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ABSTRACT 
 
Multipath is one of the major impairments that can threat 
the integrity of mass-market GNSS receivers (i.e. those 
mainly used in terrestrial environments). In this context, 
the purpose of this work is to adopt a quickest detection 
framework for multipath detection in single-antenna 
GNSS receivers. This is done with the aim of providing 
signal-level integrity in GNSS applications. Three 



different approaches, all of them using the correlator 
output samples, are proposed in order to cope with a wide 
range of multipath and NLOS conditions. The results 
obtained in real field tests confirm the suitability of the 
proposed post-correlation metrics and the quickest 
detection framework to improve the navigation 
performance and to perform real-time quality monitoring. 
 
The novelty of this work is the proposal of sequential tests 
for multipath detection based on quickest detection 
theory, which provides an optimum level of signal 
integrity in terms of the trade-off between delay in 
detecting integrity threats and time between false alarms. 
This is in contrast to classical detection techniques, where 
the goal is to maximize the detection probability subject 
to some probability of false alarm, but where “time” is not 
explicitly considered. 
 
INTRODUCTION 
 
With the widespread use of Global Navigation Satellite 
Systems (GNSS) in liability- and safety-critical 
applications [1], one of the major challenges to be solved 
is the provision of integrity to different types of users 
beyond the civil aviation community, where this feature is 
already well established. Position integrity is typically 
provided in civil aviation by Receiver Autonomous 
Integrity Monitoring (RAIM) algorithms and Satellite 
Based Augmentation Systems (SBAS) [2]. However, in 
general such methods are not sufficient to provide 
integrity in road and urban environments, due to the 
predominance of local degradation effects, such as 
multipath, fading, non-line-of-sight (NLOS) propagation 
and interference signals [3]. This is the reason why 
integrity analyses on the received signal (i.e. signal 
integrity) should be considered instead, thus truly 
contributing to the subsequent provision of PVT integrity. 
Note that this has not been traditionally the case in civil 
aviation applications, where it is assumed that local 
effects have a controlled influence on the received signal.  
 
In this paper, we will concentrate on multipath and NLOS 
as the major impairments that can threat the integrity of 
GNSS signals in urban environments. Multipath 
mitigation has attracted the attention of many researchers 
during the past years, leading to a plethora of 
contributions in the existing literature such as the narrow 
and strobe correlator [4], the early/late slope or the 
multipath estimating delay lock loop (MEDLL) [5]. 
Nevertheless, detection of these threats has often 
remained in a secondary place, when indeed it is even 
more important than mitigation, especially for NLOS. The 
reason is that before using mitigation techniques, we can 
benefit from knowing whether multipath is present or not. 
Moreover, in many cases, eliminating multipath is not as 
relevant as knowing if the signal is heavily affected by 
multipath. Many users can be satisfied with that, thus not 
requiring complicated multipath mitigation techniques. 
 

In the past years, different contributions for multipath 
detection in GNSS have appeared. Most of them propose 
the use of external information like map-matching for 
identifying local threats (e.g. signal blocking obstacles) 
[6], external sensors for obtaining redundant information 
[7], or fisheye cameras to obtain a sky plot and determine 
the geometrical distribution of satellites in view [8]. 
Nonetheless, the use of external aid needs prior 
information about the user environment or external 
hardware, which is not always available in mass-market 
GNSS receivers. In addition, up to now, detection of 
degrading effects has been addressed adopting a classic 
detection framework, which is often not well suited to 
fulfill the requirements of liability- or safety-critical 
applications. In these applications, the key objective of 
signal-level integrity method should be to detect the 
occurrence of a degrading effect as quick as possible, 
within the current batch of samples being processed. 
 
In this work, we take a leap forward in the field of 
multipath detection, and we propose the adoption of a 
family of CUSUM-based on-line change detectors. The 
CUSUM algorithm is probably the most popular change 
detector [9]. It was derived as a solution to “statistical 
change detection” problems, where the incoming 
measurements exhibit a sudden change in either their 
statistical parameters (e.g. mean, variance) or even in the 
type of its probability density function. This approach fits 
very well into the kind of threats and abnormal events (in 
particular, multipah) that a GNSS receiver may 
experience in real life, where sudden changes in the 
properties of the received signal are often common. In 
order to cope with any kind of multipath situation, we 
propose a set of analyses based on values directly or 
indirectly available at the tracking loop outputs (i.e. post-
correlation metrics). 
 
While the quickest detection framework has been 
extensively applied into a wide range of fields, it has 
barely been used in the GNSS domain. Based on this 
observation, we already addressed this problem for the 
case of multi-antenna GNSS receivers (see [10], [11]), 
and for single-antenna receivers in [12]. Moreover, in [13] 
we provided a framework to introduce and stimulate the 
use of quickest detection in GNSS. In the present paper, 
though, we focus only on multipath detection for single-
antenna GNSS receivers. Therefore, our contribution in 
this work is twofold: (i) to provide a complete set of 
quickest multipath detection techniques able to cope with 
different situations; (ii) to provide real signal results of 
the proposed techniques in order to show the capability of 
our techniques to work in real conditions. 
 
Theoretical results on quickest detectors are 
complemented in this work with very extensive 
experimental tests using real signals, which were gathered 
in the framework of the “Integrity Receivers” project 
(iGNSSrx) funded by the European Commission, being 
UAB part of the consortium that carried out the project. 
The performance of the proposed detection algorithms in 



real working conditions is presented. This serves as a 
reference for tuning the parameters of algorithms to be 
used later on in real receivers. The results confirm the 
suitability of the proposed algorithms for real-time 
integrity monitoring, thus improving the navigation 
quality.  
 
Next, we introduce the signal model used for developing 
the detection algorithms. In the following section, we 
present the quickest multipath detectors and their 
configuration. Finally, we present numerical results 
obtained with real life signals, assessing the performance 
of the proposed methodology. 
 
SIGNAL MODEL 
 
Let us consider a sequence of independent observations 
𝒙 =    𝑥 0 , 𝑥 1 ,… , 𝑥 𝑣 ,… , 𝑥(𝐾 − 1) !, where 𝑣 is the 
time instant at which an integrity threat appears (e.g. 
multipath). Consequently, it is assumed that before 𝑣 (i.e. 
at hypothesis ℋ!) the observation 𝑥(𝑛) follows a given 
statistical distribution 𝑓!, whereas after the change (i.e. at 
hypothesis ℋ!) it follows a different one, 𝑓!: 

ℋ!:    𝑥 𝑛   ~  𝑓! 𝑥 𝑛 ,          𝑛 < 𝑣 
ℋ!:    𝑥 𝑛   ~  𝑓! 𝑥 𝑛 ,          𝑛 ≥ 𝑣. 

(1) 

 
Based on these premises, sequential change detection 
aims at finding the strategy that minimizes the detection 
delay, while keeping the mean time between false alarms 
larger than a conveniently set value. For this purpose, the 
CUSUM algorithm was proposed, which is based on the 
logarithm of the likelihood ratio, defined by 

LLR 𝑛 ≐ ln
𝑓! 𝑥
𝑓!(𝑥)

 (2) 

and referred to as the log-likelihood ratio (LLR). For the 
sake of clarity we have omitted the time index 𝑛 from the 
random variables 𝑥, keeping in mind that each variable 
correspond to a given time instant (i.e. 𝑥(𝑛)). 
 
From [13], we know that if the LLR is completely known, 
the CUSUM is defined as the next decision rule: 

𝑔 𝑛 ≐ 𝑔 𝑛 − 1 + LLR 𝑛
!
≥ ℎ (3) 

for some threshold ℎ, where 𝑥 ! = max(0, 𝑥). By doing 
so, it is known that the CUSUM algorithm minimizes the 
detection delay (i.e. 𝜏) subject to a false alarm rate 
constraint (i.e. 𝑇 ≥ 𝑁!"). Specifically, the optimality of 
the CUSUM is achieved with the following results: 

𝑇 ≥ 𝑒! ,                     

𝜏≤
ℎ

K 𝑓!, 𝑓!
, 

(4) 

with K 𝑓!, 𝑓! ≐ E! LLR 𝑛  the Kullback-Leibler 
divergence, and E! ·  the expectation under 𝑓!. 
 
For the particular case of multipath detection in GNSS, 
the detection must be carried out at the acquisition and/or 
tracking stage (i.e. after despreading), where 
measurements such as the estimated C/N0, code 
discriminator output (i.e. DLL) and the shape of the 
correlation curve fluctuates with the presence of NLOS 

and multipath [1]. Consequently, we will be able to detect 
NLOS and multipath based on the fluctuations of these 
measurements. Let us first define the signal model for the 
multipath detection problem. We assume that we operate 
at the output of a bank of 𝐿 correlators with a given post 
detection integration time (PDI). With this scheme, the 
following hypotheses can be written, depending on the 
presence (ℋ!) or absence (ℋ!) of multipath: 

ℋ!:    𝒚 𝑘 = 𝜶! 𝑘 +   𝒘 𝑘 ,                                   
ℋ!:    𝒚 𝑘 = 𝜶! 𝑘 + 𝜶! 𝑘 +     𝒘 𝑘 , 

(5) 

where 𝒚(𝑘) is the 𝐿×1  vector with the 𝐿 correlator 
outputs at the 𝑘-th PDI period. 𝜶! 𝑘  is the vector with 
the 𝐿 complex amplitude, with 𝑗 = 0,1  corresponding to 
the LOS and multipath post-correlation outputs 
components, respectively. Finally, 𝒘 𝑘  is the noise 
vector whose components are the post-correlation 
complex Gaussian noise.  
 
Without loss of generality only one multipath ray is 
assumed, representing either a single dominant reflector 
or a virtual reflector, the latter being the mathematical 
equivalent of a combination of physical reflectors. This 
model is even more complicated than the showed one, 
since the complex amplitudes 𝜶! 𝑘 , besides being 
correlated, might be modeled as random variables because 
they depend on the multipath parameters. This is so 
because the multipath parameters are unknown in practice 
and then they might also be modeled as random 
parameters. For this reason the statistical characterization 
of the multipath metrics may be difficult to obtain, and we 
proceed as follows: 
! Despite the complexity of the signal model, the multipath 

metrics can be approximated as Gaussian variables in both 
absence and presence of multipath.  

! We obtain the statistical characterization experimentally, by 
evaluating the distribution of real data. This is done in order 
to confirm the Gaussian distribution. 

! Hence we can use the CUSUM for a change on the mean, 
variance or both of a Gaussian variable.  

 
QUICKEST MULTIPATH DETECTION 
 
In this section, we propose some sequential or 
“automatic” approaches in order to detect the presence of 
multipath. These automatic approaches make use of the 
tracking measures (i.e. multipath metrics) and are 
intended to provide quickest detection, with the aim of 
detecting as soon as possible the presence of any kind of 
multipath. We show the experimental statistical 
characterization that is required for quickest detection on 
different multipath detection metrics (i.e. C/N0 estimate, 
DLL output and the Slope Asymmetry Metric, SAM). In 
particular, we will focus on the C/N0-based threat 
detection and we will provide a summary of the main 
results for the DLL- and SAM-based techniques, which 
are further analyzed in [12] and [13], respectively. The 
results that we will show for presenting the statistical 
characterization of C/N0 values are obtained by analyzing 



data captured with a real GNSS receiver under the 
framework of the iGNSSrx project. These data were 
gathered by a moving vehicle in a dense urban 
environment, in London’s (UK) downtown. The vehicle 
was under benign conditions (i.e. ℋ!) the first 200s, and 
then it changed to harsh conditions (i.e. ℋ!) until the end 
of the data record. We discriminate between benign and 
harsh conditions with the aid of a truth reference for 
calculating the position error. For the data under benign 
conditions we obtain a 2D mean positioning error of 2m, 
whereas for the data under harsh conditions we obtain a 
mean positioning error of 50m. 
 
Analysis of the C/N0 
Under benign conditions the C/N0 should be relatively 
constant in a given range, normally 42–47dB-Hz. On the 
other hand, under harsh conditions (i.e. with multipath) 
the C/N0 increases or decreases depending whether the 
multipath is constructive or destructive, respectively, and 
shows higher variance. Hence, this is equivalent to having 
a change on the mean of the C/N0. This is shown in 
Figure 1, which presents the C/N0 of one of the satellites 
in view for the case of being in benign conditions the first 
200 s and in harsh conditions the rest of the gathered data.  
 

 
Figure 1 - C/N0 time-evolution of one of the 

satellites in view. 

 
We see how the C/N0 presents a change on the mean after 
second 200. Before the change, the mean value is about 
44dB-Hz with variations up to 3dB, whereas after the 
change, the mean is around 33dB-Hz and the C/N0 values 
take more variations than before the change. Thereby, we 
can contribute to solving the problem of multipath 
detection as a C/N0 mean change detection. To do so, we 
have to statistically characterize the C/N0. Since the C/N0 
estimates are based on the average of the prompt 
correlator (i.e. aligned with the estimated time-delay of 
the received signal) [14], the C/N0 estimates can be 
approximated, using the central limit theorem, by a 
Gaussian random variable. Therefore, we can write the 
following hypotheses: 

ℋ!:    𝑥! 𝑚 ∼ 𝒩 𝜇!
! ,𝜎!!

! ,                  𝑚 < 𝑣 

ℋ!:    𝑥! 𝑚 ∼ 𝒩 𝜇!
! ,𝜎!!

! ,                  𝑚 ≥ 𝑣. 
(6) 

 
This is shown in Figure 2, which presents the statistical 
characterization of the C/N0 estimates (linear units) 
corresponding to the values of Figure 1. In the left plot,  

 
Figure 2 - Statistical characterization of C/N0. 

Under 𝓗𝟎 (left) and under 𝓗𝟏 (right). 

 
we see how the histogram in benign conditions is centered 
about 44dB-Hz (i.e. 2.5e4), and we can see how the main 
component of the histogram fits pretty well to a Gaussian 
distribution with mean and variance equal to 43.7dB-Hz 
and 1.12e7, respectively. Hence, we can conclude that the 
C/N0 values in linear magnitude can be modeled as a 
Gaussian random variable, in absence of multipath. On 
the other hand, in the right plot, we see how the histogram 
in harsh conditions reflects the variation of the mean 
value after change. This may be due to the variation of 
multipath conditions, producing a non-stationary 
histogram. However, we see how the main component of 
the histogram is quite Gaussian shaped. 
 
In gross terms, we could say that the C/N0 distribution in 
both hypotheses ℋ! and ℋ! can roughly be approximated 
by a Gaussian distribution with different mean and 
variance. However, the variance after change will depend 
on the multipath parameters and then it will be unknown. 
In addition, the change on the mean is large enough to 
neglect the fact that there is a slight change in variance, 
too. Hence, we can use the CUSUM algorithm for a 
change in the mean of a Gaussian distribution in order to 
detect the presence of multipath. To do so we propose the 
following configuration of the Gaussian distribution: 
! 𝜇!

! : Under ideal conditions the mean of the C/N0 should 
be around 45dB-Hz, however depending on the number of 
bits of the ADC and environment conditions it may be 
slightly lower. Then we might fix the mean under ℋ! to 
43-44dB-Hz, since it is the expected value under benign 
conditions. Nevertheless, it is possible that for any reason 
the mean value may be lower, even in the case of absence 
of multipath (e.g. receiver losses, shadowing, …). It is for 
this reason that it may be convenient to use the estimate of 
the mean C/N0 value. Therefore we can sequentially 
estimate the mean C/N0 value and use it as the mean before 
the change for the CUSUM algorithm. In this way, the 
mean before the change is set more precisely, but we have 
to make sure that the estimation corresponds to the 
hypothesis ℋ! and the change has not occurred yet. This is 
done, by fixing a limit for the mean before the change (e.g. 
35dB-Hz), and if the estimate of the mean C/N0 value is 
below this limit, the estimate is discarded and we use the 
previous estimate that is above the limit. 

! 𝜎!!
! : As we said, the variance of the C/N0 is unknown a 

priori. We know that it depends on the noise power and 
some expressions may be found in the literature showing 
the relationship between the C/N0 variance and noise 
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power. However, these expressions may also depend on 
other parameters that are not under our control. It is for that 
reason that is difficult to have a perfect knowledge on the 
actual variance of the C/N0. Hence, we propose to fix the 
variance under benign conditions according to the 
maximum allowable variation due to peaks of attenuation. 
In this way, fixing this maximum variation we can define 
the variance of the C/N0 under benign conditions as: 

𝜎!!
! ≐

𝛥 𝐶/𝑁!!"# !"#
3

!

.   (7) 

This is so because we know that for a Gaussian distribution 
the 99.86% of the values are comprised in the interval 
𝜇 ± 3𝜎. Equation (7) uses the maximum variation in linear 
magnitude, which is obtained form dBs as follows: 

𝛥 𝐶/𝑁!!"# !"#
= 𝜇!

! · 10
! !/!!

!"
!"#

!" − 1 , with the 

C/N0 mean in linear units. Therefore, for instance in our 
case we see that the C/N0 varies around 2-3dB due to 
attenuation or some negligible multipath, and then using (7) 
for the worst case (i.e. 𝛥 𝐶/𝑁!!" !"# = 3dB) we obtain a 
variance equal to 𝜎!!

! = 5.77e7. 

! 𝜇!
! : The mean after change for the CUSUM algorithm 

must be fixed as follows: 

𝜇!
! ≐ 𝜇!

! /10!"  , (8)  

with 𝛥𝜇 the minimum fixed mean change in dBs and 

𝜇!
! ≐ 𝐶/𝑁! |ℋ! (9) 

the mean before the change for the CUSUM algorithm, 
which is fixed as the average of the obtained C/N0, making 
sure that the values correspond to the hypothesis ℋ!.  

 
With this configuration we are able to use the CUSUM 
algorithm for a mean change in a Gaussian distribution. 
This is so because if we configure the mean before the 
change as the estimated C/N0 mean value under ideal 
conditions, whenever the mean C/N0 value changes due to 
multipath, it will be detected. We note that the fixed 
variance before change (i.e. 𝜎!!

!  5.77e7) is not equal to 
the variance of the fitted Gaussian distribution (see left 
plot in Figure 2). This is so because the variance of the 
fitted distribution corresponds to the variance of the 
presented C/N0 results, where the variations with respect 
the mean value are always below 3dB. However, in order 
to have into account those spikes, we have to increase the 
configured variance before the change in the CUSUM 
algorithm. Thus, we prevent false detection due to the 
increment of the attenuation, which can be confused by 
the presence of multipath.  
 
On the other hand, in this case the change for the C/N0 
under harsh conditions is about 10dB, but maybe it is too 
large. This suggests that we are under extreme harsh 
conditions (i.e. either NLOS or high amount of 
reflections), and then for LOS or more moderate 
multipath, the change might be smaller. Therefore a more 

general mean change (i.e. 𝛥𝜇) might be 𝛥𝜇 =5-7dB, 
which is a change large enough to be due to multipath but 
not to mere fast fading. Moreover, this mean change is 
small enough to allow the detection of multipath also in 
less harsh conditions (i.e. LOS conditions), where the 
mean change is lower than that reflected in Figure 1.  
 
We know that the presence of multipath can incur in 
either an increase or decrease of the C/N0 mean, and then 
we should apply a two-sided mean change CUSUM in 
order to detect both possible changes. That is: 

  LLR!± 𝑘 =
𝜇!
± !

− 𝜇!
!

𝜎!!
! 𝑥! 𝑘 −

𝜇!
± !

+ 𝜇!
!

2
, (10) 

with 𝜇!
! , 𝜎!!

!  defined above, 𝜇!
± !

=   𝜇!
! ± 𝛥𝜇, and  

𝑥! 𝑘  the C/N0 estimate at the 𝑘-th PDI. Thereby, we can 
use the decision rule in (3) with the two LLR in (10) (i.e. 
+ and -), leading to the performance in (4) with 

K 𝑓!, 𝑓! =
!!
! !

!!!
!

!
! !!!

!
!!!

!
!

!!!
! ! . 

 
Figure 3 presents the CUSUM behavior for the data 
displayed in the left plot of Figure 1. We present two 
configurations: (i) fixed minimum change of 𝛥𝜇 =   ±5dB 
and fixed maximum variation under ℋ! of 𝛥 𝐶/
𝑁!!"# !"#

= ±3dB (i.e. test 1), and (ii) 𝛥𝜇 =   ±6dB and 
𝛥 𝐶/𝑁!!"# !"#

= ±4dB (i.e. test 2). The left plot shows 
the results for the test 1. With this configuration, we see 
how before the change the CUSUM is close to 0 except 
for two peaks that appear around 50 and 130 seconds. We 
see that the spikes exceed the threshold, which is fixed in 
order to obtain a time between false alarms of 1 hour 
(i.e.  ℎ = 12), and then the CUSUM decides for the 
presence of multipath. For these spikes, multipath is not 
present, and then the corresponding decisions when 
exceeding the threshold become false alarms. A possible 
solution to these false alarms is to increase a bit the 
maximum allowable variations under ℋ! as well as the 
minimum change due to multipath. This is done by the 
configuration in test 2, whose results are shown in the 
right plot of Figure 3. Doing so, we see how the CUSUM 
metric is 0 under ℋ! and it starts drifting upwards just 
after 200s. This increase of the CUSUM metric is big 
enough to exceed the detection threshold just at the 
moment when multipath appears. Therefore, using this 
new configuration we reduce the number of false alarms 
due to peaks of attenuation. 
 

 
Figure 3 - Multipath detection for test 1 (left) and 

test 2 (right). 
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Notwithstanding, multipath that produces either smaller 
changes on the C/N0 mean than 6dB or smaller variations 
than 4dB will not be detectable.  
 
Analysis of the code discriminator output 
We know that under benign conditions (i.e. ℋ!), the DLL 
is close to zero, with all variations due to the noise and to 
the small corrections needed to track the code dynamics 
(i.e. user movement). However, when a single multipath 
ray is present (i.e. ℋ!) we see how the DLL output 
exhibits a spike in order to compensate for the shift in the 
code position due to multipath. Afterwards, the DLL 
reverts to zero. Nevertheless, since multipath conditions 
vary in practice, the DLL output will exhibit different 
spikes along the period when multipath is present, which 
is translated into an increase of the variance of the DLL.  
 
This problem was addressed in [12], which formulates the 
DLL-based as a variance Gaussian change as follows: 

ℋ!:    𝑥! 𝑚 ∼ 𝒩 𝜇!
! ,𝜎!!

! ,                  𝑚 < 𝑣 

ℋ!:    𝑥! 𝑚 ∼ 𝒩 𝜇!
! ,𝜎!!

! ,                  𝑚 ≥ 𝑣 
(11) 

with the following configuration for the Gaussian 
distribution parameters: 
! 𝜇!

! : We can fix it to 0: 

𝜇!
! = 0. (12) 

! 𝜎!!
! : As for the C/N0 case, this value is unknown a priori. 

Thus, as for the C/N0 we fix the variance under benign 
conditions according to the maximum allowable variations 
on the DLL values under ℋ!, as follows: 

𝜎!!
! ≐

𝛥 𝐷𝐿𝐿! !"#

3

!

.   (13) 

For example, in [12] we fixed the maximum allowable 
variations to 𝛥 𝐷𝐿𝐿! !"# =0.04 chips, leading to a 
variance before the change equal to 𝜎!!

! =1.78e-4. 

! 𝜎!!
! : Similarly, we fix the variance under harsh conditions 

as the minimum detectable variability DLL due to 
multipath: 

𝜎!!
! ≐

𝛥 𝐷𝐿𝐿! !"#

3

!

  . (14) 

For instance, in [12] we fixed 𝛥 𝐷𝐿𝐿! !"# =   ±0.07 
chips, which results in 𝜎!!

! =5.5e-4. 

 
Hence, with this configuration we are able to use the 
CUSUM algorithm for a Gaussian variance change, which 
has the following LLR: 
LLR! 𝑘 =

= ln
𝜎!

!

𝜎!
! +

𝑥! 𝑘 − 𝜇!
! !

𝜎!!
! − 𝜎!!

!

2𝜎!!
! 𝜎!!

! , 
(15) 

with the variances and mean defined above, and 𝑥! 𝑘  the 
DLL output at the 𝑘-th PDI snapshot. Thereby, we can 
use the decision rule in (3), leading to the performance in 

(4), with K 𝑓!, 𝑓! =    ln !!
!

!!
! +

!!!
!
!!!!

!

!!!
! ! . For a 

detailed analysis of the DLL-based detection see [12]. 
 
Analysis of the correlation curve 
We know that under benign conditions the correlation 
curve (i.e. correlation between local replica and received 
signal) is symmetrical, but it loses the symmetry under 
harsh conditions. This can be measured by the slope 
asymmetry metric (SAM), which under ideal conditions 
should be close to cero (indicating symmetry), whereas 
when multipath is present it should depart from zero 
(indicating asymmetry). The main idea is to compare the 
left and right slopes of the correlation curve, so that when 
it is symmetrical both slopes are equal, but sign reversed, 
and thus their sum is zero. On the other hand, when the 
curve is not symmetrical, the slopes are not identical and 
then the difference departs from zero. The metric can be 
defined as: 

𝑥! 𝑘 ≐   𝑎! 𝑘 +   𝑎! 𝑘 , (16) 
where 𝑎! and 𝑎! are the estimated slopes of the left and 
right sides of the correlation peak, respectively. 
 
The SAM was analyzed in [13], which formulates the 
problem as follows: 

ℋ!:    𝑥! 𝑚 ∼ 𝒩 𝜇!
! ,𝜎!!

! ,                  𝑚 < 𝑣 

ℋ!:    𝑥! 𝑚 ∼ 𝒩 𝜇!
! ,𝜎!!

! ,                  𝑚 ≥ 𝑣 
(17) 

with the following configuration for the Gaussian 
distribution parameters: 
! 𝜇!

! : It should be equal to 0, but in practice it is slightly 
larger: 

𝜇!
! = 𝜅 ∼ 0. (18) 

! 𝜎!!
! : Fixed according to the maximum allowable 

variations on the SAM under ℋ!, as follows: 

𝜎!!
! ≐

𝛥 𝑆𝐴𝑀! !"#

3

!

.   (19) 

! 𝜇!
! : Unknown, but it might be fixed as follows: 

𝜇!
! ≐ 𝜇!

! ± 𝛿  , (20) 

with 𝛿 a proper value selected experimentally. 

! 𝜎!!
! : Fixed as the minimum detectable variability of the 

SAM due to multipath: 

𝜎!!
! ≐

𝛥 𝑆𝐴𝑀! !"#

3

!

.   (21) 

 
Hence, with this configuration we can use the CUSUM 
algorithm for a Gaussian change in both mean and 
variance. The LLR in this case is as follows: 

LLR! 𝑘 = ln
𝜎!

!

𝜎!
! +

𝑥! 𝑘 − 𝜇!
! !

2𝜎!!
!

−
𝑥! 𝑘 − 𝜇!

! !

2𝜎!!
! , 

(22) 



with the variances and mean defined above, and 𝑥! 𝑘  the 
SAM at the 𝑘-th PDI snapshot defined in (16). Thereby, 
we can use the decision rule in (3), leading to the 
performance in (4), with 

K 𝑓!, 𝑓! =    ln !!
!

!!
! +

!!
! !!!

!

!!!
! !

!

− !
!
. However, as we 

indicated in [13], we know that the mean change of the 
SAM is predominant in LOS, whereas the variance 
change is predominant in NLOS. Therefore, we can use 
two different CUSUM algorithms, one for detecting the 
change in variance (i.e. NLOS) and another for detecting 
the mean change (i.e. LOS). The expression for the two 
LLR would be like (15) and (10), respectively, but with 
the SAM parameters. For further analysis see [13]. 
 
REAL DATA ANALYSIS 
 
This section describes the integration of the previous 
signal integrity algorithm (i.e. DSP anomaly detector) 
with the GNSS navigation and PVT integrity algorithm. 
The approach that will be herein proposed works offline 
and is executed sequentially:  
1) The raw GNSS data is processed with the DSP 

anomaly detector, to generate an output file with 
validity flags for the processed epochs. 

2) The PVT navigation and integrity algorithm is 
executed (PVT+I), using the file in step 1 as an input 
in order to exclude those measurements declared as 
faulty from the computation of the navigation 
solution. 

In order to test the performance of this methodology, a 
test including one urban scenario is presented here. In 
particular, we have selected urban data captured by a 
moving vehicle in a dense urban environment, in 
London’s (UK) downtown (see trajectory in Figure 4). 
Since the trajectory is in a urban area, the scenario covers 
both static (due to traffic) and dynamic cases with a 
maximum velocity of 50km/h. Finally, it is important to 
say that we use here an offline approach in order to 
analyze the integration between the DSP and PVT 
algorithms. However, in a practical implementation, the 
output flags from the DSP detector will feed the 
navigation algorithm online (i.e. real-time). 
 

 
Figure 4 – Truth trajectory of the analyzed scenario 

with data captured in London’s (UK) downtown. 

 
The analysis performed in this chapter has illustrative 
purposes, and therefore it will be simplified as follows: 
1) A brief description of the fault detection and 

exclusion (FDE) implemented by the DSP anomaly 

detector will be performed, in order to output the 
fault flags file. 

2) The impact of these flags in the rejection of GPS 
measurements will be evaluated, paying special 
attention to the missed detection and false alarms 
probabilities of pseudo-range measurements. 

3) We will observe the impact of the measurement 
rejection in the navigation performance, in the 
particular case of using a dual GPS+GLONASS 
constellation. 

 
Generation of the signal integrity flags 
This section describes the generation of the fault 
measurement flags at signal level that will be used by the 
PVT+I algorithm in order to discard the satellites with 
any disturbing effect from the positioning calculation. We 
generate a flag for every satellite in view for every 
second, which is the time configured in the used PVT+I 
algorithm. The methodology for the fault measurement 
flags generation is the following: 
1) Generation of the detection metrics given by 

processing the input data with the DSP anomaly 
detector (i.e. multipath metrics). The behavior of 
these metrics indicates the presence or absence of any 
disturbing effect in the received signal. 

2) Generation of signal integrity flags from the CUSUM 
values of the generated metrics in such a way that if 
the CUSUM is above the detection threshold we 
activate the flag indicating that the measurement of 
the corresponding satellite at this time is a fault. 

3) Since we have three different metrics, in the previous 
step we generate three signal integrity flags. Hence, 
we generate a unique flag with the combination of the 
three generated flags. 

4) The flag in the previous step is generated for every 
satellite but at a snapshot time given by the DSP 
anomaly detector. However, we have to generate one 
flag every second, which is the configuration of the 
used PVT+I algorithm. Then, we generate the fault 
measurement flag every second by combining (with a 
certain logic that will be described later on) 
consecutive flags generated in the previous step. 

These flags are used by the PVT+I algorithm with the aim 
of deciding which satellites are used for the navigation 
solution. We configure the DSP anomaly detector for 
generating metrics with a snapshot time of 20ms and then 
we have a flag every 20ms (at step 3) that must be 
converted to a flag every second (step 4). Consequently 
we have to average 50 flags of 20ms in such a way that if 
there are more flags indicating the presence of a threat 
than a pre-established threshold (e.g. more than 10 flags 
of 20ms), we indicate a fault in the 1s flag. 
 
The detection algorithms implemented in the DSP 
anomaly detector and described in the previous section 
are formulated for detecting a change from nominal 
conditions (i.e. no threat) to harsh conditions (i.e. integrity 
threat). But, in real life conditions the integrity threats can 
appear and disappear at any time, and we need to detect 
this situation. Otherwise, when the integrity threat 



disappears, the CUSUM algorithm would take a too long 
time to switch back again to the initial benign decision. 
This is shown in the left plot of Figure 5, where we see 
(upper plot) a change of the metric at sample 100 and it 
presents an opposite change at sample 200. Using the 
CUSUM configuration for detecting only the presence of 
threat (left plot), we see in the lower plot how the 
CUSUM raises the threshold just when the change 
appears (i.e. sample 100) and it continues increasing until 
sample 200, when it starts decreasing. However, because 
of the large value that has been accumulated by the 
CUSUM up to sample 200, it takes a very long time to 
decrease it and to cross the threshold again for declaring 
the restoration of the initial working conditions. 
 

 
Figure 5 - CUSUM change detection in the case of 
changing from good to bad conditions and vice 
versa. Single (left) and double CUSUM (right). 

 
In order to circumvent this limitation and to allow the 
promptly detection of the disappearance of threats, we 
have to use another CUSUM aimed at detecting this 
inverse change. Based on the definition of the log-
likelihood ratio (LLR) in (2) it is easy to show that this 
CUSUM has the same expression but using the negative 
value of the log-likelihood ratio. Thereby, when we are in 
nominal conditions we use the CUSUM for detecting the 
appearance of threats. When this CUSUM declares the 
presence of a threat, we start using the other CUSUM 
(negative LLR). This ‘negative’ CUSUM will remain 
close to zero as long as the threat remains present, and it 
will start increasing just when the threat disappears. Then, 
when the ‘negative’ CUSUM raises the threshold, we can 
restart the ‘positive’ CUSUM and be able to detect either 
the appearance or disappearance of integrity threats (see 
right plot of Figure 5). 
 
Next we show the results of processing the data collected 
with the modification above. The results show the 
multipath detection metrics as well as the CUSUM values 
generated by the anomaly detector for different GPS 
satellites in view. Among all the satellites in view we can 
do the following classification: 
! SVN in view all the time (15, 17 and 24): These satellites 

are in view during the whole observation time, as it is 
shown for SVN 15 in Figure 6. The results show how it is 
in nominal conditions most of the time. This is seen 
looking at the metrics, which in general present a nominal 
behaviour but they present harsh behaviour in some 
moments (e.g. SVN15 is affected by harsh propagation 
conditions between minute 70 and 100), or at the CUSUM  

 
Figure 6 - Detection metrics and CUSUM time 

evolution for SVN 15. C/N0 (left), DLL (middle) and 
SAM (right). 

 
Figure 7 - Results for SVN 12. C/N0 (left), DLL 

(middle) and SAM (right). 

 
behaviour, which in general is below the threshold (black 
line) but it is above in some moments.  

! SVN in view most of the time (12, 18 and 26): These 
satellites are in view most of the time but they are out of 
view in some moments. This is shown for SVN 12 in 
Figure 7, which shows how it is in harsh conditions most of 
the time except for some moments (e.g. min. 110-115). 

! SVN out of view most of the time (5, 6, 8, 9, 14, 22, 25, 
28): They are only in view a small portion of time. This is 
shown in Figure 8, which shows how SVN 28 is in benign 
conditions most of the time it is in view. 

 

 
Figure 8 - Results for SVN 28. C/N0 (left), DLL 

(middle) and SAM (right). 

 
With the results shown above we generate the fault 
measurement flags from the CUSUM values. We do so in 
such a way that if the CUSUM is above the threshold, we 
activate the flag indicating that the measurement at the 
corresponding time is a fault, and then it should be 
rejected. Doing so we can see the availability of each GPS 
satellite in view (i.e. time they do not provide faulty 
measurements) given by every metric. Figure 9 shows 
how SVN 15, 18, 24, 26, 28 are available (i.e. do not 
present faulty measurements) more than the 50% of the 
time they are in view, while, the rest of SV present 
different availabilities but all of them are below the 50% 
of the time. Moreover, we see how the results for the DLL 
and the SAM are quite similar, indicating that they 
declare a faulty measurement roughly at the same time. In 
contrast, the C/N0 exhibits more restrictive results in the 
sense that it detects more faulty measurements than the 
other two, and then the use of the satellites for the 
positioning calculation is smaller. This is because the  
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Figure 9 - Percentage of time that the different 

satellites are decided to be used for the different 
metrics. C/N0 (left), DLL (middle) and SAM (right). 

 
C/N0 as well as presenting variations due to multipath it 
also varies due to other effects such as shadowing or 
peaks of attenuation that do not present variations in the 
other metrics (i.e. DLL and SAM). 
 
This is better seen in Table 1, which shows the 
availability in percentage for the most available satellites. 
For instance, we see for the SVN17 how the DLL and 
SAM exhibit a percentage of 49% and 47%, respectively, 
whereas the C/N0 becomes 29%. On the other hand, we 
can also see how there are some exceptions where the 
DLL and SAM do not coincide so much. For instance, we 
see for the SVN 12 that the values for the C/N0 and DLL 
are similar (i.e. 27% and 30%, respectively), but the SAM 
presents a higher value of 41%. 
 

Table 1 - Numerical percentage of time that the 
most available satellites are used. 

SVN 12 15 17 24 28 
CN0 27% 68% 29% 84% 68% 
DLL 30% 70% 49% 88% 75% 
SAM 41% 71% 47% 89% 75% 

 
These differences between metrics indicate a 
disagreement between integrity detection techniques, in 
the sense that one is declaring benign conditions while 
some other is declaring harsh ones. In order to circumvent 
this situation, we present two alternatives for generating 
the flags to be fed into the PVT+I algorithm. First of all, 
we have to generate one flag from the three flags given by 
every metric: 
! Restrictive flag: This option is the default one for 

generating the fault measurement flags in integrity 
algorithms. It involves declaring a faulty measurement 
whenever any of the metrics declares some threat. The 
expression for the restrictive flag at snapshot 𝑖 is as follows:  

𝑇! 𝑖 ≐ 𝑇! 𝑖 𝑇! 𝑖 𝑇! 𝑖  
with 𝑇!, 𝑇! and 𝑇! the flag for the C/N0, DLL and SAM, 
respectively, and | the logical OR operator. This flag is 
named restrictive since in this way we obtain the maximum 
number of faulty measurements. 

! Permissive flag: This option is proposed in order to 
compensate the restrictiveness of the C/N0 metric and then 
avoid detections due to other effects different from 
multipath like shadowing or attenuation. The idea is to 
declare a faulty measurement only when at least two 
metrics declare a fault. Thereby, we also provide robustness 
against false alarms because a false alarm will be declared 
only when two metrics produce a false alarm at the same 

time, which is an unlikely situation. The expression for the 
permissive flag at snapshot 𝑖 is as follows: 

𝑇! 𝑖 ≐ 𝑇! 𝑖 + 𝑇! 𝑖 + 𝑇! 𝑖 > 1. 
In this case the flag is named permissive since it 
produces less fault measurements. 

Next, once we have generated the flag from the three 
metrics, we have to generate one flag every second from 
the previous flags, which are generated every 20ms. This 
is done averaging 50 flags of 20ms in the following ways: 
! Restrictive averaging: This option declares a faulty flag if 

at least 5 flags of 20ms are declared faulty: 

𝐹! 𝑚 ≐ sum ! 𝑇! ≥ 5, 
with 𝑚 the new snapshot index (i.e. 1s snapshot), and 
the operator sum !  indicating the summation of the 
50 averaged flags corresponding to the snapshot 𝑚. 

! Permissive averaging: This option declares a faulty flag if 
at least 20 flags of 20ms are declared faulty: 

𝐹! 𝑚 ≐ sum ! 𝑇! ≥ 20. 
 
Figure 10 shows the availability of every GPS satellite in 
view for the two options of generating the fault 
measurement flags at signal level. The two plots show 
how for the restrictive flag the availability of the GPS 
satellites is smaller than for the permissive flag. Indeed, 
we see that for the restrictive case, only three satellites are 
available more than the 50% of the time, whereas for the 
permissive one, up to five of them are close to 50% of 
time. This fact only reflects the amount of time that the 
different satellites are used for the position calculation. In 
the sequel, we will use both flags configurations into the 
integrity PVT+I algorithm at positioning level and see 
which one produce better results. 
 

 
Figure 10 - Percentage of time that the different 

satellites are decided to be used for the restrictive 
(left) and permissive (right) flags. 

 
Navigation analysis 
The first step to evaluate the performance of the DSP 
processing is to check whether the measurements flagged 
as faulty at this stage correspond actually to potential 
outliers and that healthy measurements are consequently 
flagged as valid. The first topic is covered with the 
concept of missed detection probability, while the second 
topic uses the false alarm probability to measure the 
effectiveness of the FDE algorithm. The threshold value 
used to determine whether a pseudo-range error can be 
considered to be healthy or an outlier is 20m (in absolute 
value). Last but not least, we will evaluate the impact of 
the DSP anomaly detector FDE into the navigation 
performance, using the GPS+GLONASS constellation. 
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The Table 2 summarizes the values of the probabilities of 
false alarm and missed detection in each configuration 
(i.e. permissive and restrictive). These probabilities are 
obtained by using the standard configuration for the 
CUSUM algorithms explained in the previous section for 
the different multipath metrics. In the light of the obtained 
results, we can conclude that the DSP anomaly detector 
FDE is capable of detecting most of the outliers (around 
90% for both FDE configurations), which should imply 
an improvement of the accuracy in the navigation 
solution. On the other hand, we see that the False Alarm 
probability is quite high, and measurements whose error 
is actually low are discarded (around 39% and 50% for 
the permissive and restrictive configurations, 
respectively). Fortunately, the fact that we use the dual 
GPS+GLONASS constellation, which increases the 
measurements availability, makes that we could expect an 
improvement in the positioning algorithms in terms of the 
accuracy performance. 
 

Table 2 - False Alarm and Missed Detection 
probabilities for the standard configuration. 

Flag Configuration PFA PMD 
Permissive 0.39 0.09 
Restrictive 0.50 0.07 

 
This is validated in Figure 11, which represents the 
horizontal positioning error (HPE) performance of the 
PVT+I algorithm with each set of flags (permissive and 
restrictive), compared to the nominal solution, where no 
fault flags file is used. However, it does not mean that 
faulty measurements are strictly used in the nominal 
navigation solution, since an additional FDE is 
implemented at this level by the PVT+I algorithm. It is 
worth mentioning that the three configurations use the 
same data previously to the satellite exclusion (i.e. they 
have the same amount of satellites in view in each epoch, 
then each configuration excludes different satellites, 
which produce different positioning performances). We 
see how the permissive configuration improves the 
performance of the navigation solution. Notwithstanding, 
for the restrictive configuration there is not improvement 
with respect to the nominal one, and then the use of the 
signal level flags produces poor navigation results. This is 
due to the high false alarm rate in the restrictive 
configuration, which produces a large amount of 
discarded measurements. Therefore the number of 
satellites for computing the navigation solution is low, 
and then the positioning performance is also low.  
 
For the permissive configuration, the false alarm rate is 
also high but it is low enough for maintaining sufficient 
measurements in order to improve the accuracy. Anyhow, 
additional work should be performed in order to improve 
the false alarm rate of the signal level FDE. The problem 
with the false alarms may be due to: 
1) Relation signal and positioning outlier: We 

consider an outlier those measurements that present a 
pseudo-range error greater than 20m. However, the 
configuration of the CUSUM parameters might not  

 
Figure 11 - HPE cumulative distribution for 

different configurations (standard configuration). 

 
correspond to an error of 20m. Specifically, we see 
that with this configuration we obtain fault 
measurements with errors greater than 5-10m. 

2) Snapshot time averaging: This average is not 
convenient at all because it may be possible that the 
metrics at the signal level produce a fault flag, but in 
average it is not a fault metric. 

 
Therefore, a first approximation for improving the 
performance in terms of false alarm of the FDE at signal 
level, is to modify the configuration of the CUSUM 
parameters in a more permissive way (i.e. declaring fault 
measurements those errors close to 20m). In addition, the 
multipath metrics should be generated with a snapshot 
time equal to the snapshot used in the navigation 
algorithm (i.e. 1s). Doing so, we obtain two different 
configurations: (i) Maintaining the previous configuration 
(i.e. LowMD), but using a snapshot time of 1s (then the 
CUSUM parameters vary). (ii) Modifying the CUSUM 
parameters in order to obtain lower false alarm rate (i.e. 
LowFAR). These new configurations for the CUSUM 
algorithms are the following: 
 

 C/N0 (dB) DLL SAM 
 𝛥!,!"# 𝛥𝜇 𝛥!,!"# 𝛥!,!"# 𝛥!,!"# 𝛥!,!"# 

LowMD 5 7 0.003 0.005 0.03 0.06 
LowFAR 10 11 0.01 0.02 0.1 0.15 

 
The results in terms of probabilities of these 
configurations are shown in Table 3. We see how the 
LowMD results are similar to the obtained with the 
previous configuration (see Table 2), whereas for the 
LowFAR we obtain better results in terms of false alarms 
but at the expense of increasing the missed detections. 
The results in terms of HPE are presented in Figure 12, 
which shows how the performance is improved by using 
the fault flags file for both configurations. In fact, we can 
notice that it is the LowMD configuration the one that 
provides the best performance. Therefore, we can 
conclude that is better to detect as many threats as 
possible (i.e. low missed detections) instead of having a 
few false alarms at the expense of increasing the missed  

Table 3 - False Alarm and Missed Detection 
probabilities for the modified configuration. 

Flag Configuration PFA PMD 
Permissive_LowMD 0.37 0.09 
Permissive_LowFAR 0.17 0.28 
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Figure 12 - HPE cumulative distribution (modified 

configurations). 

 
detections. This is in line with the expected results, 
considering the dual GPS+GLONASS constellation, 
which increases the measurement availability, and then 
the false alarm rate impact on the accuracy is not as 
critical as not detect the actual faults. Moreover, we 
present in Figure 12 the curve corresponding to the 
perfect flags for measurement errors of 20m (i.e. activate 
the flags when the actual error in pseudo-range 
measurements is greater or equal to 20m). We see how 
the LowFAR curve fits the perfect curve until almost the 
70th percentile, and then it is always below the perfect 
curve and approaching the nominal one. This is because 
the 70% of the time the LowFAR configuration is linked 
with a measurement error of 20m, but the rest of the time 
it is linked with a higher error.  
 
On the other hand, we see how the LowMD configuration 
outperforms the perfect curve. This is due to the fact that 
this configuration is linked with a measurement error 
lower than 20m, and then it improves the accuracy, with 
respect to the perfect flag, since we are discarding 
measurements with lower errors. This is reflected in 
Figure 13, which shows how the LowMD configuration is 
close to the perfect10 (i.e. measurement error threshold of 
10m) curve and it is always below the perfect5 (i.e. 5m 
error). Therefore, we can conclude that the LowMD 
configuration is linked with a measurement error 
threshold between 5m and 10m (closer to 10m than 5m), 
as we expected when configured the algorithms. 
Therefore, the real probabilities will vary with respect to 
those presented in Table 3. 
 

 
Figure 13 – HPE cumulative distribution 

comparison of different perfect flags. 

 

Table 4 – Analysis of the real-time processing 
capability. 

Multipath Metric SAM C/N0 DLL 
Processing time for 
a data set with 10s 
observation time 

0.1652 s 77.5 ms 65 ms 

 
Real-time processing capability 
Finally, we show some results on the time that the 
proposed algorithms take to process 10 seconds of signal. 
The results are obtained using a MacBook Pro computer 
with an Intel core i7 processor @ 2.2GHz, using 1 core. 
Results are presented in Table 4, which shows the time 
for processing the data of only one satellite. Therefore, 
the final results will depend on the number of satellites in 
view, however even in the hypothetic case we have all the 
GPS constellation in view (i.e. 32 satellites), taking into 
account the times in the table, real-time processing would 
be possible. This is so because here we only present the 
time needed to implement the CUSUM algorithm to the 
obtained metrics. These metrics are supposed to be 
already available within the GNSS receiver, and based on 
real-time calculations. For the SAM metric we need a 
multi-correlator receiver, then if the multi-correlation is 
real-time we can assume that the SAM metric calculation 
will also be so, as Table 4 shows. We see that the times 
for the C/N0 and DLL metrics is quite lower than for the 
SAM, the reason for this is that for the SAM case we need 
to apply a bit synchronization in order to properly average 
the correlation curves for calculating the SAM metric. 
Moreover, there is the process itself of calculating the 
SAM, whereas for the C/N0 and DLL, we only have to 
apply the CUSUM algorithm. Finally, we see how the 
application of the CUSUM, which is reflected with the 
C/N0 and DLL metrics, takes around 70ms. This short 
time makes clear the applicability of the CUSUM 
algorithm into real-time integrity monitoring applications. 
Note that the C/N0 CUSUM takes a slightly greater time 
than the DLL one. This is because for the C/N0 we have 
to sequentially estimate the C/N0 mean under ideal 
conditions, whereas for the DLL this is not needed. 
 
CONCLUSIONS AND FUTURE WORK 
 
Based on the results presented so far, we can summarize 
the main features of the proposed techniques in terms of 
their suitability to certain scenarios, the type of sequential 
algorithm they implement, and their main configuration 
parameters. A summary of the proposed multipath 
detection techniques, based on the big amount of data 
analyzed in the iGNSSrx project (which is impossible to 
present in a sole paper), is provided in Table 5. We can 
classify the proposed metric in two groups, namely Low 
and High multipath delay, depending on the relevance of 
the analysis for the two delays cases. As can be seen in 
the table, the classification between low and high delay 
corresponds to C/N0 and DLL/SAM, respectively. These 
two groups of techniques are complementary, and in 
practice, they will have to be used jointly to ensure that 
we truly cover any possible multipath case. Moreover, the 
table below indicates the different variations of the 
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Table 5 - Properties of the proposed multipath detection algorithms. 

Metric C/N0 DLL SAM 
CUSUM type Mean-change Variance-change Mean&Variance change 

Target multipath 
delay 

Low High 

Comment Ideal conditions 
estimation 

Spikes presence instead of 
magnitude change. 

It can take nominal values even 
with MP (oscillations) 

Limits 𝛥𝜇 = ±11𝑑𝐵 
𝛥 𝐶/𝑁!!" !"# = ±4𝑑𝐵 
K 𝑓!, 𝑓! =
!!
! !

!!!
!

!
! !!

! !
!!!

!
!

!!!
! !   

𝛥 𝐷𝐿𝐿! !"# = ±0.01chips 
𝛥 𝐷𝐿𝐿! !"# = ±0.02chips 

K 𝑓!, 𝑓! = ln
𝜎!

!

𝜎!
! +

𝜎!!
!

2𝜎!!
! −

1
2 

𝜇!
± = 0.3/−0.1 
𝛥 𝑆𝐴𝑀! !"# = ±0.3 
𝛥 𝑆𝐴𝑀! !"# = ±0.5 

K 𝑓!, 𝑓! = ln
𝜎!

!

𝜎!
! +

𝜇!
! − 𝜇!

! !

2𝜎!!
!    −

1
2 

 
CUSUM algorithm that the proposed multipath detection 
techniques are implementing (i.e. Mean-Change, 
Variance-Change and Mean&Variance-Change CUSUM 
for the C/N0, DLL and SAM, respectively).  
 
The parameters that have been set before and after change 
are also indicated (i.e. mean change and 
maximum/minimum variations under ideal and harsh 
conditions, respectively). Those values have been chosen 
according to the experimental analyses of the proposed 
techniques with real signal captures, taking into account a 
snapshot time of 1s. This is done in order to represent as 
accurately as possible the conditions before and after 
change (i.e. ideal and harsh conditions) that may be found 
in a representative scenario. Those values determine the 
performance in terms of detection delay, which depends 
on the false alarm rate. For the latter, and since we are 
using the CUSUM algorithm, we have the logarithmic 
relationship with the threshold (i.e. ℎ = ln 𝑇 ), being 
𝑇 = 𝑡!"/𝑇!" the metric samples between false alarms, with 
𝑡!"  the time between false alarms. On the other hand, for 
the detection delay we have the known expression in (4), 
with K 𝑓!, 𝑓!  the Kullback-Leibler divergence given in 
the table for every metric.  
 
Regarding the Kullback-Leibler divergence for every 
metric, we can say that in general the quickest detection is 
obtained with the SAM metric, since it uses a 
Mean&Variance-Change CUSUM, and the Kullback 
information is greater than for the two other cases. For the 
other two cases (i.e. C/N0 and DLL) the delay will depend 
on the change magnitude. Nevertheless, the changes on 
the mean of the C/N0 metric are usually larger than the 
changes on the variance of the DLL, and then the 
Kullback information for the former case will usually be 
greater and then give a quicker detection than by using the 
DLL metric. This will be true for the cases of low delay, 
where the C/N0 is relevant. Nonetheless, if the multipath 
has a large delay, the effects on the C/N0 will be lower 
than for the DLL case, and then the DLL will produce the 
quickest detection (with respect the C/N0).  
 
Hence, making use of different analyses simultaneously 
we maximize the insight that can be obtained during a 
fault event. In essence, some multipath analyses may fail 
in some circumstances, but it is unlikely that all of them 
will fail at the same time. Finally, it is also worth noting  

 
that the values presented in Table 5 might be used as 
defaults parameters for the CUSUM configuration in the 
DSP anomaly detector implementation, giving a good 
performance in terms of accuracy (i.e. provides better 
navigation results than the nominal configuration) and 
integrity (i.e. rises warnings related with the signal 
integrity that are not raised with the nominal 
configuration). However, further work is needed in order 
to obtain better results: 
! Regarding the tuning of the CUSUM parameters, in order 

to obtain a relation between faults at signal level and 
pseudo-range error (e.g. configuration of parameters for 
declaring a fault an error greater than 20m), and then 
improve the results in terms of false alarms. 

! The combination of flags generated by each metric should 
be further investigated. 

! Improvements on the availability of the satellites may be 
beneficial for large HPE. Two possible alternatives are: 

o To fix the minimum number of satellites to use in 
the navigation algorithm. 

o To weight the satellite measurements instead of 
discarding them. 

 
ACKNOWLEDGEMENTS 
 
This work was partly supported by the Spanish 
Government under grant TEC2014-53656-R and by the 
European Commission under the iGNSSrx project 
(ENTR/129/PP/ENT/SP2/11/6602). Also we would like 
to thank all the reviewers of this work for the valuable 
comments. In particular, we would like to thank Elisa 
Guzman Alonso for her valuable review. 
 
REFERENCES 

[1] G. Seco-Granados et al., “Challenges in Indoor Global 
Navigation Satellite Systems,” IEEE Signal Process. 
Mag., vol. 29, no. 2, pp. 108–131, 2012. 

[2] B. W. Parkinson and J. J. Spilker, Global Positioning 
System: Theory and Applications vol.2. Aiaa, 1996. 

[3] J. Cosmen-Schortmann et al., “Integrity in urban and 
road environments and its use in liability critical 
applications,” IEEE PLANS, pp. 972–983, 2008. 

[4] M. S. Braasch, “Performance comparison of multipath 
mitigating receiver architectures,” in IEEE Aerospace 
Conference Proceedings, 2001, vol. 3, pp. 1309–1315. 



[5] M. Z. H. Bhuiyan, E. S. Lohan, and M. Renfors, “Code 
tracking algorithms for mitigating multipath effects in 
fading channels for satellite-based positioning,” 
EURASIP J. Adv. Signal Process., vol. 2008, p. 88, 
2008. 

[6] R. Toledo-Moreo et al., “An analysis of positioning and 
map-matching issues for GNSS-based road user 
charging,” in IEEE, ITSC, 2010, pp. 1486–1491. 

[7] U. I. Bhatti and W. Y. Ochieng, “Detecting Multiple 
failures in GPS/INS integrated system: A Novel 
architecture for Integrity Monitoring,” J. Glob. 
Position. Syst., vol. 8, no. 1, pp. 26–42, 2009. 

[8] E. Shytenneja et al., “Proposed Architecture for 
Integrity Monitoring of a GNSS / MEMS System with 
a Fisheye Camera in Urban Environment,” in ICL-
GNSS, 2014, pp. 1–6. 

[9] H. V. Poor and O. Hadjiliadis, Quickest Detection. 
Cambridge University Press, 2009. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[10] D. Egea, J. A. López-Salcedo, and G. Seco-Granados, 
“Interference and multipath sequential tests for signal 
integrity in multi-antenna GNSS receivers,” in IEEE 
8th SAM, 2014, pp. 117–120. 

[11] D. Egea, G. Seco-Granados, and J. A. López-Salcedo, 
“Single- and Multi-Correlator Sequential Testsfor 
Signal Integrity in Multi-Antenna GNSS Receivers,” in 
ICL-GNSS, 2014, pp. 117–120. 

[12] D. Egea-Roca, G. Seco-Granados, and J. A. López-
Salcedo, “Quickest Detection Framework for Signal 
Integrity Monitoring in Low-Cost GNSS Receivers,” in 
IEEE 82nd VTC (accepted), 2015. 

[13] D. Egea-Roca, G. Seco-Granados, and J. A. López-
Salcedo, “On the Use of Quickest Detection Theory for 
Signal Integrity Monitoring in Single-Antenna GNSS 
Receivers,” in ICL-GNSS (accepted), 2015. 

[14] E. Falletti, M. Pini, and L. Lo Presti, “Low complexity 
carrier-to-noise ratio estimators for GNSS digital 
receivers,” IEEE Trans. Aerosp. Electron. Syst., vol. 
47, no. 1, pp. 420–437, 2011.  

 


