Moreover, the choice of the offset 𝑏 should be large 
enough to provide a certain false alarm rate through the 
nonzero root 𝜔! with (7), which turns out to be the 
nonzero root of the next equation: 

𝑒!!·! = 1 − 2𝜔
! !!!!

! , (12) 

which can be solved numerically. Thereby, making use of 
the decision rule in (6), with 𝜌(𝑛) defined in (11), we 
obtain the performance in (7), where 𝜔! is the nonzero 
solution of (12). These bounds, as well as the statistical 
characterization in (10), were compared in [9] with 
simulated results, showing a match between the 
theoretical and simulated results.  
 
Kurtosis 
 
The kurtosis is another metric for measuring the 
Gaussianity of the data under analysis. It is a statistical 
value equal to 3 if the data is Gaussian (i.e. under ℋ!), 
and otherwise (i.e. under ℋ!) it departs from 3. Let us 

define the kurtosis estimate as 𝑅 𝑚 ≐ !!
!

!!
! !, with 𝜁!

!  

the 𝑁-samples estimates of the 𝑖-th central moment of the 
received samples 𝑟(𝑛). In turn, 𝑚 stands for the snapshot 
index, where each snapshot includes 𝑁 samples. As for 
the histogram metric, the kurtosis value was analyzed in 
[9], which formulates the kurtosis-based detection in a 
quickest interference detection framework as follows: 

ℋ!:    𝑅 𝑚 ∼ 𝒩 𝜇!
! ,𝜎!!

! ,                  𝑚 < 𝑣 

ℋ!:    𝑅 𝑚 ∼ 𝒩 𝜇!
! ,𝜎!!

! ,                  𝑚 ≥ 𝑣 
(13) 

with mean and variance before change below, 

E! 𝑅(𝑚) = 𝜇!
! = 3 ·

𝑁 − 1
𝑁 + 1

, 

var! 𝑅(𝑚) = 𝜎!!
! =

24
𝑁
  .             

(14) 

Moreover, with the presence of interference , we have the 
following mean after change: 

𝜇!
! = 𝜇!

! ·
1 + 2 · INR + INR!

2 · 𝑑𝑐
1 + INR ! , (15) 

where INR is the interference-to-noise ratio, and 𝑑𝑐 the 
duty cycle. This is so for any kind of interference, both 
pulsed and continuous (i.e. 𝑑𝑐 = 1), except for wide-band 
ones, which maintain the Gaussianity of the data and then 
the kurtosis value does not vary. 
 
Hence, from (13) we have characterized the statistical 
behavior of the kurtosis, with the mean and variance 
before and after change. Since both moments can be 
known (i.e. estimated), we are able to fully characterize 
the LLR as a Gaussian mean change (see (3)), with 𝜇!, 𝜎!! 
and 𝜇! defined as in (14)-(15), and 𝑥 𝑛 = 𝑅 𝑚  the 𝑁-
sample kurtosis estimate at snapshot 𝑚. Thereby, we can 
make use of the CUSUM algorithm (see (4)), which leads 

to the performance in (5), with K 𝑓!, 𝑓! =
!!
! !!!

! !

!!!
! !  the 

Kullback-Leivler divergence for the kurtosis value. For a 
detailed analysis of the kurtosis-based detection and the 
presented results see [9]. 
 
ACF 
 
The last statistical analysis considered herein is the one 
based on the width of the autocorrelation function (ACF). 
The idea is based on the observation that, in absence of 
interferences, the samples at the GNSS front-end output 
are dominated by thermal noise, which exhibits a very 
narrow ACF. In practice however, the front-end filter will 
shape the ACF in such a way that a more or less narrow 
response (depending on the filter bandwidth) will be 
obtained. On the other hand, the presence of any other 
signal impinging onto the GNSS receiver will produce 
additional shapes appearing in the overall ACF of the 
received samples, which will result in a wider ACF width 
than that for the interference free case. 
 
Based on the definition of the discrete-time ACF given by 
𝑟! 𝑘 ≐ E 𝑟 𝑛 + 𝑘 𝑟∗ 𝑛 , with 𝑟 𝑛  the complex 
discrete-time samples at the GNSS front-end output, an 
estimate of the ACF can be obtained as 

𝑟!
! 𝑘 =

1
𝑁

𝑟 𝑛 + 𝑘 +𝑚𝑁 𝑟∗ 𝑛 +𝑚𝑁
!!!

!!!

, (16) 

where 𝑚 = 0,1,2,… stands for the snapshot index, with 
each snapshot including 𝑁 samples of 𝑟(𝑛), and 𝑘 is the 
lag value. With this definition, we can define the ACF 
width metric as follows: 



𝑥!"# 𝑚 ≐ arg!
𝑟!
! 𝑘

max
!

𝑟!
! 𝑛

=
1
𝑒
. (17) 

 
This expression is equivalent to finding the first lag for 
which the ACF maximum has decreased by a factor 𝑒!. 
An important property of this definition is that 𝑥!"# 𝑚  
does not depend on the noise power, nor on the number of 
snapshot samples, but on the bandwidth of the dominant 
signals. That is to say, when no interference is present, the 
received samples are dominated by thermal noise and then 
the width of the ACF depends on the bandwidth of the 
front-end filter. However, when some interference is 
present, the ACF width is dominated by the bandwidth of 
the interference, which is typically smaller than the front-
end bandwidth, thus leading to a wider ACF. In general, 
the ACF width metric will remain constant in both 
hypothesis ℋ! and ℋ!, but it may slightly vary (one lag 
up or down) due to possible round-off errors when 
solving (17). Nevertheless, we can fairly model the ACF 
width metric as a Gaussian random variable with a small 
variance to account for the possible round-off errors. 
 
Hence, we can write the following hypotheses, 
representing the quickest detection framework for the 
ACF width metric: 
ℋ!:    𝑥!"# 𝑚 ∼ 𝒩 𝜇!

! ,𝜎!!
! ,                  𝑚 < 𝑣 

ℋ!:    𝑥!"# 𝑚 ∼ 𝒩 𝜇!
! ,𝜎!!

! ,                  𝑚 ≥ 𝑣 
(18) 

with 𝜎!!
! = 10!!", 𝜇!

!  and 𝜇!
!  the value of the ACF 

width before and after the change, respectively. As we 
have already said, the ACF width before and after the 
change is fixed by the front-end and interference 
bandwidth, respectively. Specifically, the ACF width is 
the inverse of the front-end bandwidth, and then, since the 
bandwidth for CW and PW interferences will typically be 
much smaller, the mean after change (i.e. ACF-width in 
presence of interference) will be greater than the mean 
before change.  
 
The previous reasoning relies on the two following 
considerations: 
1) The resolution between lags (i.e. separation between 

consecutive lags) is lower than the inverse of the 
front-end filter bandwidth (i.e. 𝛥𝑘 < 1/𝐵𝑊). If this 
condition is not satisfied, the ACF width in the 
absence of interference will be fixed by the lag 
resolution 𝛥𝑘. Thereby, we can write the following 
condition for the ACF width under ℋ!: 

𝜇!
! =

1
𝐵𝑊

if  𝛥𝑘 < 1/𝐵𝑊

𝛥𝑘     if  𝛥𝑘 > 1/𝐵𝑊
 (19) 

2) The maximum computed lag (i.e. 𝑘!"#) must be 
greater than the ACF width under nominal conditions 
(i.e. in absence of interference) in order to perceive 
the ACF width change in the presence of 
interference. Otherwise, the ACF width in presence 
of interference computed from (17) will be as much 

equal to 1/BW, which is the value obtained in the 
absence of interference. 

 
A common approach in order to calculate the ACF is to 
calculate (16) for 𝑘 = −𝑁,… ,0,… ,𝑁. However, in this 
way we have to obtain many lags that in general are not 
providing valuable information (i.e. usually the 
information is concentrated in the central lags). Therefore, 
a proper way to proceed is to calculate (16) for a 
moderate number of lags. To do so, we fix the maximum 
lag (i.e. 𝑘!"#) and the separation between consecutive 
lags (i.e. 𝛥𝑘) in order to fix a proper number of lags and a 
configuration capable of detecting the change on the ACF 
width in presence of interference (i.e. taking into account 
the considerations above).  
 
As for the histogram and kurtosis metrics, using (18) we 
characterize the statistical behavior of the ACF width 
under the quickest detection framework, with 𝜇!

!  known 
and defined as in (19), 𝜎!!

! = 10!!" and 𝜇!
!  dependent 

on the bandwidth of the interference. Hence, a way to 
proceed is to fix a certain value for the mean after change 
according to the minimum change that one expects to 
detect. In this way, a minimum change detection is set 
allowing the detection of any larger change caused by 
different bandwidths. Therefore, we can obtain the exact 
log-likelihood ratio for a mean Gaussian change as in (3), 
with means and variance as commented above, and 
𝑥 𝑛 = 𝑥!"#(𝑚). Thereby, we can use the CUSUM 
algorithm in (4), leading to the performance in (5). 
However, in this case, since the variability of the metric is 
so small, we can fix ℎ = 1 and still have a very good 
performance (i.e. low false alarm rate and detection 
delay). 
 
Time-Frequency Analysis 
Time-frequency analysis (TFA) schemes are based on 
monitoring the frequency representation of the received 
signal as a function of time. In the absence of 
interference, the samples are dominated by noise and thus 
the frequency representation in the band of interest is 
usually flat over all frequencies at every time instant. 
When interference is present, the frequency representation 
should vary with respect to the flat representation, making 
possible the interference detection. Different TFA 
schemes are available in the current literature, but we 
focus on the spectrogram. The spectrogram is not limited 
to specific types of interferences, moreover it provides a 
versatile and affordable approach for interference 
detection in GNSS. Particularly, when compared to some 
other much more complex TFA methods such as the 
Wigner-Ville analysis. It is for this reason that we will use 
the spectrogram as the de-facto TFA technique herein. In 
addition, we also include in this section a sequential 
detection technique based on the estimation of the 
received power. 
 
Spectrogram 
 



A very simple and widely adopted time-frequency 
analysis is the short-time Fourier transform (STFT), 
which leads to the so-called spectrogram, a representation 
that simultaneously monitors the time- and frequency-
domain of the received signal. The spectrogram is 
obtained through the squared modulus of the Fourier 
transform of a signal interval. Therefore, at every 
snapshot, we have an estimate of the power spectral 
density.  
 
Let us define the discrete spectrogram 𝑆!(𝑚, 𝑓) at 
snapshot 𝑚 and frequency 𝑓 of 𝑟(𝑛) as follows 

𝑆! 𝑚, 𝑓 ≐
1
𝑁

𝑟 𝑖 +𝑚𝑁 − 𝑁 𝑒!!!!
!"
!

!

!!!

!

, (20) 

where 𝑚 = 0,1,2,… stands for the snapshot index, with 
each snapshot including 𝑁 samples of 𝑟(𝑛). Therefore, 
with this expression we have an 𝑁-points estimate of the 
power spectral density every snapshot. We know that in 
the absence of interference (i.e. under ℋ!) the 
spectrogram at snapshot 𝑚 and frequency 𝑓 (i.e. 
𝑆!(𝑚, 𝑓)) follows a central 𝜒! distribution with two 
degrees of freedom and proportionality parameter related 
with the noise power (i.e. 𝜎!! ). On the other hand, in the 
presence of interference (i.e. under ℋ!) it follows a non-
central 𝜒! with two degrees of freedom, proportionality 
parameter related to the noise power, and non-central 
parameter related to the interference power. 
 
This is so because 𝑆! 𝑚, 𝑓 = !

!
ℝe 𝑦 ! + 𝕀m 𝑦 ! , 

with ℝe 𝑦  and 𝕀m 𝑦  being Gaussian random variables 
with variance equal to 𝑁𝜎!!  and mean equal to 0 and 𝑖 𝑛 , 
under ℋ! and ℋ!, respectively. These results are obtained 
taking into account the statistical characterization of 𝑟 𝑛  
given in (8). Therefore, since both components are 
quadratically added, the following chi-squared 
distributions are obtained for 𝑆! 𝑚, 𝑓 : 

ℋ!:    𝑆! 𝑚, 𝑓 ∼ 𝜎!! · 𝜒!!,                  𝑚 < 𝑣 
ℋ!:    𝑆! 𝑚, 𝑓 ∼ 𝜎!! · 𝜒!! 𝜆 ,      𝑚 ≥ 𝑣 

(21) 

with 𝜆 = 2 · INR the non-central parameter of the non-
central chi-squared distribution. In order to define a 
metric to be used in the CUSUM algorithm, we propose 
the next one: 

𝑥!"#$% 𝑚 ≐
max
!

𝑆! 𝑚, 𝑓

1
𝑁 − 1 · 𝑆! 𝑚, 𝑓!!!!

!!!

, (22) 

where 𝑓! stands for the 𝑖-th frequency bin of the 𝑁-points 
power spectral density defined on (20), excluding the 
frequency bin of the maximum (i.e. max! 𝑆!(𝑚, 𝑓) ). 
 
The term in the denominator of (22) acts as a 
normalization factor with respect to the noise power. In 
this way, we remove the noise dependence of the 
distribution, and we get a metric that is independent of the 
noise power. In the absence of interference, the 
spectrogram is usually flat over all frequencies of interest, 
and then the maximum value and the mean value will not 
depart so much one from the other. On the other hand, in 
the presence of interference, the spectrogram presents 

peaks in the frequency components of the interference. 
Hence, the maximum value will now depart considerably 
with respect to the mean value, and then the spectrogram 
metric will be much greater than in the absence of 
interference. Thereby, the spectrogram metric distribution 
depends on the distribution of the maximum of all 
frequency bins of the spectrogram (i.e. max! 𝑆!(𝑚, 𝑓) ).  
 
These distributions (i.e. under ℋ! and ℋ!) do not fit the 
common Gaussian or chi-square distribution, and they 
have to be analyzed under the framework of extreme 
value theory. Extreme value theory shows that the 
cumulative density function (CDF) of the maximum of 𝑁 
independent and identically distributed random variables, 
with CDF 𝐹, has one of three possible functional forms 
depending on the tail of the parent distribution 𝐹. For the 
chi-square distribution, which is the case of the 
spectrogram under ℋ!, the CDF of the normalized 
maximum in (22) has a double exponential form with the 
following mean and variance [10]: 

𝜇!
! = ln 𝑁 + 𝛾, 

𝜎!!
! =

𝜋!

6
= 1.645, 

(23) 

where 𝛾 is the Euler constant with approximate value of 
0.5772. Hence, in the absence of interference, the mean 
value of the spectrogram metric depends on the logarithm 
of the snapshot samples, whereas the variance is constant. 
 
When the interference is present, the distribution depends 
on the maximum of a set of non-central chi-square 
random variables, for which a tractable expression is 
difficult to find. In that case, the log-likelihood ratio 
cannot be completely defined, and then we are unable to 
apply the CUSUM algorithm directly to 𝑥!"#$%. An 
alternative would be to use the Offset-CUSUM variant, 
because the distribution under ℋ! is known (i.e. double 
exponential with mean and variance as in (23)). However, 
in order to use the Offset-CUSUM we have to obtain the 
characteristic function of the distribution under ℋ!, which 
is not a straightforward calculation. Hence, in order to 
avoid this issue, we propose to use a Gaussian mean 
change CUSUM to detect the change on the mean of the 
spectrogram metric. In this way, we know that the 
algorithm may be not optimal (i.e. since the actual 
distributions are not truly Gaussian), but if the mean 
change value is properly chosen, the algorithm will 
perform well using the LLR in (3), with 𝑥 𝑛 =
  𝑥!"#$%(𝑚), and mean and variance before change defined 
as in (23) and 𝜇!

!  will be experimentally fixed depending 
on the minimum INR expected to detect. 
 
Thereby, we can make use of the CUSUM decision rule 
in (4), leading to the following performance: 

𝑇!"#$% ≥ 𝑒!!"#$% ,                             

𝜏!"#$%≤
ℎ!"#$%

E! 𝑥!"#$% 𝑚
, 

(24) 



with E! 𝑥!"#$%(𝑚) = 𝜇!
!  the fixed mean after change. 

This is so provided that the fixed mean change value is 
large enough.  
 
Sequential power detection 
 
This section proposes a quickest detection framework for 
detecting interferences in GNSS, based on the detection 
of a change in the received power. The detection principle 
is based on the fact that, in absence of interference, the 
estimated power should be around the noise power within 
the corresponding bandwidth. On the other hand, in the 
presence of some interference the estimated power should 
significantly deviate from that noise power. This problem 
was addressed in [8], which defined the following 
detection metric: 

𝑥!" 𝑚 ≐
  𝑃!" 𝑚
2𝜎!!

, (25) 

with   𝑃!"(𝑚) the estimated receiver power at snapshot 𝑚. 
 
This metric can be statistically characterized as [8]: 

ℋ!:    𝑥!" 𝑚 ∼ 𝒩 𝜇!
! ,𝜎!!

! ,                𝑚 < 𝑣 

ℋ!:    𝑥!" 𝑚 ∼ 𝒩 𝜇!
! ,𝜎!!

! ,                𝑚 ≥ 𝑣 
(26) 

with expressions for the mean and variance as follows: 

𝜇!
! = 1                                         𝜎!!

! =
1
𝑁                                                                

𝜇!
! = 1 + INR 𝜎!!

! =
1
𝑁
· 1 + 2 · INR .

 (27) 

 
From (26) we have statistically characterized the power 
estimate metric, including the mean and variance before 
and after change defined in (27). Therefore, we can fully 
characterize the log-likelihood ratio, and then use the 
CUSUM algorithm for detecting both changes in the 
mean and variance. This gives rise to the following LLR: 

LLR! 𝑚 = ln
𝜎!!

!

𝜎!!
! +

𝑥!" 𝑚 − 𝜇!
! !

2𝜎!!
!

−
𝑥!" 𝑚 − 𝜇!

! !

2𝜎!!
!  

(28) 

with the means and variances defined above. Hence, we 
can make use of the CUSUM algorithm as in (4), using 
the above LLR, and then leading to the performance in 

(5), with K 𝑓!, 𝑓! = ln !!
!

!!
! +

!!
! !!!

! !

!!!
! ! . For further 

analysis on the received power metric and the presented 
results see [8]. 
 
REAL DATA ANALYSIS 
 
This section shows the results of the detection algorithms 
previously proposed, using real (i.e. live) signals captured 
in the framework of the EC funded Integrity GNSS 
Receiver (iGNSSrx) project. Specifically, a measurement 
campaign was done, comprising real signals captured with 
a GNSS receiver at the Joint Research Center (JRC) in 
order to analyze the interference detection algorithms in 

practice. The used receiver captured GPS L1 signals with 
the following features: bandwidth of 4MHz, sampling rate 
of 10MHz, intermediate frequency of 2.57MHz and 8 
quantification bits. We divide the results according to the 
different interference signals, which include the most 
prevalent and dangerous types of interferences that we 
can find in GNSS (i.e. continuous wave, pulsed wave and 
Gaussian wide band interferences). Actually, chirp 
interferences are also common and were also captured at 
the JRC. However, we do not present here the results 
because they can be inferred from that obtained with 
continuous and pulsed wave interferences. Then, for each 
one we show the results of the quickest detection 
algorithms. In fact, we show the more relevant metrics for 
each type of interference. 
 
The presented results include the statistical 
characterization (i.e. histogram) of the methods for both 
presence and absence of interference. Moreover, they 
include the evolution of the sequential metric. This is 
obtained by processing 2 minutes of the real signals data, 
whose first minute includes the absence of interference 
case, and the last minute includes the presence of 
interference case. The snapshot time is fixed to 20ms, 
which is a common used value in practice by receivers 
and it is a convenient snapshot in order to get a sufficient 
large value for the snapshot samples assuring the results 
previously presented. 
 
Continuous Wave Interference (CW) 
Next, we show the results after processing an in-band 
CW. This interference can be detected by any of the 
proposed methods, but we only show the histogram and 
ACF metrics. Specifically, the interference starts being 
detected when it takes an INR = 4dB. However, here, we 
show the results for the case of INR = 24dB. This is so 
because in this way we can clearly see the change in the 
metrics when the interference appears. Moreover, this 
value fits well with the range of values we can encounter 
in practice, since the interference power is much greater 
than the noise level. 
 
Basically, we will see next that the statistical 
characterization of the histogram-based detection metric 
does not fit at all with the one theoretically stated (i.e. chi-
square). Nevertheless, the detection algorithm still works 
pretty well by properly setting the offset 𝑏 (see (11)). As 
for the ACF width, we will see that behaves as expected. 
 
Histogram-based detection 
 
Here, we present the results for the histogram-based 
detection metric and show the detection process by using 
this metric. Figure 1 shows the statistical characterization 
of the histogram metric for both absence (left) and 
presence of the CW interference with INR = 24dB (right). 
We can see how the histogram in both cases is quite 
different. Thus, the histogram metric exhibits a large 
change that allows the detection of the interference. The 
results are obtained by using 100 bins for computing the  



 
Figure 1 Statistical characterization of the 

Histogram-based detection metric for the CW.  

 
histogram (i.e. 𝑁! = 100). In the left plot we can see how 
the experimental distribution of the histogram metric does 
not fit the theoretical chi-square distribution. The fitted 
chi-square distribution is a chi-square distribution with 
degrees of freedom equal to the mean of the metric. This 
fitted PDF corresponds to the theoretical one since the 
mean of a chi-square distribution is equal to the degrees 
of freedom. The fact that the experimental and theoretical 
characterizations do not fit may be due to the fact that the 
distribution of the received signal in absence of 
interference is not actually a zero-mean Gaussian 
distribution. 
 
We analyzed different sets of data and we realized that the 
mean of the metric for different snapshot times is around 
2 · 𝑁!. Then, as the CUSUM algorithm for the histogram 
is based on the Offset-CUSUM, we can still use the 
proposed method but taking into account that the mean 
before the change is equal to 𝜇! = 2 · 𝑁! instead of being 
equal to 𝑁! − 1, and using an offset 𝑏 = 5 · 𝜇! in order to 
make sure that the metric is negative in the absence of 
interference.  
 
Figure 2 shows the histogram-based detection metric and 
the CUSUM time-evolution. In the left plot we see how 
the histogram metric changes just when the interference 
appears (i.e. second 60). The value after change will 
depend on the INR since the increment of the INR leads 
to an increment on the effects of the interference, and 
subsequently, an increment of the detection metric. 
Finally, in the right plot, we can see the CUSUM time-
evolution. In the absence of interference, it is close to 0, 
whereas just at the change time, it increases and crosses 
the threshold, clearly indicating the presence of 
interference. 
 

 
Figure 2 Interference detection for the CW. Metric 

(left) and CUSUM time-evolution (right). 

 

These results are obtained tuning the algorithm as 
follows: 
! We set the degrees of freedom to 2𝑁!, with 𝑁! = 100 

bins. Then, we have a mean before the change equal to 
𝜇! = 2𝑁!. 

! We use an offset 𝑏 = 5𝜇!, which is large enough to 
maintain a negative mean before change and it is short 
enough to maintain a positive mean after change (see 
Figure 1). 

! We fix the threshold ℎ!"#$ = ln
!!"
!!

, with 𝑁!" the 
number of desired metric samples between false alarms 
and 𝜔! the non-zero root of (12). 

! Finally, we use the decision rule in (6). 
 
ACF-width-based detection 
 
Here, we present the results for the ACF width detection 
metric. Figure 3 shows the ACF behavior under ℋ! and 
ℋ! in the left plot, whereas in the right plot is shown the 
ACF width evolution in time. For the ACF calculation we 
use 𝑘!"# =1ms and 𝛥𝑘 = 20𝜇s. In the left plot, we see 
how the ACF under ℋ! (red curve) decays abruptly when 
the time delay departs from 0. Indeed, the ACF falls 
below the 1/e factor just for the first computed lag. On the 
other hand, for ℋ! we see that the ACF remains above the 
factor 1/e for all the computed range (i.e. ±𝑘!"#). 
 

 
Figure 3 ACF for the CW1 (left) and ACF width time-

evolution (right). 

 
Hence, the ACF width exhibits a change in the presence 
of interference that allows us to detect it, as can be seen in 
the right plot of Figure 3. We see how the ACF width 
takes an abrupt change just when the interference appears 
(i.e. 60-th second). The value obtained under ℋ! is equal 
to the lag resolution (i.e. 20𝜇s), whereas when the 
interference appears it takes a value of 1ms. This is so 
because, as shown in the left plot, the ACF does not decay 
by a factor 1/e anywhere within the computed range. 
Therefore, as the computed range extends from – 𝑘!"# to 
𝑘!"#, the obtained ACF width is equal to 𝑘!"#. In this 
case, the value under ℋ! does not vary with the INR. This 
is so because the ACF width basically depends on the 
interference shape, which is independent of the 
interference power, and then the shape and the ACF width 
remains constant with the variation of the INR. 
 
Here we do not show the CUSUM behavior because it is 
similar to that obtained for the histogram case (see Figure 
2). The tuning of the CUSUM algorithm becomes the 
following: 
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! We set the mean and variance before change to 𝜇!
! = 𝛥𝑘 

and 𝜎!!
! = 10!!", respectively, with 𝛥𝑘 the separation 

between obtained lags in the ACF calculation from (16).  
! We set the mean after change to 𝜇!

! = 5 ·   𝜇!
!  and fix 

the threshold to ℎ!!" = 1. 
! Finally, we use the LLR for the Gaussian mean change in 

(3), with 𝑥 𝑛 = 𝑥!"# 𝑚  in (17), and then we use the 
decision rule in (4). 

 
Pulsed Sinusoidal Interference (PW) 
Next, we show the results of the pulsed sinusoidal 
interferences. We present two different interferences each 
one with a different duty cycle, in order to see the 
corresponding effects of onto the detection metrics. In 
fact, we have chosen, among the generated interferences, 
the lowest (i.e. 0.98%) and greatest (i.e. 30%) duty cycle, 
which correspond to a small and large pulse width, 
respectively. We will denote the two interferences as 
PW1 and PW2, respectively. Moreover, we show the 
results for INR = 14dB. We present the results for the 
kurtosis- and spectrogram-based detection, which are the 
most relevant metrics for detecting PW interferences. 
 
Kurtosis-based detection 
 
Figure 4 shows the statistical characterization of the 
kurtosis metric for PW1. In the left plot we observe how 
the histogram under ℋ! takes a Gaussian shape, with 
mean 3 and variance approximately equal to 5e-4, 
whereas using the theoretical expression in (14), with a 
snapshot of 20ms and sampling rate of 10MHz, we obtain 
a value of 1.2e-4. This is so because, in fact, the value of 
𝑁 in the expression of the variances refers to the number 
of independent samples that were used to calculate the 
kurtosis estimate. Then, as in our case the signal samples 
are filtered by a baseband bandwidth of 𝐵 = 2MHz, not 
all the samples in a snapshot period are independent, since 
they will be correlated by the filter shape.  
 

 
Figure 4 Statistical characterization of the Kurtosis 

estimation for the PW1.  

 
In order to obtain the proper variance value we would 
have to define the number of independent samples as 
𝑁 = 𝑁!" ·

!
!!

, with 𝑁!" = 𝐹! · 𝑇!", where 𝐹! and 𝑇!" are 
the sampling rate and snapshot time, respectively. In our 
case, we obtain a factor 0.2 multiplying the snapshot 
samples. Substituting this effective number of samples 
into the variance expression we obtain the factor 5 that 
makes fit both experimental and theoretical results (i.e. 

𝜎!!
! = 5 · !"

!!"
). On the other hand, in the right plot of 

Figure 4 we see how the histogram presents a change in 
the mean under ℋ!. Moreover, we see how the histogram 
seems to be Gaussian, but presenting a large left tail. This 
is so because the kurtosis varies between two values due 
to the variation of the effective duty cycle from different 
snapshots. 
 
Figure 5 shows the time-evolution of the kurtosis metrics 
for PW1 and PW2. We see how in both cases the metric 
varies between two different values after the change. This 
is due to the effect mentioned before on the duty cycle 
variation. Moreover, these values are around 10 and 5, 
which are close to the value obtained using the theoretical 
expression in (15) taking into account the effective INR 
(i.e. multiplied by the duty cycle). With these values we 
see that the lower the duty cycle, the larger the kurtosis 
value. Therefore, in order to fix the minimum change 
level for the CUSUM configuration, we should take into 
account the kurtosis value for the case of large duty cycle. 
Doing so, we will be able to detect any PW interference 
with any smaller duty cycle, since they will produce a 
larger change, thus becoming detectable. 
 

 
Figure 5 Kurtosis time-evolution for the PW1 (left) 

and PW2 (right). 

 
In view of the discussion above, we can configure the 
kurtosis-based CUSUM as follows: 
! We set the mean and variance before change to 𝜇!

! = 3 
and 𝜎!!

! = 5 · !"
!!"

, respectively, with 𝑁!" the number of 

samples in a snapshot. 
! We set the mean after change to 𝜇!

! = 4, which is the 
theoretical value for a PW with INR = 14dB and duty cycle 
of 30%, and fix the threshold ℎ!"#$ = ln 𝑁!" , with 𝑁!" 
the number of desired metric samples between false 
alarms. 

o This value for the mean after change is for the 
case of a PW. If the interference is a CW, the 
mean change is negative (i.e. the mean after 
change is lower than before change), and then we 
have to use another CUSUM tuned with the 
proper mean after change (e.g. 𝜇!!"

! = 2.6). 
! Finally, we use the LLR for the Gaussian mean change in 

(3), with 𝑥 𝑚 = 𝑅 𝑚 , and then we use (4). 
 
Spectrogram-based detection 
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Here, we show the results of the spectrogram metric for 
the PW interference. Figure 6 shows the statistical 
characterization of the spectrogram metric. In the left plot 
we present the histogram in the absence of interference, 
and the value for the mean and variance before the 
change. Among the analyzed data, we see that the mean 
of the spectrogram metric in the absence of interference is 
around 9, whereas the variance value is about 0.2. On the 
other hand, in the right plot, we see how the histogram of 
the spectrogram metric under ℋ! departs from that under 
ℋ!. Since the distributions in both hypotheses are 
unknown, the most important thing here is to see the large 
change in the mean of the metric, and then the use of 
mean change CUSUM is coherent. 
 

 
Figure 6 Statistical characterization of the 

spectrogram metric for the PW1. 

 
In this case, the change value depends on the INR as well 
as the duty cycle, since depending on the ON state time of 
the pulsed interference the peak appearing in the 
spectrogram will be more or less large, therefore 
producing a greater or smaller value after change. This is 
shown in Figure 7, which presents the evolution in time of 
the spectrogram metric for the PW1 and PW2 (i.e. short 
and large duty cycle). We see how the metric varies 
between two different values after the change, as for the 
kurtosis case. Therefore, in order to fix the minimum 
change level we should use the one obtained with the 
lower duty cycle (i.e. lower change). Thereby, we may 
use a minimum change level of 50 in order to allow the 
detection of the PW1. This minimum change level is good 
since it fulfills the condition 𝜇!

! > 5 · 𝜇!
! = 45 needed 

to obtain a good performance of the mean change 
CUSUM algorithm (see Spectrogram section). 
 

 
Figure 7 Spectrogram-based metric time-evolution 

for the PW1 (left) and PW2 (right). 

 
Hence, we can configure the spectrogram-based CUSUM 
as follows: 
! We set the mean and variance before change to 𝜇!

! = 9 
and 𝜎!!

! = 0.2, respectively. 

! We set the mean after change to 𝜇!
! = 50 and fix the 

threshold ℎ!"#$% = ln 𝑁!" . 
! Finally, we use the LLR for the Gaussian mean change in 

(3), with 𝑥 𝑛 = 𝑥!"#$% 𝑚  defined in (22), and then we 
use the decision rule in (4). 

 
Wide Band Interference (WB) 
This section is dedicated to present the results of a wide 
band interference corresponding to a Gaussian signal of 
50MHz centered in-band (i.e. at 1.575420 GHz). We 
process all the INR available in the captured data, which 
starts with the absence of interference and then gradually 
increases in steps of 5dB (-71, -16, -11, -6, -1, 4, 9, 14, 
19, 24dB). The interference introduces slight variations 
into all the metrics, except for the ACF width and 
spectrogram metrics. However these variations are clearly 
detectable by the histogram- and received power-based 
detection, which are shown in this section.  
 
Since the interference is Gaussian, it is striking that it is 
detectable by the histogram-based metric, as the 
Gaussianity of the received signal samples is maintained 
even with interference, and then the statistical analysis 
metrics should not vary. However, for the histogram 
metric, the presence of interference is translated into an 
increase of the variance of the received signal samples 
(i.e. increase of the noise power). Therefore, if we know 
the noise power under ideal conditions (e.g. we estimate 
it), the presence of the wide band interference spreads the 
histogram of the received samples, and then the 
histogram-based metric will depart from the ideal 
conditions value. The same happens with the received 
power metric, if we know the noise power under ideal 
conditions, we are able to discriminate an increase of this 
power due to the presence of interference. 
 
Histogram-based detection 
 
Here, we present the results for the histogram metric. 
Figure 8 shows the detection metric and the CUSUM time 
evolution. In the left plot we see how as the INR increases 
(5dB every minute) the histogram metric does so. In fact, 
due to the huge change in the metric we do not see when 
actually the metric starts to change. Specifically, the 
metric takes a slight variation around 120 seconds, which 
is due to the interference with INR = -11dB. However, the 
change is not substantial until about 180 seconds (i.e. INR 
=-6dB). It is for this reason that the CUSUM algorithm 
starts detecting the interference around 180s (see right  
 

 
Figure 8 Metric time-evolution (left) and CUSUM 

decisions (right) for the WB interferences.
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Table 1 Properties of the suggested interference detection algorithms 

 
 
 
 
 
 
 
 
 

 
 
plot of Figure 8). Nevertheless, the CUSUM is changing 
of decision among the time the interference with INR = -
6dB is present. This is so because the change is not large 
enough to maintain a mean after change positive, and then 
there are some snapshots where the metric is small 
enough to make the CUSUM decides to absence of 
interference. Hence, is not until about 240 seconds (i.e. 
INR = -1dB) when the CUSUM detects the interference 
among the entire interval. 
 
Power-based detection 
 
Here, we present the results for the power-based 
detection. Figure 9 shows the statistical characterization 
of the power metric. As for the other methods, we present 
in the left plot the histogram under ℋ!, and in the right 
plot the one when the WB is present with INR = 24dB. 
We see how for the ideal conditions, the expressions for 
the mean and variance before the change in (27) are 
approximately equal to the experimental results (i.e. 
𝜇!
! ≈ 1, 𝜎!!

! = 4.4𝑒 − 5). On the other hand, we see in 
the right plot how the histogram significantly changes in 
the presence of interference, and then it becomes 
detectable, as we expected. In this case, though, the 
relationship between the theoretical and experimental 
results does not match exactly. This is so because the 
wide band interference is filtered with a lower bandwidth, 
and then the power is reduced. 
 

 
Figure 9 Statistical characterization of the Power 

metric for the WB interference.  

 
Figure 10 shows the evolution in time of the power metric 
and the CUSUM. In the left plot, we see how the change 
on the metric increases as the INR of the interference does 
so, but as we said, the change is not as big as the expected 
one with the given INR. Nevertheless, with a minimum 
change fixed to 3 (i.e. 3dB) the interference is detected 
around second 360 (i.e. INR = 4dB). As for the histogram  

 
 
 
 
 
 
 
 
 

 
 

 
Figure 10 Power metric time-evolution (left) and 
CUSUM decisions (right) for the WB interference. 

 
case, the power metric starts changing before second 360, 
and this can be detected by decreasing the minimum 
change fixed. However, detecting an interference with 
INR=4dB is enough for practical situations, since 
interferences will often appear with powers much greater 
than just 4 dB above the GNSS received power levels.  
  
Therefore the minimum change fixed to 3 is a proper 
value for detecting interferences with low INR and 
provides a good level of false alarms rate. This is because 
decreasing the minimum change level would detect lower 
INR, but at the expense of increasing the number of false 
alarms. Hence, we can configure the power-based 
CUSUM as: 
! We set the mean and variance before change to 𝜇!

! = 1 
and 𝜎!!

! = 5 · !
!!"

, respectively.  

! We set the mean and variance after change to 𝜇!
! = 3 and 

𝜎!!
! = 5 · !

!!"
 and fix the threshold to ℎ!" = ln 𝑁!" . 

! Finally, we use the LLR for the Gaussian mean and 
variance change in (28), with 𝑥!"(𝑚) in (25), and then we 
use the decision rule in (4). 

 
CONCLUSIONS  
 
Based on the results presented so far, we can summarize 
the main features of the proposed techniques in terms of 
their suitability to certain scenarios, the type of sequential 
algorithm they implement, and their main configuration 
parameters. A summary of the proposed interference 
detection techniques is provided in Table 1 for the case of 
the histogram, kurtosis and power tests, which are the 
selected signal processing techniques for providing a 
complete set in order to be able to detect all types of 
interferences. The ACF-width and TFA metrics are 
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Metric HISTOGRAM KURTOSIS POWER 
CUSUM type Bias-CUSUM Mean-change Mean&variance-change 

Detection delay Large Medium Small 
Target 

interferences All All except wideband CW, wideband.  

Fixed parameters None 𝜇!"/!"
!"#$ = 2.2/4 𝜇!

!" = 3, 𝜎!
!" = 2𝑒 − 4 

Noise dependence Yes No Yes 

Threshold 
ℎ = ln !

!!
, 

𝜏 ≤
!" !

!!
!!

 

ℎ = ln 𝑇 , 
𝜏 ≤ !" ! ·!!!

!

!!!!! ! 

ℎ = ln 𝑇 , 
𝜏 ≤ !" !

!" !!
!!

! !!!!! !

!!!
!

 



discarded due to their higher computational load, and the 
fact that they do not provide additional information that 
may relevant for detection purposes. Regarding the 
histogram, it is based on the Bias-CUSUM, for which we 
only need to know the statistical characterization of the 
interference-free scenario (i.e. ℋ! hypothesis). This has 
the advantage of reducing the number of parameters to be 
tuned, but at the same time, it departs from the 
conventional CUSUM approach and thus incurs in a 
larger detection delay.  
 
Instead, the mean-change (MC) and mean&variance-
change (MVC) CUSUM implemented for the kurtosis and 
power tests, respectively, do provide the quickest 
detection by minimizing the detection delay. For the 
power test, this is particularly true for CW and wideband 
interference, since these are the interferences for which 
the test has been specifically designed (i.e. using the mean 
and variance values in Table 1). For the kurtosis test, 
wideband interferences (particularly those occupying the 
whole front-end bandwidth) are the ones that cannot be 
detected because they are often perceived just as an 
increased noise level. Regarding the noise, it should be 
mentioned that all the proposed techniques except for the 
kurtosis, do depend on the noise power, but this has 
already been taken into account when processing the data 
measurements. The CUSUM parameters are also 
indicated in Table 1. As we already said, for the 
histogram we do not need to fix a minimum change 
magnitude. For the kurtosis, after analyzing all the results, 
a proper mean after change is 2.2 and 4 for the CW and 
PW-CUSUM, respectively. Those values belong to a 
minimum INR detectable of 4dB for the CW case and of 
10dB and duty cycle equal to 0.25 for the PW case. On 
the other hand, for the power metric, we suggest a mean 
and variance after change of 3 and 2e-3, respectively, 
which correspond to a minimum detectable INR of 3dB. 
 
Finally, the last row of Table 1 shows the selected 
threshold as a function of the metric samples between 
false alarms (i.e. 𝑇 = 𝑡!"/𝑇!", with 𝑡!" the time between 
false alarms in seconds). Moreover, we also provide the 
corresponding bound for the detection delay, which 
depends on the false alarm rate and the CUSUM 
parameters. For the histogram case, the threshold depends 
on both the false alarm rate and the non-zero root 𝜔!, 
which is calculated from (12). On the other hand, the 
threshold for both the kurtosis and power metric depends 
on the false alarm rate, only. Since the non-zero root 𝜔! is 
smaller than one, for the same false alarm rate, the 
threshold of the histogram metric algorithm will be larger 
than that obtained for the kurtosis and power metrics. For 
the same reason we can say that the CUSUM algorithm 
for the kurtosis and power metric will be quicker than the 
histogram metric algorithm. In addition, if we analyze the 
detection delay for the kurtosis and the power metric, we 
see that the denominator of the power metric delay is 
greater than the one for the kurtosis metric algorithm. 
Therefore, the detection delay for the power metric is 
shorter than the kurtosis metric one.  
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