GINTO5G Hybridizing GNSS with Sensors and Terrestrial Technologies for Positioning in 5G

SEPTEMBER 18TH, 2019 — ION GNSS+ 2019, MIAMI, FLORIDA, USA

SESSION C1: Land-Based Applications

European Space Agency

© GMV, 2019 Property of GMV

32nAltunighteel/esorverleting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2019), Miami, Florida, September 16-20, 2019

- PNT landscape in next mobile technology generation (5G)
- GINTO5G General Overview

GINTO5G Tasks:

- Field Platform and Experimental Tests
 High Accuracy Autonomous cars
- Simulation Platform
- Conclusions and Next Steps

GINTOSG Cape in 5G **PNT Lands**

5G a new mobile revolution

 5G technology is expected to be a new mobile revolution in wireless market combining <u>different wireless</u> <u>technologies</u> (4G LTE, WiFi and 5G newly defined air interfaces) to cover <u>new use cases</u> and exploiting new frequency bands.

New types of users

Contrary to previous mobile technologies, <u>5G is no longer all about smartphones and increased mobile broadband capacity</u> (though still a key point). With the advent of 5G new families of use cases are being addressed: Ultra Reliable Low Latency Communications (**URLLC** – e.g. Connected Vehicles, etc.) and Massive Machine Type Communications (**mMTC** – smart cities, Factory 4.0, etc.)

PNT an integral feature in 5G

- Demand for localisation is increasing in different market segments: Positioning, Navigation and Timing (PNT) is progressively considered as an enabler, with a high level of expectations from the users
- PNT is expected to be an integral feature in 5G, either provided by <u>non 5G-based technologies</u> (GNSS, ...) or <u>5G-based technologies</u> (Cell-ID, OTDOA, UTDOA, ...), or most likely, through a <u>hybrid approach combining the two</u> <u>categories</u>.
- ESA took in 2016 the initiative to contribute to 3GPP works on 5G positioning. The objective is to identify:

1298

- <u>user requirements</u> in emerging uses cases,
- capabilities of <u>5G-based positioning</u> techniques and
- the nature of <u>GNSS 5G relationship</u>.

GINTO5G WP3 5G Positioning

A Context shaped by very diverse verticals

Present

Autonomous vehicles, UAV, Rail, Road-tolling, etc.

Machine control, industry automation, asset tracking, etc.

g

Page 5

179

GINTO5G Cof the Ctivity Ū 3 OVervi

ION GNSS+ 2019

GINTO5G GENERAL OVERVIEW HIGH LEVEL VIEW

- GINTO5G project is funded by the European Space Agency as part of this initiative under the European GNSS Evolutions Programme (EGEP 107)
- Scope:
 - Assess trough field and laboratory experiments what is the <u>role GNSS is</u> <u>expected to play in the 5G technology</u>
 - Support ESA in its efforts dealing with <u>standardisation of GNSS support in</u> <u>3GPP</u>
- Consortium (led by GMV):

Collaborators:

SONY

elefonica

Investigación u Desarrollo

1301

Universitat Autònoma de Barcelona

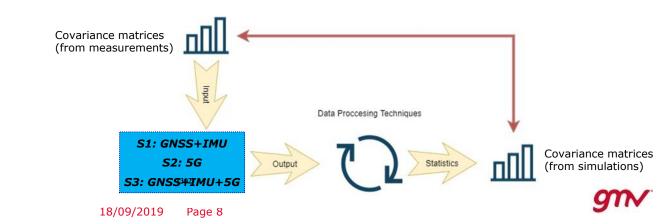
EVALUATION METHODOLOGY

Use Cases Definition:

- Automotive
- UAV
- IoT

Field campaigns execution

Data processing:


Generate individual error models

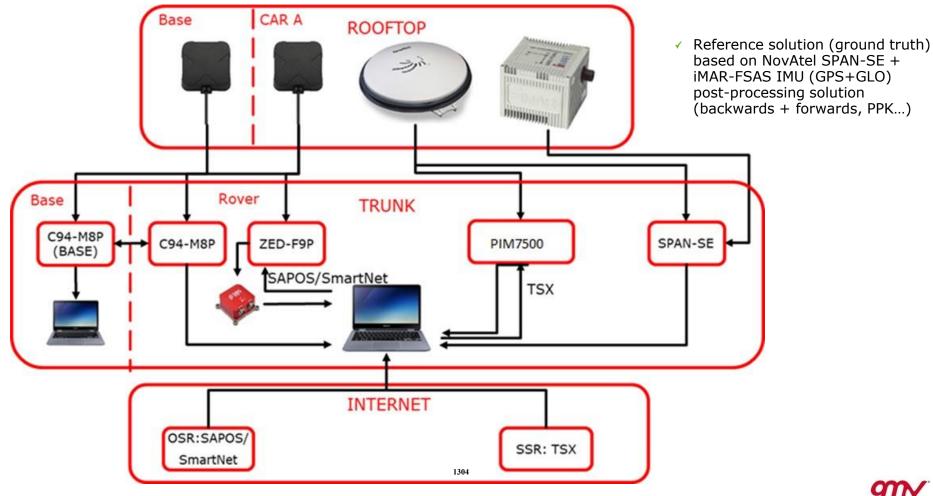
Simulation tool for hybrid PNT based on GNSS-5G:

Loose coupling fusion

Tool validation:

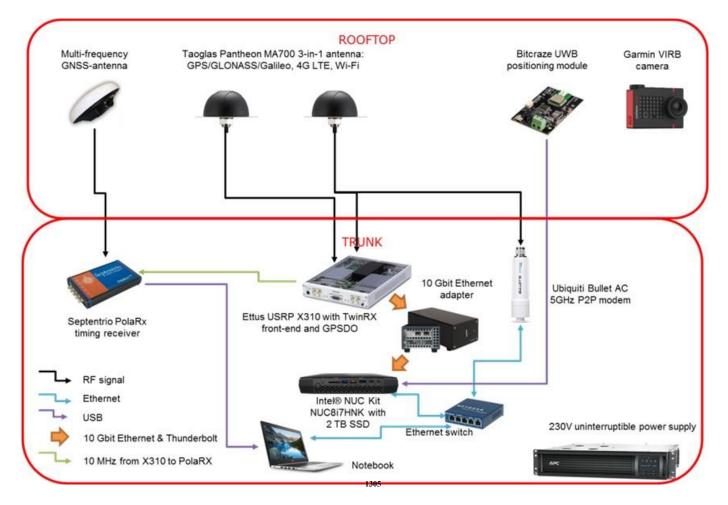
Before and after statistics comparison

Technologies:

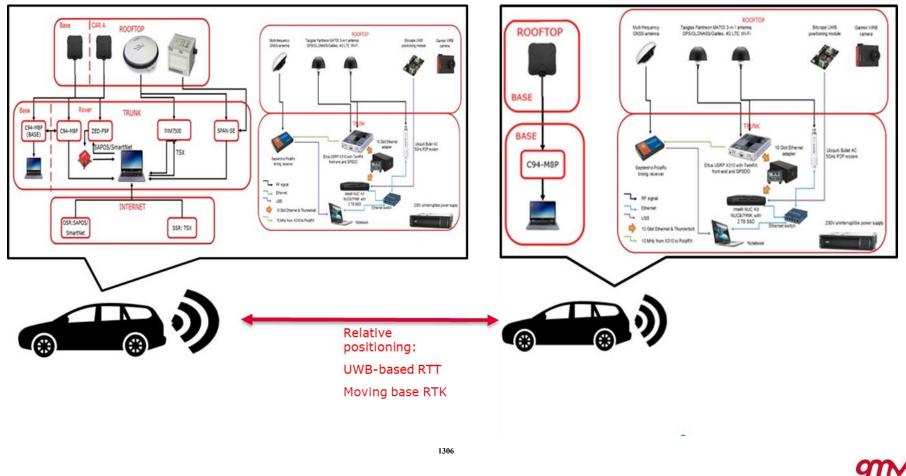

- Multi-constellation high-accuracy GNSS (RTK, NRTK, PPP, PPP-RTK)
- Wireless network solutions (LTE, 5G)
- Additional sensors (different IMUgrades)

ION GNSS+ 2019

GINTO5G Field Cars HA-Autonomous Experiments



HA-AC GNSS PLATFORM DESIGN



ION GNSS+ 2019

HA-AC <u>5G</u> PLATFORM DESIGN

HA-AC JOINT PLATFORM DESIGN

HA-AC JOINT PLATFORM

iMAR - FSAS Ellipse-E

in state

ION GNSS+ 2019

GNSS antenna Taoglas 3-in-1 GNSS, LTE, Wi-Fi

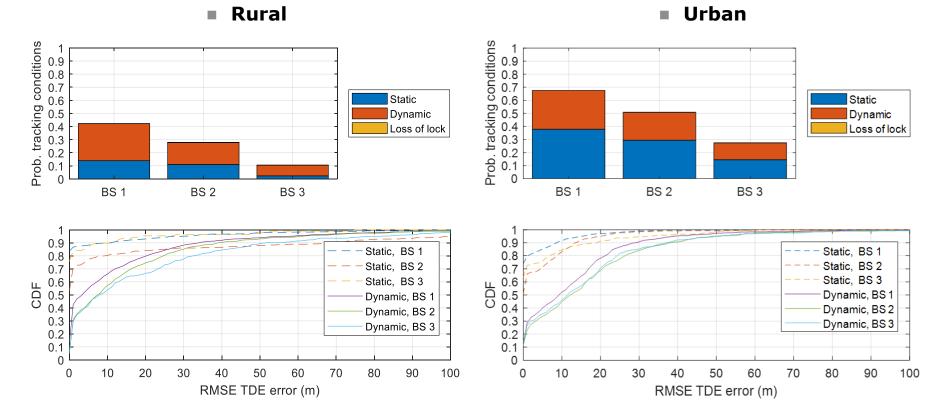
1307

HA-AC JOINT CAMPAIGN

- Concurrent acquisition of GNSS signals and LTE CRS signals (with support from Deutsche Telekom)
- Three scenarios representative of user location were selected in Munich and outskirts, plus an additional one for transitions to evaluate a change in the signal characteristics and environment:

Scenario	Total track length
HA_AC_Open	224 km
HA_AC_Suburban	72 km
HA_AC_Urban	64 km
HA_AC_Transition	100 km

1308



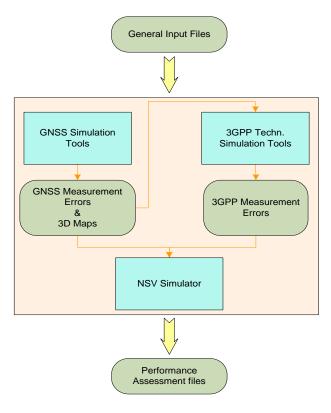
ION GNSS+ 2019

HA-AC: GNSS RESULTS

Horizontal Error CDF - OPEN Automotive-grade Rx1 DF GNSS (no corrections, no IMU) 1.0 Automotive-grade Rx2 DF GNSS (N-RTK 1 + mid-grade IMU) Automotive-grade Rx2 DF GNSS (N-RTK 2 + mid-grade IMU) Automotive-grade Rx2 DF GNSS (N-RTK 1, no IMU) 0.8 0.6 Horizontal Error CDF - URBAN Automotive-grade Rx1 DF GNSS (N-RTK 3, no IMU) 1.0 Automotive-grade Rx2 DF GNSS (N-RTK 1 + mid-grade IMU) Automotive-grade Rx2 DF GNSS (N-RTK 2 + mid-grade IMU) 0.4 Automotive-grade Rx2 DF GNSS (N-RTK 1, no IMU) 0.8 0.2 0.6 0.0 0.4 0 1 2 0.2 Very good performance of HA-GNSS 0.0 0 2 3 5 1 1309

HA-AC: RANGING ERRORS with LTE CRS

Multipath is the major source of error (especially in urban): Non-line-of-sight conditions are predominant => High ranging errors

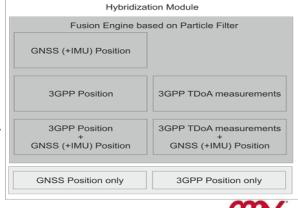

1310

ION GNSS+ 2019

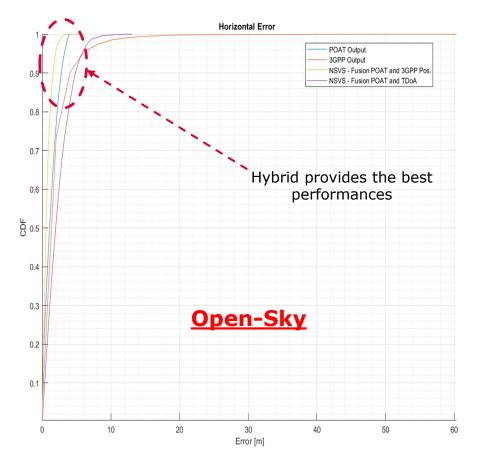
PopeCot Design and and G **Simulation** Platform

PoPeCoT: Global System Description

General Inputs


2D Maps Trajectory/Coverage **Configuration:** <u>based on the</u> <u>characterization obtained from</u> <u>the field tests</u>

GNSS Simulation Tools


GNSS Measurement Errors 3D Maps

3GPP Techn. Simulation Tools

3GPP Measurement Errors: - ToA errors, C/N0, NLoS flag 3GPP PVT solution Power consumption levels **NSV Simulator** Hybrid estimated positions Position errors Error Statistics & Graphics

PRELIMINARY SIMULATION RESULTS

Validation of GNSS module

1,4546	0,2370	0,3417
0,2370	1,0741	-0,1032
0,3417	-0,1032	2,3094

Covariance matrix: experiments

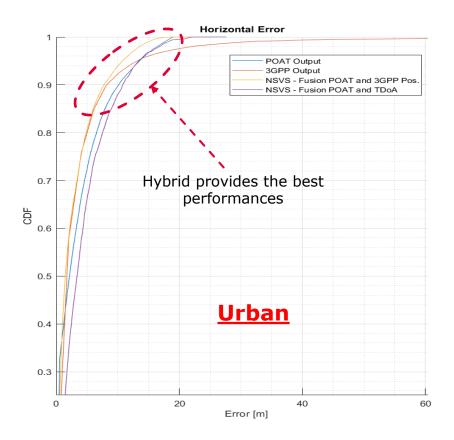
	1,561	0,1605	0,3403
VS	0,1605	1,12	0,0801
	0,3403	0,0801	2,536

Covariance matrix: simulations

	Experimentation std	PoPeCoT std	Difference (%)
East	1,206	1,205	-0,07
North	1,036	1,039	0,27
Up	1,52	1,539	1,25

PVT errors comparison

Validation of 5G module


Not yet validated

Validation of GNSS-5G module

Not yet validated

1313

PRELIMINARY SIMULATION RESULTS

Validation of GNSS module

vs

7,6865	1,2758	1,2085	
1,2758	11,9094	3,0541	
1,2085	3,0541	36,1214	

7,4181	1,3817	1,1419
1,3817	11,7686	3,6094
1,1419	3,6094	38,4133

Covariance matrix: experiments

Covariance matrix: simulations

	Experimentation std	PoPeCoT std	Difference (%)	
East	2,772	2,793	1,99	
North	3,451	3,505	1,22	
Up	6,01	5,094	-16,01	

PVT errors comparison

Validation of 5G module

Scei	nario	Perfect synchronization (0 ns)	Tight network synchronization (50 ns)
Urban Macro	No <u>NLoS</u> bias	1.32 m	18.57 m
(UMa)	With <u>NLoS</u> bias	19.66 m	>30 m
Urban Micro	No <u>NLoS</u> bias	1.61 m	18.38 m
(UMi)	With <u>NLoS</u> bias	4.15 m	19.54 m

Validated based on comparison with 3GPP simulations

Validation of GNSS-5G module

Not yet validated

1314

Conclusions and Next Steps

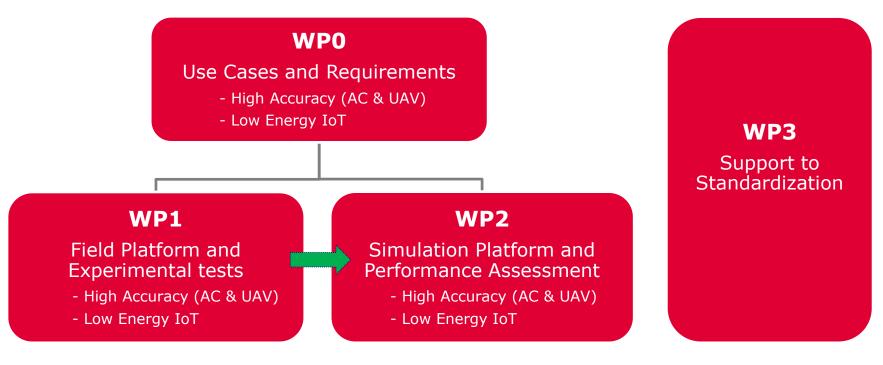
Conclusions and Next Steps

- GINTO5G project <u>conclusions</u>:
 - HA-GNSS can achieve performance of below 1m at 95% (rural and sub-urban) and 2m at 95% (urban European city).
 - There is no 4G positioning techniques and signals deployed in Europe (and 5G is only about to be rolled out) =>
 field evaluation of network-based positioning is not straightforward and assumptions on base stations
 location error and transmitters synchronisation error have to be made.
 - Based on simulation results it could be noticed that 5G based positioning can add a benefit to HA-GNSS but only under perfect synchronisation (Ons), large percentage of LoS measurements, wide bandwidth (100 MHz!!!), and no errors in antenna location. Of course, these are difficult to meet in reality (e.g. ITU requirements for network synchronisation is 1µs!!!, LTE signals have 20MHz!!!).
 - The *simulation tool performs well* with respect to field data, and it can be used to assess performance in other cases without field tests.
- GINTO5G project <u>next steps</u>:
 - Validation of 5G empirical model
 - New *experiments in indoor using 5G* positioning signals (PRS)
 - Hybrid GNSS 5G for *transition indoor outdoor*
 - **Performance assessment** with the simulation platform

ION GNSS+ 2019

GINTO5G AOB

THANK YOU


SMBLOG f ヒ & in ふ

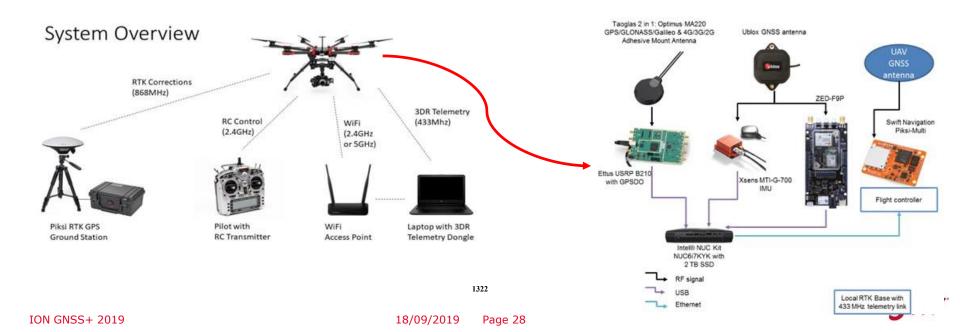
IN FO **4** F **ADD**

WORK LOGIC

Technologies:

- Multi-constellation GNSS including different GNSS receiver grades and differential techniques
 - [RTK, NRTK, PPP, PPP-RTK]
- Wireless network solutions (LTE, 5G)
- Additional sensors (different grades of IMUs)

ION GNSS+ 2019


1320

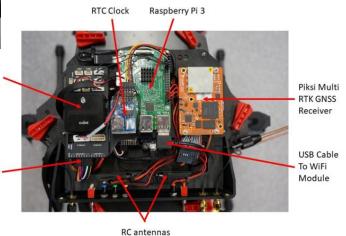
nts UT **HA-UAV** J **M M** . eri **WP1 CX**

HA-AC UAV PLATFORM FEATURES

- Same approach as for Automotive campaign, with a reduce configuration:
 - GNSS HA-UAV platform main features:
 - Device Under Test: u-blox ZED-F9P evaluation module (fed by N-RTK corrections)
 - Reference Trajectory: Swift-Navigation Piksi-Multi dual-frequency RTK
 - LTE/3GPP HA-UAV platform main features:
 - 1-channel LTE signal reception from one antenna
 - Signal: LTE CRS band 3 (1815 MHz from DT network)

HA-AC UAV PLATFORM

Pixhawk Power Module 5V Regulator RTK GNSS for Raspberry Pi Telemetry (868MHz)



X8R RC Receiver (top) FLVSS Battery Monitor (bottom) Buffer Battery Buffer Battery Power Charger (underneath)

Pixhawk 2.1 Flight Controller Control signals To motors

ION GNSS+ 2019

3DR Telemetry

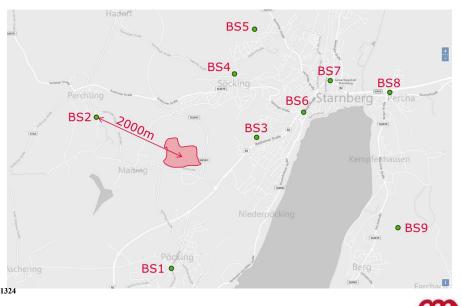
For Pixhawk

(433Mhz)

18/09/2019 Page 29

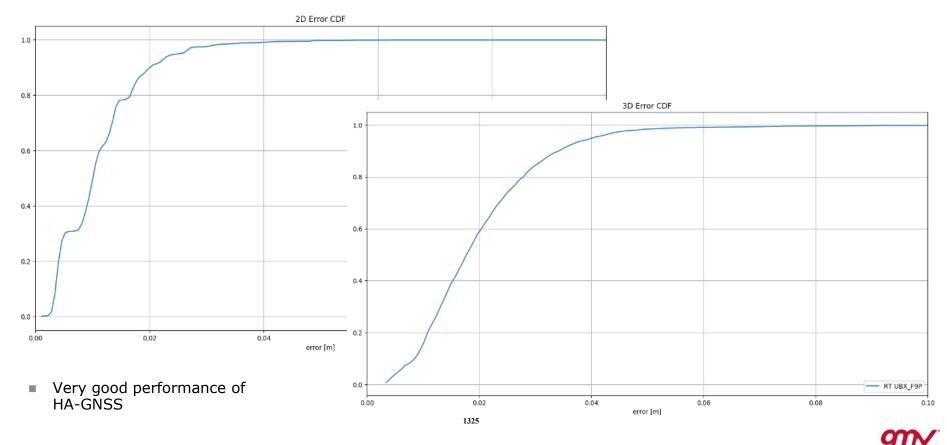
1323

5V Regulator


for Piksi Multi

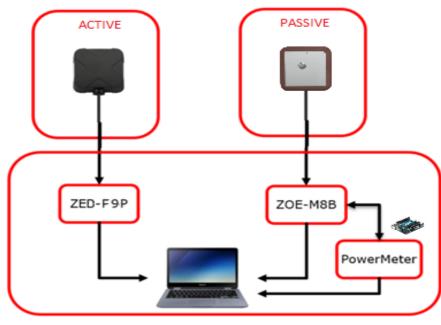
YIN

HA-UAV CAMPAIGN


- Experiment area: open area on a German army site accessible for DLR and with no flight constraints (except altitude < 100m)
- 3GPP tests:
 - Base station information (position and IDs) extracted from cellmapper.net
 - Only few base stations around the experiment area
 - Cross-verification of base station position based on
 - Google Maps and an on-site visit to verify validity on Google Maps

HA-UAV: GNSS RESULTS

Summary Results: Comparison between reference (Piksi-Multi) and F9P under 5cm horizontal and 10cm vertical

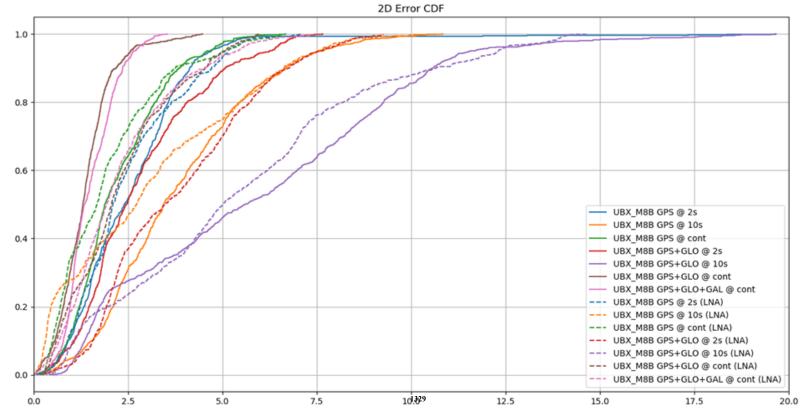

ION GNSS+ 2019

UD I O T Experiments WP1: Fig Low Energy

LE-IOT PLATFORM

- GNSS LE-IoT platform:
 - ZOE-M8B LE-IoT device under test to be configured with 7 different duty-cycle + constellation configurations and with two different antenna connections (with LNA/ without LNA)
 - Reference solution (ground truth) based on ZED-F9P (GPS+GLO+GAL) post-processing solution with NovAtel Inertial Explorer (backwards + forwards, RTK/PPP)

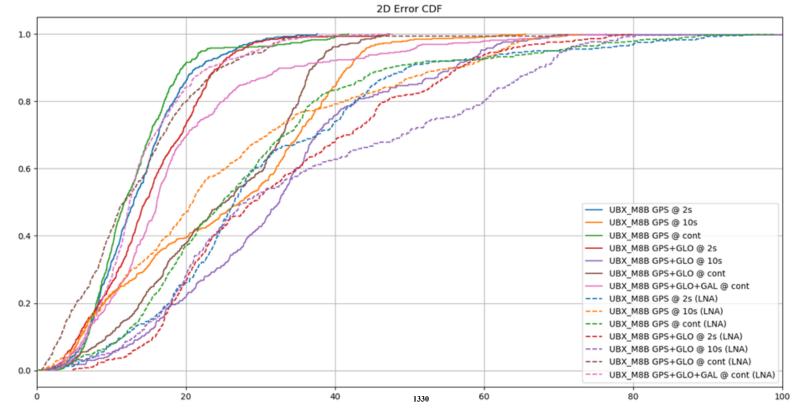
LE-IOT CAMPAIGN


- Two scenarios representative of user location were selected in Madrid:
 - Open sky
 - Urban canyon (narrower streets and taller buildings)
- Each test repeated with LNA and without LNA considering different duty cycles and for 1-3 constellations.

Low Energy IoT: GNSS – Open Sky

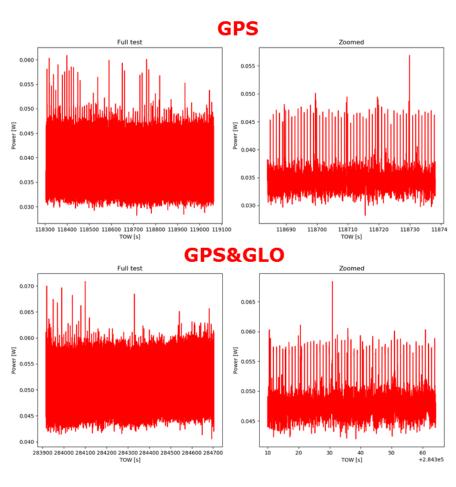
Open Sky scenario summary results (dashed with LNA):

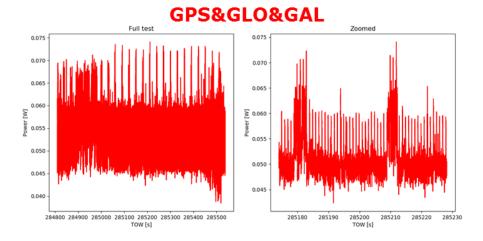
- Similar accuracy with/without LNA
- Higher errors GPS+GLO vs GPS @ 10s



ION GNSS+ 2019

Low Energy IoT: GNSS - URBAN

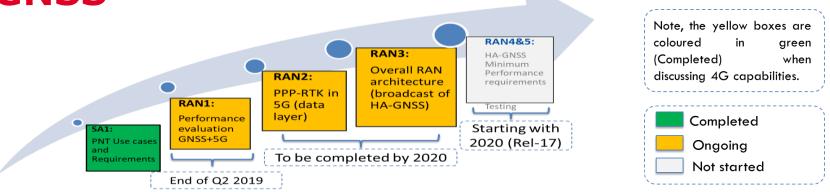

Urban scenario summary results (dashed with LNA):


- No representative positioning error values
- Higher power consumption than in open field scenario due to duty cycle changes.

ION GNSS+ 2019

Low Energy IoT: GNSS – Power Consumption

- Almost no power consumption increment with Galileo (3-5mW)
- Considerable increment in power consumption with Glonass (12-14 mW)
- No a priori relationship between increment in SV and power consumption
- No a priori power consumption difference with LNA and without LNA


ION GNSS+ 2019

1331

100 **U**O Ţ LNID iza 0 0 3 Sup ndard WP3 Stan

WP3 Support to the Standardization of GNSS

- Support to the standardization in 3GPP RAT Independent Positioning (main topic):
 - SA1: [FS_5G_HYPOS] and [5G_HYPOS]:
 - SA1 Use cases and positioning service level requirements
 - RAN1&RAN2&RAN3: [FS_NR_Pos] and [NR_Pos]:
 - Transfer LTE hybridisation capabilities (LPP) to NR (NPP) including RTK/PPP corrections
 - Broadcast corrections for HA-GNSS including PPP-RTK
 - Promote the benefit of hybridization between RAT-dependent and GNSS
- Other topics of interest in the standardization:
 - PPP-RTK, NB-IoT, V2X, 5G Network Synchronization and Security & Authentication

5G Positioning

SA1: 5G positioning service levels requirements

Positioning	Absolute(A	Accu (95 % confid				Coverage, environment of use and UE velocity			
service level	Relative(R) positioning	Horizontal Accuracy	Vertical Accuracy	Availability	Latency	5G positioning service area	5G enhanced positioning service area (note 2)		
			(note 1)				Outdoor and tunnels	Indoor	
						Indoor - up to 30 km/h			
1	A	10 m	3 m	95 %	1 s	Outdoor (rural and urban) up to 250 km/h	NA	Indoor - up to 30 km/h	TBS/WLAN
						Outdoor (rural and urban) up to 500 km/h for	Outdoor (dense urban) up to 60 km/h		
2	A	3 m	3 m	99 %	1 s	trains and up to 250 km/h for other vehicles	Along roads up to 250 km/h and along railways up to 500 km/h	Indoor - up to 30 km/h	
						Outdoor (rural and urban) up to 500 km/h for	Outdoor (dense urban) up to 60 km/h		Proprietary solutions (e.g. UWB)
3	A	1 m	2 m	99 %	1 s	trains and up to 250 km/h for other vehicles	Along roads up to 250 km/h and along railways up to 500 km/h	Indoor - up to 30 km/h	(and opportunities for 5G NR)
4	А	1 m	2 m	99.9 %	15 ms	NA	NA	Indoor - up to 30 km/h	Multi-GNSS or Hybridized Multi-GNSS
5	A	0.3 m	2 m	99 %	1 s	Outdoor	Outdoor (dense urban) up to 60 km/h	Indoor - up to 30 km/h	
5		2.5			10	(rural) up to 250 km/h	Along roads and along railways up to 250 km/h		
6	A	0.3 m	2 m	99.9 %	10 ms	NA	Outdoor (dense urban) up to 60 km/h	Indoor - up to 30 km/h	
7	R	0.2 m	0.2 m	99 %	1 s	Indoor and Relative positioning is between two not			
NOTE 1: NOTE 2:	(e.g. bridge Indoor inclu	s). Ides location	inside buildir	ngs such as d	offices, hospit	rmine the floor for indoor use cases ar al, industrial buildings.			
NOTE 3:		ing nodes an the side of a		ire equipmen	t deployed in	the service area to enhance positionin	ng capabilities (e.g. beacons deployed	on the perimeter of a rendezvous	

Service levels and service areas 1334 with best opportunities for 5G NR / HA-GNSS hybridization